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Abstract

The stochastic composition optimization pro-
posed recently by Wang et al. [2014] mini-
mizes the objective with the compositional
expectation form: minx (EiFi ◦ EjGj)(x). It
summarizes many important applications in
machine learning, statistics, and finance. In
this paper, we consider the finite-sum sce-
nario for composition optimization:

min
x

f(x) :=
1

n

n∑
i=1

Fi

 1

m

m∑
j=1

Gj(x)

 .

We propose two algorithms to solve this
problem by combining the stochastic com-
positional gradient descent (SCGD) and the
stochastic variance reduced gradient (SVRG)
technique. A constant linear convergence
rate is proved for strongly convex optimiza-
tion, which substantially improves the sub-
linear rate O(K−0.8) of the best known algo-
rithm.

1 INTRODUCTION

The stochastic composition optimization proposed re-
cently by Wang et al. [2014] minimizes the objective
with the compositional expectation form:

min
x

(EiFi ◦ EjGj)(x).

It has many emerging applications, ranging from ma-
chine and reinforcement learning [Dai et al., 2016,
Wang et al., 2016] to risk management [Dentcheva
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et al., 2015]. It is also related to multi-stage stochas-
tic programming [Shapiro et al., 2014] and adaptive
simulation [Hu et al., 2014].

In general the stochastic composition optimization
is substantially more difficult than the traditional
stochastic optimization: minx EiFi(x). This is be-
cause the composition objective is no longer linear
with respect to the joint distribution of data indices
(i, j). For example, the best-known algorithms stud-
ied in [Wang et al., 2014, 2016] achieve a finite-sample
error bound O(K−0.8) for strongly convex composition
optimization, which deteriorates from the optimal rate
O(K−1) for generic stochastic optimization.

In this paper, we study the finite-sum scenario for
composition optimization in the following form

min
x∈RN

f(x) := F ◦G(x) = F (G(x)), (1)

where the inner function G : RN → RM is the empiri-
cal mean of m component functions Gi : RN → RM :

G(x) =
1

m

m∑
i=1

Gi(x),

and the outer function F : RM → R is the empirical
mean of n component functions Fj : RM → R:

F (y) =
1

n

n∑
j=1

Fj(y).

The finite-sum composition problem models optimiza-
tion involving two fixed-size empirical data sets. Ran-
domly selecting component functions Gi, Fj can be
viewed as randomized retrieval from each of the two
data sets.

In this paper, we propose two efficient algorithms
(namely, compositional SVRG-1 and compositional
SVRG-2) for the finite-sum composition optimization
problem (1). The new algorithms are developed by
combining the stochastic compositional gradient de-
scent (SCGD) technique [Wang et al., 2014, 2016] and
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the stochastic variance reduced gradient (SVRG) tech-
nique [Johnson and Zhang, 2013]. The new algorithms
are motivated by the fact that SVRG is able to improve
the sublinear convergence rate of stochastic gradient
descent to linear convergence in the case of classical
(strongly convex) finite-sum stochastic optimization.
We prove that the two algorithms converge linearly
for the finite-sum stochastic composition optimization,
with query complexity O

(
(m+ n+ κ4) log(1/ϵ)

)
and

O
(
(m+ n+ κ3) log(1/ϵ)

)
respectively (the κ’s are two

variants of the condition number, and their definitions
will be specified later). To the best of our knowledge,
this is the first work on finite-sum stochastic composi-
tion optimization and linearly convergent algorithms.

1.1 Related Works

This section reviews algorithms related to composition
optimization and SVRG.

Composition Optimization draws much attention re-
cently. Contrary to classical stochastic problems, the
objective in composition optimization is no longer a
plain summation of component functions. Given an
index i ∈ {1, 2, . . . , n}, we cannot use a single query
to the oracle to get the gradient of a component func-
tion Fi with respect to the optimization variable x. In
contrast, we can query the gradient of Fi with respect
to an intermediate variable G in a single query, and G
is itself a summation of m component functions. Thus
to calculate the gradient of a single component func-
tion in classical stochastic algorithms, we need at least
O(m) queries. When m becomes large, the query com-
plexity for classical stochastic optimization algorithms
will significantly increase. This encourages people to
search for a more sophisticated way to solve such prob-
lems.

