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Abstract

We present minimax bounds for classification
and clustering error in the setting where co-
variates are drawn from a mixture of two
isotropic Gaussian distributions. Here, we de-
fine clustering error in a discriminative fash-
ion, demonstrating fundamental connections
between classification (supervised) and clus-
tering (unsupervised). For both classification
and clustering, our lower bounds show that
without enough samples, the best any classi-
fier or clustering rule can do is close to random
guessing. For classification, as part of our up-
per bound analysis, we show that Fisher’s
linear discriminant achieves a fast minimax
rate Θ(1/n) with enough samples n. For clus-
tering, as part of our upper bound analysis,
we show that a clustering rule constructed
using principal component analysis achieves
the minimax rate with enough samples. We
also provide lower and upper bounds for the
high-dimensional sparse setting where the di-
mensionality of the covariates p is potentially
larger than the number of samples n, but
where the difference between the Gaussian
means is sparse.

1 Introduction

We consider lower bounds and upper bounds for Gaus-
sian classification and clustering. We focus on the
setting with two classes/clusters of isotropic (spher-
ical) Gaussian distributions. Our results reveal the
dependency of classification and clustering errors on
the dimension of the covariates/features p, number of
samples n, sparsity of the optimal classifier/clustering
rule s = ‖Σ−1(µ1 − µ0)‖0, and separation between
two classes/clusters ρ =

√
(µ1 − µ0)TΣ−1(µ1 − µ0).
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Note that ρ is invariant under linear transforms of the
features, and we are interested in the difficult case when
ρ = O(1) is small.

Gaussian classification [11] is the problem of labeling a
new sample using its features, given already observed
samples with both the label and the features, where
we have a prior distribution over the labels, and each
class’s features are distributed according to a Gaussian
distribution. The classification error of classifier is de-
fined as the probability that the classifier mislabels a
sample, which we also term as the risk of the classifier.
When analyzing classification algorithms, we are inter-
ested in bounding the excess risk, which quantifies how
much worse the trained classifier is compared to the
optimal classifier – the Bayes classifier. In this paper
we present a fast Θ(1/n) minimax rate for Gaussian
classification, even without the classes being completely
separable (the Bayes error is not 0). For lower bounds,
we also show that without enough samples, the per-
formance of any classifier is close to random guessing.
Random guessing uniformly randomly assigns a sam-
ple into one of the two classes, and its classification
error is 1/2. For upper bounds, we show that Fisher’s
linear discriminant [11] achieves the minimax rate for
classification of two balanced isotropic Gaussian distri-
butions. In the sparse setting, we use a `1 regularized
optimization problem to estimate the Bayes classifier.

Gaussian clustering [11] is the problem of labeling a
new sample using its features, given already observed
unlabeled samples with only the features. The features
are distributed according to a mixture of two Gaussian
distributions. We define clustering error in a discrimi-
native fashion, and in the spirit of classification error:
we define it as the minimum classification error over
the two mappings of the two clusters to the two labels.
It is easy to see that the Bayes classifier is the optimal
clustering rule, and the clustering error is equal to the
Bayes classification error. We show that a clustering
rule constructed using principal component analysis
achieves a fast Θ(1/n) minimax rate. In the sparse
setting, we first use a thresholded estimate of the opti-
mal clustering rule’s support, and then apply principal
component analysis to estimate the optimal clustering
rule.
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We would like to note that when the separation be-
tween the two classes/clusters is constant, our results
for classification and clustering are tight up to logarith-
mic factors in dimension p, number of samples n, and
sparsity s. One of our key contributions is the deriva-
tion of classification and clustering minimax risk lower
bounds. This presents particular technical challenges,
since unlike metrics, risk lower bounds do not trivially
satisfy a triangle inequality (which is critically used in
typical lower bound derivations).

Related Work Until recently, results giving a
Θ(1/n) minimax rate relied critically on a strict separa-
tion assumption (the Bayes classifier’s classification er-
ror is 0) [15]. Without this assumption, the best known
results were O(1/

√
n) classification error rates [21, 6],

or o(1/
√
n) minimax rates[17, 14]. For certain nonpara-

metric problems, matching upper and lower bounds
[17] for classification excess risk are known. However,
matching upper and lower bounds in parametric prob-
lems are not known, although Theorem 13.21 of [5]
gives a o(1/

√
n) fast rate upper bound for parametric

classification problems under a VC dimension condition
and Tsybakov’s low noise condition. In a recent result,
[16] showed that it is possible to achieve a O(1/n) rate
for excess risk in Gaussian classification without such a
separation assumption. The question of a lower bound
for this setting remained open. Resolving this and
proving a matching lower (minimax) bound is one of
the contributions of this paper.