Wang et al. [2014] proposed the generic composition
optimization for the first time. Two stochastic algo-
rithms - Basic SCGD and accelerating SCGD - are
proposed for such optimization, with provable conver-
gence rates. A recent work by Wang et al. [2016] im-
proves the convergence rate of accelerating composi-
tional SGD and finds that the optimal convergence
rate can be obtained if Gj(·)’s are linear. All conver-
gence rates are listed in Table 1. In addition, some
special cases such as risk optimization are studied in
[Dentcheva et al., 2015].

SVRG is a very powerful technique for large scale op-
timization. This variance reduced optimization algo-
rithm was originally developed in Johnson and Zhang
[2013]. Its main advantage lies on its low storage re-
quirement compared with other variance reduced algo-
rithms [Defazio et al., 2014a,b, Schmidt et al., 2013].

The SVRG technique has been extended by many
works [Allen-Zhu and Yuan, 2015, Harikandeh et al.,
2015, Kolte et al., 2015, Konečnỳ et al., 2016, Ni-
tanda, 2014, 2015, Xiao and Zhang, 2014] for solv-
ing stochastic optimization. Similar algorithms in-
clude Konecnỳ and Richtárik [2013], Shalev-Shwartz
and Zhang [2013]. For SVRG applied on classical
stochastic problems, Johnson and Zhang [2013] proved
a O(ρs) convergence rate on strongly convex objec-
tives, where ρ is a constant smaller than 1 and s is
the epoch number. The query complexity per epoch is
n + κ where n is the number of component functions
and κ is the condition number of the objective. For
classical gradient descent, to obtain the same conver-
gence rate, the query complexity per iteration has to
be nκ (see Nesterov [2013]), which is generally larger
than n+ κ. We list the results for SVRG on classical
stochastic optimization problems with various types
of objectives in Table 2. Gong and Ye [2014] extends
the analysis of SVRG for strongly convex optimization
to the more general optimally strongly convex opti-
mization [Liu and Wright, 2015, Wang et al., 2014]
and proves similar convergence rate. Recently, the
asynchronous parallel version of SVRG is also stud-
ied [Reddi et al., 2015].

1.2 Notation

Throughout this paper, we use the following simple
notations.

• [z]i denotes the ith component of vector (or vector
function) z;

• We use the following notations for derivatives of
functions. Given any smooth function

H : RN → RM

x 7→ H(x),

∂H is the Jacobian of H defined by

∂H :=
∂H

∂x
=


∂[H]1
∂[x]1

· · · ∂[H]1
∂[x]N

...
. . .

...
∂[H]M
∂[x]1

· · · ∂[H]M
∂[x]N

 .

The value of the Jacobian at some point a is de-
noted by ∂H(a).

For a scalar function

h : RN → R
x 7→ h(x),

the gradient of h is defined by

∇h(x) =
(
∂h(x)

∂x

)⊤

=

(
∂h

∂[x]1
, . . . ,

∂h

∂[x]N

)⊤

∈ RN .
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Table 1: Convergence rates of stochastic composition gradient descent. K is the number of iterations. For
fair comparison, the convergence rates for the proposed algorithms (Compositional SVRG-1 and Compositional
SVRG-2) have taken the query complexity per iteration (epoch) into consideration.

Nonconvex Convex Strongly Convex

Basic SCGD [Wang et al., 2014] O(K−1/4) O(K−1/4) O(K−2/3)

Acclerating SCGD [Wang et al., 2014] O(K−2/7) O(K−2/7) O(K−4/5)

Acclerating SCGD [Wang et al., 2016]
∗ means if Gj(·)’s are linear

O(K−4/9)
or
O(K−1/2)∗

O(K−2/7)
or
O(K−1/2)∗

O(K−4/5)
or
O(K−1)∗

Compositional SVRG-1 (0 < ρ < 1) - - O
(
ρ

K
m+n+κ4

)
Compositional SVRG-2 (0 < ρ < 1) - - O

(
ρ

K
m+n+κ3

)
Table 2: Query complexity and convergence rate for SVRG on different objectives. QCPE stands for query
complexity per epoch. ρ is a constant smaller than 1. s is the epoch number. n is the number of component
functions.

SVRG
Nonconvex
[Reddi et al., 2016]
[Allen-Zhu and Hazan, 2016]

Convex
[Reddi et al., 2016]

Strongly Convex
[Johnson and Zhang, 2013]

Rate O(1/(sn1/3)) O(1/(s
√
n)) O(ρs)

QCPE O(n) O(n) O(n+ κ)

Under this set of notations, with the chain rule
we can easily find the gradient of a composition
function f = F (G(x)) to be:

∇f(x) = (∂G(x))⊤∇F (G(x)).1

• x∗ denotes the optimal solution of (1);

• Given a multiset A2, we use len(A) to denote
the number of elements in A. For example, if
A = {1, 2, 3, 1}, then len(A) = 4. We use A[i] to
represent the ith element in A.

• Ei denotes taking expectation w.r.t. the random
variable i.

• E denotes taking expectation w.r.t. all random
variables.

2 Preliminary: SVRG

We review the standard SVRG algorithm in this sec-
tion for completion. Consider to solve the following
finite sum optimization problem

min
x

f(x) =
1

n

n∑
i=1

Fi(x).

1Note that the gradient operator always calculates the
gradient with respect to the first level variable. That is to
say, by ∇F (G(x)) we mean the gradient of F (y) at y =
G(x), not the gradient of F (G(x)) with respect to x.

2A multiset is a generalization of the concept of a set,
allowing duplicated elements.

The SVRG algorithm basically stores the gradient
of f at a reference point x̃ (the reference point
will be updated for every a few iterations): f̃ ′ :=
1
n

∑n
i=1∇Fi(x̃). Based on such a reference gradient,

SVRG estimates the gradient at each iteration by

f̂ ′
k := f̃ ′ −∇Fi(x̃) +∇Fi(xk)

where i is uniformly randomly sampled from
{1, 2, . . . , n}. The next iterate is updated by

xk+1 = xk − γkf̂
′
k.

The computation complexity per iteration is compara-
ble to SGD. The estimated gradient is also an unbiased
estimate for the true gradient

E(f̂ ′
k) = f ′

k :=
1

n

n∑
i=1

∇Fi(xk).

The key improvement lies on that the variance E(∥f̂ ′
k−

f ′
k∥2) decreases to zero when xk converges to the op-
timal point for SVRG while it is a constant for SGD.
Therefore, SVRG admits a much better convergence
rate (linear convergence for strongly convex optimiza-
tion and sublinear for convex optimization) than SGD.
For completeness, the complete SVRG algorithm is
shown in Algorithm 1.

3 COMPOSITIONAL-SVRG
ALGORITHMS

This section introduces two proposed compositional-
SVRG algorithms for solving the finite sum compo-
sition optimization in (1). In the spirit of SVRG,
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Algorithm 1 SVRG [Johnson and Zhang, 2013]

Require: K (update frequency), γ (step length), S
(total number of epochs), x̃0 (initial point)

Ensure: x̃S .
1: for s = 1, 2, . . . , S do
2: Update the reference point x̃← x̃s−1

3: f̃ ′ ← ∇f(x̃) ▷ n queries (non-composition
optimization)

4: x0 ← x̃
5: for k = 0, 1, 2, . . . ,K − 1 do
6: Uniformly sample pick ik from {1, 2, . . . , n}
7: Estimate ∇f(xk) using

f̂ ′
k = f̃ ′ −∇Fi(x̃) +∇Fi(xk)

▷ 2 queries (non-composition optimization)
8: Update xk+1 by

xk+1 ← xk − γf̂ ′
k

9: end for
10: x̃s ← xr for randomly chosen r ∈ {0, · · · ,K −

1}
11: end for

the two compositional-SVRG algorithms need a refer-
ence point x̃ to estimate the gradients (but in different
ways). However, unlike SVRG, the estimated gradi-
ents are biased due to the “composition” structure in
the objective.