For clustering, most previous works have focused on
recovering each cluster [19, 10]. Despite other discrim-
inative clustering methods without theoretical guar-
antees [22, 13], only [1] has formally defined cluster-
ing error. Our definition of clustering error draws
fundamental connections between classification (super-
vised) and clustering (unsupervised), and in particular,
is different from that of [1]. Using the notations of
Section 2.2, for a clustering rule C, [1] defines the
clustering error as min{Pr[C 6= C∗], 1 − Pr[C 6= C∗]},
where C∗ is the clustering rule using the Bayes classi-
fier. In this paper, we define the clustering error as
min{Pr[C 6= Y ], 1− Pr[C 6= Y ]}, where Y is the latent
indicator in the Gaussian mixture model. In the former
definition, the risk of an optimal classification rule is
always zero, and hence does not reveal the inherent
“hardness” of the problem, which (as is intuitive) is char-
acterized by the distance between the cluster centers –
a quantity we denote by ρ in the sequel. Conversely,
defining the clustering error as we do, we obtain results
that explicitly depend on ρ. Section 4.3 gives a more
detailed comparison.

2 Problem Setup

2.1 Classification

The Gaussian classification problem is specified as fol-
lows. Suppose we use X ∈ Rp to denote the features,
and use Y ∈ {0, 1} to denote the label. Then joint
distribution over the features and the label is then spec-
ified by a simple Bernoulli distribution for the prior
distribution over Y , and that the features conditioned
on each of the two labels are distributed according
to Gaussian distributions, with the same covariance
matrix but different means. We thus have:

X | Y ∼ N (µY ,Σ), (1)

Pr[Y = 1] = π1, Pr[Y = 0] = π0. (2)

A classifier is a function C : Rp → {0, 1}. A linear
classifier with parameter w ∈ Rp, b ∈ R is defined as
1(wTx+ b > 0).

The classification error of a classifier C is defined as
the probability that the classifier mislabels a sample

R(C) = Pr[C(X) 6= Y ]. (3)

For a linear classifier C(x) = 1(wTx + b > 0), the
classification error can be written as

1− π1Φ(w
Tµ1+b√
wTΣw

)− π0Φ(−w
Tµ0+b√
wTΣw

). (4)

The optimal classifier is the Bayes classifier C∗(x) =

1(π1N (µ1,Σ)
π0N (µ0,Σ) > 1), which is a linear classifier

C∗(x) = 1((µ1 − µ0)TΣ−1x

m+
1

2
(−µT1 Σ−1µ1 + µT0 Σ−1µ0) + log

π1

π0
> 0). (5)

A classifier is trained using n i.i.d. samples
(x1, yi), . . . , (xn, yn), where we have access to both the
features and the label.

2.2 Clustering

The Gaussian clustering problem is specified as follows.
Suppose we use X ∈ Rp to denote the features. No
label is observed. The samples are distributed accord-
ing to a Gaussian mixture model with two mixture
components, each with the same covariance matrix but
different means:

X ∼ π1N (µ1,Σ) + π0N (µ0,Σ). (6)

A clustering rule is a function C : Rp → {0, 1}. A
linear clustering rule with parameter w ∈ Rp, b ∈ R is
defined as 1(wTx+b > 0). Note that, in the clustering



Tianyang Li, Xinyang Yi, Constantine Caramanis, Pradeep Ravikumar

problem, we can view the classification label Y as a
latent variable, and in particular, it is natural to use an
error metric similar to classification error as clustering
error. Here, we define the clustering error of a clustering
rule C as

R(C) = min{Pr[C(X) 6= Y ], Pr[C(X) 6= 1− Y ]},
(7)

where a minimum is taken over two possible labelings
because there is no access to the true label.

For a linear clustering rule C(x) = 1(wTx + b > 0),
the clustering error can be written as

min{π1Φ(w
Tµ1+b√
wTΣw

) + π0Φ(−w
Tµ0+b√
wTΣw

),

π1Φ(−w
Tµ1+b√
wTΣw

) + π0Φ(w
Tµ0+b√
wTΣw

)}. (8)

It is easy to see that using the Bayes classifier as a
linear clustering rule minimizes the clustering error,
and this error is equal to the Bayes classification error.

A clustering rule is trained using n i.i.d. samples
x1, . . . ,xn. Here we only have access to the features,
but not the latent indicator (the label).

2.3 Excess risk

Note that in both classification and clustering, the
Bayes classifier minimizes the error, and the minimum
error is the Bayes classification error. Taking this
into consideration, for a given Gaussian classification
or clustering problem, we define the excess risk of a
classifier or clustering rule C as

E(C) = R(C)−R∗, (9)

where R∗ = 1/2 − 1/2
∫
|π1N (µ1,Σ) −

π0N (µ0,Σ)| dx > 0 is the Bayes classification
error.

2.4 Assumptions

In this paper, we consider classification and clustering
of two balanced isotropic Gaussian distributions. In
classification, we consider distributions of the type
Pr[Y = 1] = Pr[Y = 0] = 1/2 and X ∼ N (µY , σ

2I).
In clustering, we consider distributions of the type
1
2N (µ1, σ

2I) + 1
2N (µ0, σ

2I). Our setting is similar to
those presented in [4, 8, 1]. We will present results
in the general setting without any sparsity, and then
results with the following sparsity assumption s =
‖Σ−1(µ1 − µ0)‖0 = ‖µ1 − µ0‖0.

3 Bounds for Gaussian Classification

In this section, we present lower and upper bounds for
Gaussian classification, both in the general setting with-

out sparsity, and in the high-dimensional sparse setting
where the difference between the means is sparse.

Our lower bounds show that when there are not enough
samples, the best any classifier can do is close to random
guessing. For the general setting, we show that Fisher’s
linear discriminant method achieves the minimax rate
up to constant factors. Note that the constants in the
bounds can be improved.

3.1 General Setting without Sparsity

3.1.1 Lower Bound

For the lower bound, we consider Gaussian classification
problems where Pr[Y = 1] = Pr[Y = 0] = 1/2, X |
Y ∼ N (µY , I) with µ1 = −µ0 = µ. In this case, the
Bayes classification error is 1−Φ(‖µ‖2). We will index
each classification problem with µ.

The following theorem provides a lower bound for Gaus-
sian classification when enough samples are available.

Theorem 1 (Classification excess risk lower bound).
Let ρ > 0 be a fixed number. For sufficiently large p
and n, and any classifier C trained using n samples,
we have

max‖µ‖2=ρ/2 Eµ[Eµ(C)] & e−ρ
2/8 min{ 1

ρ
p
n , ρ}. (10)

The proof of Theorem 1 is based on the following theo-
rem for general classification problems, which provides
a “triangle inequality” in Fano’s method [25] for a
fixed classifier’s excess risk in different classification
problems.

Theorem 2 (A “triangle inequality” for classifica-
tion excess risk). Let i correspond to a classification

problem where Pr[Y = y] = π
(i)
y and X | Y ∼

p
(i)
Y (X). Denote the Bayes classifier as C∗(i)(x) =

1((π
(i)
1 p

(i)
1 (x))/(π

(i)
0 p

(i)
0 (x)) > 1). Suppose we have

another classification problem j. Then for any fixed
classifier C,

Ei(C) + Ej(C) ≥
∫

C∗(i) 6=C∗(j)

min{|π(i)
1 p

(i)
1 − π

(i)
0 p

(i)
0 |,

|π(j)
1 p

(j)
1 − π

(j)
0 p

(j)
0 |} dx. (11)

Indeed, for a classification problem where Pr[Y = y] =
πy and X | Y ∼ pY (X), a classifier C’s excess risk
E(C) =

∫
C 6=C∗

|π1p1 − π0p0| dx where C∗ is the Bayes

classifier (Theorem 2.2, [7]).

To construct a packing for applying Fano’s method,
we use the following lemma on existence of sparse sets
(Lemma 4.10, [18]). This lemma is also known as the
Gilbert-Varshamov bound (Theorem 17.2, [12]). It is
stated here for completeness.
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Lemma 1 (Existence of sparse sets (Lemma 4.10,
[18])). Let Ψ = {ψ ∈ {−1,+1}p : ‖ψ‖0 = s} for
positive integers p and 1 ≤ s < p/4. Then there exists
ψ1, . . . , ψN such that the Hamming distance δ(ψi, ψj) >
s/2 for all 1 ≤ i < j ≤ N , and logN ≥ s

5 log p
s .

We briefly sketch Theorem 1’s proof.
Let us consider the set M = {µ |
(
√
ρ2/4− sα2),±αψ1, . . . ,±αψp−1) ∈ Rp} where

s = (p− 1)/6 > p/8, and ψ1, . . . , ψp−1 are as given in

Lemma 1. And we set α = 0.001 min{
√

1/n, ρ/(2
√
s)}.

Using Theorem 2 we can show that for any fixed

µ, if Eµ > 4 × 10−9 e−ρ
2/8

ρ sα2 then we must have

Eµ′ < 4 × 10−9 e−ρ
2/8

ρ sα2 for all other µ′ 6= µ. This
observation reduces the problem to a testing problem.
So using Fano’s method, we can show that

Pr[Eµ(C) ≥ 4× 10−9 e
−ρ2/8

ρ
sα2]

≥1− nmaxµ6=µ′ KL(Pµ ‖ Pµ′) + log 2

log |M |

≥m1− nsα2 + log 2

log |M |
= Ω(1), (12)

where Pµ is the joint distribution of X, Y with param-
eter µ, and the probability is over the uniform distri-
bution of µ on M . Here, we used KL(Pµ ‖ Pµ′) =
1
2‖µ− µ

′‖22. Finally, we have

max
µ

Eµ[Eµ(C)] ≥ 1
|M |

∑
µ∈M Eµ[Eµ(C)]

&
e−ρ

2/8

ρ
sα2Pr[Eµ(C) ≥ 4× 10−9 e

−ρ2/8

ρ
sα2]

& e−ρ
2/8

ρ sα2 & e−ρ
2/8 min{ 1

ρ
p
n , ρ}. (13)

The next theorem states that when there are not enough
samples, the best that any classifier can do is close to
random guessing. Random guessing uniformly ran-
domly assigns a sample into one of the two classes, and
its classification error is 1/2.

Theorem 3 (Impossibility of classification). For
sufficiently large p and n, let ρ > 0. When
nmax{ρ2, ρ4}/p → 0 and p, n → +∞, then for any
classifier C trained using n samples, we have

infC max‖µ‖2=ρ/2 Eµ[Rµ(C)]→ 1
2 . (14)

Indeed, notice that maxµ Eµ[Rµ(C)] ≥ E[Eµ[Rµ(C)]],
where the outer expectation is taken over the uniform
distribution of µ on ‖µ‖2 = ρ/2, and RHS is equivalent
to a Bayesian problem with a uniform prior over µ.
In the Bayesian problem, it is easy to see that any
classifier’s classification error is lower bounded by that

of the MAP classifier. The MAP classifier CMAP is a
linear classifier, and it can be written as

CMAP(x) = arg maxy Pr[Y = y |X = x, (x1, y1), . . . ]

= 1((
∑

(2yi − 1)xTi )x > 0). (15)

Thus, we can use (4) to compute its classification er-
ror. Let ŵ = 1

n

∑
(2yi − 1)xi. When conditioned on

µ, Eµ[R(CMAP)] → 1/2 uniformly for all µ, because
|µT ŵ/‖ŵ‖2| → 0 uniformly. This establishes that the
MAP classifier’s classification error approaches 1/2 as
nmax{ρ2, ρ4}/p→ 0 and p, n→ +∞.

3.1.2 Upper Bound

We show that Fisher’s linear discriminant achieves the
minimax rate. Here we consider isotropic Gaussian
classification problems with Pr[Y = 1] = Pr[Y =
0] = 1/2 and X|Y ∼ N (µY , σ

2I), where µ1, µ0,
and σ are unknown. We assume that ‖µ1‖2 =
O(1), ‖µ0‖2 = O(1), and σ = Θ(1). Thus ρ =√

(µ1 − µ0)TΣ−1(µ1 − µ0) = O(1) and e−ρ
2/8 =

Ω(1).

For y = 1, 0, let ny =
∑

1(yi = y). We estimate
each class’s mean µ̂y = 1

ny

∑
yi=y

xi. And the trained

classifier is Ĉ(x) = 1(ŵTx+ b̂ > 0) where ŵ = µ̂1−µ̂0,

and b̂ = 1
2 (−µ̂T1 µ̂1 + µ̂T0 µ̂0).

Theorem 4 (Fisher’s linear discriminant upper
bound). Let ρ =

√
(µ1 − µ0)TΣ−1(µ1 − µ0) = O(1).

When n & p log δ−1/ρ4, with probability at least 1− δ,
for Fisher’s linear discriminant, we have

E(Ĉ) . 1
ρ
p
n log 1

δ . (16)

The proof of Theorem 4 is based on Theorem 1 of
[16], which connects parameter estimation error with
classification excess risk. We state this theorem here
for completeness.

Theorem 5 (Classification excess risk upper bound
(Theorem 1, [16])). In a Gaussian classification problem
with Pr[Y = 1] = Pr[Y = 0] = 1/2 and X | Y ∼
N (µY ,Σ), the excess risk of a linear classifier C(x) =
1(wTx+ b > 0) is bounded by

E(C) . ρe−ρ
2/8(e2

1 + e2
0) + e3

1 + e3
0, (17)

where e1 = |w
Tµ1+b√
wTΣw

− ρ/2| and e0 = |w
Tµ0+b√
wTΣw

+ ρ/2|
with ρ =

√
(µ1 − µ0)TΣ−1(µ1 − µ0).

3.2 Sparse Setting

In the sparse setting, we consider Gaussian classifica-
tion problems with Pr[Y = 1] = Pr[Y = 0] = 1/2 and
X | Y ∼ N (µY , σ

2I), with the additional requirement
that µ1 − µ0 is s-sparse (‖µ1 − µ0‖0 = s).
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3.2.1 Lower Bound

Similar to Section 3.1.1, for the lower bound we consider
the Gaussian classification problems where Pr[Y = 1] =
Pr[Y = 0] = 1/2, X | Y ∼ N (µY , I) with µ1 = −µ0 =
µ. The additional requirement here is that µ is s-sparse
(‖µ‖0 = s).

The following theorem, in parallel with Theorem 1,
establishes a lower bound for the excess risk of sparse
classification.

Theorem 6 (Sparse classification excess risk lower
bound). Let ρ > 0 be a fixed number. For sufficiently
large p and n, let 1 ≤ s < p, then for any classifier C
trained using n samples, we have

max‖µ‖2=ρ/2
‖µ‖0=s

Eµ[Eµ(C)] & e−ρ
2/8 min{ 1

ρ

s log p
s

n , ρ}.

(18)

The proof of Theorem 6 is similar to that of Theorem
1, and it is also based on Lemma 1 and Theorem 2.
Theorem 6’s proof is omitted for brevity.

3.2.2 Upper Bound

We show that a modified version Fisher’s linear discrim-
inant achieves the minimax rate in sparse classification.
Here we consider isotropic Gaussian classification prob-
lems with Pr[Y = 1] = Pr[Y = 0] = 1/2 and X|Y ∼
N (µY , σ

2I), where µ1, µ0, and σ are unknown. In the
sparse setting, µ1 − µ0 is s-sparse (‖µ1 − µ0‖0 = s).
We assume that ‖µ1‖2 = O(1), ‖µ0‖2 = O(1), and
σ = Θ(1). Thus ρ =

√
(µ1 − µ0)TΣ−1(µ1 − µ0) =

O(1) and e−ρ
2/8 = Ω(1).

To train the classifier C(x) = ŵTx + b̂, we split the
i.i.d. samples into two parts of size n(1) ≈ n(2) ≈ n/2.
On the first part of the data, we estimate each class’s

mean µ̂y = 1
ny

∑
y
(1)
i =y

x
(1)
i where ny =

∑
1(y

(1)
i = y)

for y = 1, 0. We estimate ŵ by solving the following `1
regularized optimization problem

minw ‖w − (µ̂1 − µ̂0)‖22 + λ‖w‖1, (19)

with λ = Θ(σ
√

log p/n). When σ is unknown, em-
pirically cross validation is known to be effective in
selecting a suitable regularization parameter λ [9]. To

estimate b̂, we use the second part of the data and ŵ

b̂ = 1
2ŵ

T ( 1
n(2)

∑
x

(2)
i ). (20)

The following theorem, which is a special case of the
result for parameter recovery using `1 regularized opti-
mization [20], shows that we can successfully recover
µ1 − µ0 using ŵ.

Theorem 7 (Sparse mean estimation using `1 regular-
ized least squares). Let θ∗ ∈ Rp be a s-sparse vector

(‖θ‖0 = s < p/2). Suppose we observe θ̂ = θ∗ + ε. Set
λ = 4‖ε‖∞. If we estimate θ∗ using

ŵ = arg minw ‖w − θ̂‖22 + λ‖w‖1, (21)

then we have

‖ŵ − θ∗‖1 . s‖ε‖∞,
‖ŵ − θ∗‖2 .

√
s‖ε‖∞. (22)

A key component in the proof of Theorem 7 is that
I satisfies the restricted eigenvalue condition, which
follows from the fact that I satisfies the Restricted
Isometry Property [23].

The next theorem, in parallel with Theorem 4, shows
that sparse Fisher’s linear discriminant achieves the
minimax rate up to logarithmic factors.

Theorem 8 (Sparse Fisher’s linear discriminant upper
bound). Let ρ =

√
(µ1 − µ0)TΣ−1(µ1 − µ0) = O(1).

When n & s log p log δ−1/ρ4 and 1 ≤ s < p/2, then
with probability at least 1 − δ, sparse Fisher’s linear
discriminant satisfies

E(Ĉ) . 1
ρ
s log p
n log 1

δ . (23)

4 Bounds for Gaussian clustering

In this section, we present lower and upper bounds for
Gaussian clustering, both in the general setting without
sparsity, and in the high-dimensional sparse setting
where the difference between the means is sparse.

4.1 General Setting without Sparsity

4.1.1 Lower Bound

For the lower bound, we consider Gaussian clustering
problems whereX ∼ 1

2N (µ1, I)+ 1
2N (µ0, I) with µ1 =

−µ0 = µ. In this case, the optimal clustering rule’s
error is equal to the Bayes classification error 1 −
Φ(‖µ‖2). We will index each clustering problem with
µ.

Similar to Theorem 1, the following theorem provides
a lower bound for Gaussian clustering, but with a
different dependency on the separation between the
two clusters (ρ =

√
(µ1 − µ0)TΣ−1(µ1 − µ0)).

Theorem 9 (Clustering excess risk lower bound). Let
ρ > 0 be a fixed number. For sufficiently large p and n,
and any clustering rule C trained using n samples, we
have

max‖µ‖2=ρ/2 Eµ[Eµ(C)] & e−ρ
2/8 min{ 1

ρ3
p
n , ρ}. (24)
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Similar to the proof of Theorem 1, the proof of The-
orem 9 is based on the following theorem for general
clustering problems, which provides a “triangle inequal-
ity” in Fano’s method [25] for a fixed clustering rule’s
excess risk in different clustering problems.

Theorem 10 (A “triangle inequality” for clus-
tering excess risk). Let i correspond to a cluster-

ing problem where X ∼ π1p
(i)
1 (X) + π0p

(i)
0 (X).

Denote the optimal clustering rule as C∗(i)(x) =

1((π
(i)
1 p

(i)
1 (x))/(π

(i)
0 p

(i)
0 (x)) > 1). Suppose we have

another clustering problem j. Then for any fixed clus-
tering rule C,

Ei(C) + Ej(C)

≥min{
∫

C∗(i) 6=C∗(j)

min{|π(i)
1 p

(i)
1 − π

(i)
0 p

(i)
0 |,

|π(j)
1 p

(j)
1 − π

(j)
0 p

(j)
0 |} dx,∫

C∗(i)=C∗(j)

min{|π(i)
1 p

(i)
1 − π

(i)
0 p

(i)
0 |,

|π(j)
1 p

(j)
1 − π

(j)
0 p

(j)
0 |} dx}. (25)

Indeed, for a clustering problem where X ∼ π1p1(X)+
π0p0(X), a clustering rule C’s excess risk E(C) =
min{

∫
C 6=C∗

|π1p1 − π0p0| dx,
∫
C=C∗

|π1p1 − π0p0| dx}
where C∗ is the optimal clustering rule. This follows
from the definition of clustering error (7), and the Bayes
classifier’s classification error (Theorem 2.2, [7]).

The proof of Theorem 9 is similar to that of Theo-
rem 1. However, in clustering we have KL(Pµ,Pµ′) .
ρ4(1−µTµ′/(‖µ‖2‖µ′‖2)) (Proposition 24, [1]). Thus,
in clustering the dependency on ρ is different from
classification.

Notice that, for a classification problem, we can always
remove the labels, and treat it as a clustering problem.
Denote the learned clustering rule as Ĉ, then both Ĉ
and 1 − Ĉ can be used as classifiers for the original
classification problem. Thus we have the following
corollary to Theorem 3, which states that, without
enough samples the best any clustering rule can do is
close to random guessing.

Corollary 1 (Impossibility of clustering). For suf-
ficiently large p and n, let ρ > 0. When
nmax{ρ2, ρ4}/p → 0 and p, n → +∞, then for any
clustering rule C trained using n samples, we have

infC max‖µ‖2=ρ/2 Eµ[Rµ(C)]→ 1
2 . (26)

4.1.2 Upper Bound

For the upper bound, we will consider the setting
with X ∼ X ∼ 1

2N (µ1, σ
2I) + 1

2N (µ0, σ
2I) where

µ1, µ0, and σ are unknown. We assume that

‖µ1‖ = O(1), ‖µ0‖ = O(1), and σ = Θ(1). Thus

ρ =
√

(µ1 − µ0)TΣ−1(µ1 − µ0) = O(1) and e−ρ
2/8 =

Ω(1).

Our method for clustering is similar to that of [1].
To estimate a clustering rule, we first compute the
sample mean m̂ = 1

n

∑
xi, then we compute the largest

eigenvalue’s normalized eigenvector v̂ of the sample
covariance matrix Σ̂ = 1

n

∑
(xi − m̂)(xi − m̂)T . Next,

we use Ĉ(x) = v̂Tx− v̂T m̂ as the estimated clustering
rule.

Theorem 11 (Clustering upper bound). For suffi-
ciently large n and p, let ρ = ‖µ1 − µ0‖2/σ = O(1).

When n & p log(pn)/ρ6, the expected excess risk of Ĉ
satisfies

E[E(Ĉ)] . 1
ρ3

p
n log(pn). (27)

To prove Theorem 11, we will use the following corollary
on the connection between parameter estimation error
and clustering error, which follows from Theorem 5
and the definition of clustering error (7).

Corollary 2 (Clustering excess risk upper bound). In
a Gaussian clustering problem with X ∼ 1

2N (µ1,Σ) +
1
2N (µ0,Σ), the excess risk of a linear clustering rule
C(x) = 1(wTx+ b > 0) is bounded by

E(C) . min{ρe−ρ
2/8(e2

1 + e2
0) + e3

1 + e3
0,

ρe−ρ
2/8(f2

1 + f2
0 ) + f3

1 + f3
0 }, (28)

where e1 = |w
Tµ1+b√
wTΣw

− ρ/2|, e0 = |w
Tµ0+b√
wTΣw

+ ρ/2|

f1 = |w
Tµ1+b√
wTΣw

+ ρ/2|, f0 = |w
Tµ0+b√
wTΣw

− ρ/2| and

ρ =
√

(µ1 − µ0)TΣ−1(µ1 − µ0).

The proof of Theorem 11 uses Proposition 6 of [1],
which gives the error of using v̂ to estimate the direction
of µ1 − µ0. We state it here for completeness.

Proposition 1 (Proposition 6, [1]). Suppose n > 4p,
define cosβ = ∆µT v̂/‖∆µ‖2. For any 0 ≤ δ < (p −
1)/
√
e, if max{4/ρ2, 2/ρ}

√
max{d,8 log δ−1}

n < 1/180,

then with probability at least 1 − 12δ − 2e−n/20, we
have

sinβ ≤ 14 max{4/ρ2, 2/ρ}√p
√

10
n log p

δ max{1, 10
n log p

δ }.
(29)

4.2 Sparse Setting

In the sparse setting, we consider Gaussian clustering
problems with X ∼ 1

2N (µ1, σ
2I) + 1

2N (µ0, σ
2I), with

the additional requirement that µ1 − µ0 is s-sparse
(‖µ1 − µ0‖0 = s).
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4.2.1 Lower Bound

Similar to Section 4.1.1, for the lower bound we con-
sider the Gaussian clustering problems where X ∼
1
2N (µ1, σ

2I) + 1
2N (µ0, σ

2I) with µ1 = −µ0 = µ.
The additional requirement here is that µ is s-sparse
(‖µ‖0 = s).

The following theorem, in parallel with Theorem 9,
establishes a lower bound for the excess risk of sparse
clustering.

Theorem 12 (Sparse clustering excess risk lower
bound). Let ρ > 0 be a fixed number. For sufficiently
large p and n, let 1 ≤ s < p, then for any clustering
rule C trained using n samples, we have

max‖µ‖2=ρ/2
‖µ‖0=s

Eµ[Eµ(C)] & e−ρ
2/8 min{ 1

ρ3
s log p

s

n , ρ}.

(30)

The proof of Theorem 12 is similar to that of Theorem
9, and it is omitted for brevity.

4.2.2 Upper Bound

Here we consider isotropic Gaussian clustering prob-
lems with X ∼ 1

2N (µ1, σ
2I) + 1

2N (µ0, σ
2I), where

µ1, µ0, and σ are unknown. In the sparse setting,
µ1 − µ0 is s-sparse (‖µ1 − µ0‖0 = s). We assume
that ‖µ1‖ = O(1), ‖µ0‖ = O(1), and σ = Θ(1).
Thus ρ =

√
(µ1 − µ0)TΣ−1(µ1 − µ0) = O(1) and

e−ρ
2/8 = Ω(1).

Our method for sparse clustering is similar to that of
[1]. Let S = {i : µ1 − µ0 6= 0} be the set of rele-
vant features. We first construct an estimate Ŝ of the
set of relevant features. Let m̂ = 1

n

∑
xi and Σ̂ =

1
n

∑
(xi − m̂)(xi − m̂)T . Let τ̂ = 1+α

1−α min1≤i≤p Σ̂ii

where α =
√

6 log(np)/n + 2 log(np)/n. Now let

Ŝ = {i : Σ̂ii > τ̂}. Next, we compute the largest
eigenvalue’s normalized eigenvector v̂ of the sample co-
variance matrix restricted to coordinates in Ŝ. Finally,
we use Ĉ(x) = v̂TxŜ − v̂T m̂Ŝ as the estimated cluster-
ing rule, where xŜ and m̂Ŝ are x and m̂ restricted to

coordinates in Ŝ, respectively.

Theorem 13 (Clustering upper bound). For suffi-
ciently large n, p, and s < n/4, let ρ = ‖µ1 − µ0‖2/σ.
When α < 1/4 and n & s2 log(pn)/ρ8, the expected

excess risk of Ĉ satisfies

E[E(Ĉ)] . 1
ρ3
s log(ns)

n + s
ρ2

(
log(pn)
n

) 1
2

. (31)

Although the above bound is not as tight as other
previous bounds, we would like to note that sparse
Gaussian mixture problems and sparse principal com-
ponent analysis problems are both computationally
and statistically challenging [3, 2, 19, 24, 10].

The proof of Theorem 13 uses Proposition 9 of [1]
regarding performance of support recovery.

Proposition 2 (Proposition 9, [1]). Assume that n ≥
1, p ≥ 2, and α < 1/4. Define S̃ = {i : |(µ1 − µ0)i| ≥
4σ
√
α}. Then S̃ ⊆ Ŝ ⊆ S with probability at least

1− 6/n.

We briefly sketch Theorem 13’s proof. Let β̂ be the
angle between v̂Ŝ and µ1 − µ0, β̄ the angle between
(µ1 − µ0)Ŝ and µ1 − µ0, and β the angle between
v̂Ŝ and (µ1 − µ0)Ŝ . Proposition 1 shows β is small.
Proposition 2 shows β̄ is small. Using the triangle
inequality in spherical geometry we have β̂ ≤ β̄ + β.
Thus establishing Theorem 13.

4.3 Comparison of Different Clustering Error
Definitions

Here we compare our definition of clustering error with
that of [1], and show relationships between the two
definitions. We define clustering error as

min{Pr[C 6= Y ], 1− Pr[C 6= Y ]} (32)

with Y being the latent indicator in the Gaussian mix-
ture model, whereas in [1] it is defined as min{Pr[C 6=
C∗], 1− Pr[C 6= C∗]}.
One advantage of our definition is that we can empir-
ically evaluate the clustering error if true labels are
given. This is because our definition of clustering error
is the same as classification error in the corresponding
classification problem. However, empirically evaluating
[1]’s clustering error is not straightforward even if true
labels are available.

Proposition 3 ([1]’s clustering error upper bound
(Proposition 7, [1])). For the clustering problem consid-
ered in 4.1.2, [1]’s clustering error of a linear clustering
rule C(x) = 1(wTx+ b > 0) is bounded by

min{Pr[C 6= C∗], 1− Pr[C 6= C∗]} . (ε1 + ε2ρ+ | sinβ|),
(33)

if |b+wT (µ1+µ0)
2 | ≤ (σε1 +‖µ1−µ0

2 ‖2ε2)‖w‖2 for some

ε1 ≥ 0 and 0 ≤ ε2 ≤ 1
4 , and | sinβ| ≤ 1/

√
5, where

cosβ = wT (µ1−µ0)
‖w‖2‖µ1−µ0‖2 .

Also, our clustering error definition captures the in-
trinsic hardness of the clustering problem better than
[1]’s definition. For [1]’s definition, a linear cluster-
ing rule’s clustering error can be upper bounded using
Proposition 3. Following [1], with high probability we
have min{Pr[C 6= C∗], 1 − Pr[C 6= C∗]} . sinβ. For
our definition, from Corollay 2 it is easy to derive that
min{Pr[C 6= Y ], 1 − Pr[C 6= Y ]} . ρ| sinβ|2 + | sinβ|3
holds with high probability. Thus when | sinβ| . ρ,
which requires n� p/ρ6, we can easily “convert” these



Minimax Gaussian Classification & Clustering

two definitions into one another up to a constant. De-
spite this observation, [1]’s definition does not, in a
straightforward fashion, exhibit an impossibility result
similar to Corollary 1. When n � p/ρ2, Corollary 1
shows the clustering error defined by us approaches
1/2, which can be interpreted as random guessing. But
it is not straightforward to make such an interpretation
using [1]’s definition, and to our knowledge an impossi-
bility result using [1]’s definition of clustering error is
not known.

5 Conclusion

In this paper, we presented minimax lower and up-
per bounds for Gaussian classification and cluster-
ing. Our results explicitly show how the statistical
difficulty depends on dimension p, number of sam-
ples n, sparsity of the optimal classifier/clustering
rule s, and separation between two classes/clusters
ρ =

√
(µ1 − µ0)TΣ−1(µ1 − µ0). Our results here fo-

cus on classification and clustering of two isotropic
(spherical) Gaussian distributions with equal propor-
tions.

In future work, we plan to improve the bounds’ depen-
dency on separation ρ. Here we have shown that, in the
general non-sparse setting when nmax{ρ2, ρ4}/p→ 0
and p, n→ +∞, both classification and clustering are
close to impossible. But efficient procedures for clas-
sification (Fisher’s linear discriminant) and clustering
(principal component analysis) achieve minimax rates
when nρ4/p→ +∞ and nρ6/p→ +∞ . In the sparse
setting, for classification and clustering we have sam-
ple lower bounds n = Ω(s log p

s/ρ
2) for classification

and n = Ω(s log p
s/ρ

4) for clustering. But efficient
procedures for classification (sparse Fisher’s linear dis-
criminant) and clustering (sparse principal component
analysis) requires nρ4/(s log p)→ +∞ for classification
and nρ8/(s log p)→ +∞ for clustering. We conjecture
that there is a statistical and computational tradeoff in
both classification and clustering problems, similar to
the result on sparse principal component detection [2].
Another part of future work is to extend this paper’s
results to general Gaussian distributions.

6 Acknowledgments

C.C. acknowledges partial support of NSF Grants
1609279, 1056028 and 1302435, and the U.S. DoT
through the Data-Supported Transportation Opera-
tions and Planning (D-STOP) Tier 1 University Trans-
portation Center. P.R. acknowledges the support
of ARO via W911NF-12-1-0390 and NSF via IIS-
1149803, IIS-1320894, IIS-1447574, and DMS-1264033,
and NIH via R01 GM117594-01 as part of the Joint
DMS/NIGMS Initiative to Support Research at the

Interface of the Biological and Mathematical Sciences.

References

[1] M. Azizyan, A. Singh, and L. Wasserman. Mini-
max Theory for High Dimensional Gaussian Mix-
tures with Sparse Mean Separation. In Advances
in Neural Information Processing Systems, pages
2139–2147, 2013.

[2] Q. Berthet and P. Rigollet. Complexity theoretic
lower bounds for sparse principal component de-
tection. In Conference on Learning Theory, pages
1046–1066, 2013.

[3] Q. Berthet and P. Rigollet. Optimal detection of
sparse principal components in high dimension.
The Annals of Statistics, 41(4):1780–1815, 2013.

[4] P. J. Bickel and E. Levina. Some theory for
Fisher’s linear discriminant function,’naive Bayes’,
and some alternatives when there are many more
variables than observations. Bernoulli, pages 989–
1010, 2004.

[5] S. Boucheron, G. Lugosi, and P. Massart. Con-
centration inequalities: A nonasymptotic theory of
independence. Oxford university press, 2013.

[6] T. Cai and W. Liu. A direct estimation approach
to sparse linear discriminant analysis. Journal of
the American Statistical Association, 2012.

[7] L. Devroye, L. Györfi, and G. Lugosi. A probabilis-
tic theory of pattern recognition. Springer Science
& Business Media, 2013.

[8] J. Fan and Y. Fan. High dimensional classifica-
tion using features annealed independence rules.
Annals of Statistics, 36(6):2605, 2008.

[9] C. Giraud. Introduction to high-dimensional statis-
tics, volume 138. CRC Press, 2014.

[10] M. Hardt and E. Price. Tight bounds for learning
a mixture of two Gaussians. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, pages 753–760. ACM, 2015.

[11] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data Mining, In-
ference, and Prediction. Springer Series in Statis-
tics. Springer New York, 2013.

[12] S. Jukna. Extremal combinatorics: with appli-
cations in computer science. Springer Science &
Business Media, 2011.



Tianyang Li, Xinyang Yi, Constantine Caramanis, Pradeep Ravikumar

[13] A. Krause, P. Perona, and R. G. Gomes. Dis-
criminative clustering by regularized information
maximization. In Advances in Neural Information
Processing Systems, pages 775–783, 2010.
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