3.1 Compositional-SVRG-1

In the first proposed algorithm, given a reference point
x̃, we first store the gradient f̃ ′ = ∇f(x̃) and the value
of the inner function G̃ := G(x̃). To estimate the gra-
dient at the current iterate xk, one needs to estimate
G(xk) first by sampling a mini-batch multiset Ak with
size A:

Ĝk = G̃− 1

A

∑
1≤j≤A

(GAk[j](x̃)−GAk[j](xk)). (2)

Based on the estimate of G(xk), the gradient ∇f(xk)
is estimated by

f̂ ′
k =(∂Gjk (xk))

⊤∇Fik (Ĝk)− (∂Gjk (x̃))
⊤∇Fik (G̃) + f̃ ′ (3)

where ik is uniformly sampled from {1, 2, . . . , n} and
jk is uniformly sampled from {1, 2, . . . ,m}.

Note that unlike SVRG, this estimated f̂ is usually
biased. More specifically,

Eik,jk,Ak
(f̂ ′

k) ̸= ∇f(xk).

This is also the key challenge to prove the linear con-
vergence in the analysis. The Compositional-SVRG-1

algorithm is summarized in Algorithm 2. The query
complexity in each step is provided in Algorithm 2 for
convenience.

3.2 Compositional-SVRG-2

In the second proposed algorithm, given a reference
point x̃, we still first store the gradient f̃ ′ = ∇f(x̃) and
the value of the inner function G̃ := G(x̃). However,
here we further store the value of the Jacobian G̃′ :=
∂G(x̃). To estimate the gradient at the current iterate
xk, one still estimates G(xk) first by sampling a mini-
batch multiset Ak with size A:

Ĝk = G̃− 1

A

∑
1≤j≤A

(GAk[j](x̃)−GAk[j](xk)). (4)

Here comes the difference from Algorithm 2. We also
estimates ∂G(xk) by sampling a mini-batch multiset
Bk with size B:

Ĝ′
k := G̃′ − 1

B

∑
0≤j≤B

(
∂GBk[j](x̃)− ∂GBk[j](xk)

)
. (5)

Based on the estimation of G(xk) and ∂G(xk), the
gradient ∇f(xk) is estimated by

f̂ ′
k = (Ĝ′

k)
⊤∇Fik(Ĝk)− (G̃′)⊤∇Fik(G̃) + f̃ ′. (6)

where ik is uniformly sampled from {1, 2, . . . , n}. Thus
Algorithm 3 features one more estimation in each iter-
ation. This extra computation pays off by an improved
convergence rate.

Even though we have an extra estimation here, this
estimated f̂ is still biased. More specifically,

Eik,Bk,Ak
(f̂ ′

k) ̸= ∇f(xk).

The Compositional-SVRG-2 algorithm is summarized
in Algorithm 3. The query complexity in each step is
provided in Algorithm 3 for convenience.

4 THEORETICAL ANALYSIS

In this section we will show the convergence results
for Algorithms 2 and 3. Due to the page limitation, all
proofs are provided in the supplement. Before we show
the main results, let us make some global assumptions
below, which are commonly used for the analysis of
stochastic composition optimization algorithms.

Strongly Convex Objective f(x) in (1) is strongly
convex with parameter µf :

f(y) ≥ f(x)+⟨∇f(x), y−x⟩+µf

2
∥y−x∥2, ∀x, y.
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Algorithm 2 Compositional-SVRG-1

Require: K (the total number of iterations in the
inner loop), S (the total number of iterations in the
outer loop), A (the size of the minibatch multiset),
γ (steplength), and x̃0 (initial point).

Ensure: x̃S .
1: for s = 1, 2, . . . , S do
2: Update the reference point: x̃← x̃s−1

3: G̃← G(x̃) ▷ m queries
4: f̃ ′ ← ∇f(x̃) ▷ m+ n queries
5: x0 ← x̃
6: for k = 0, 1, 2, . . . ,K − 1 do
7: Uniformly sample from {1, 2, . . . ,m} for A

times with replacement to form a mini-batch mul-
tiset Ak

8: Estimate G(xk) by Ĝk using (2) ▷ 2A
queries

9: Uniformly sample ik from {1, 2, . . . , n} and
jk from {1, 2, . . . ,m}

10: Estimate ∇f(xk) by f̂ ′
k using (3) ▷ 4

queries
11: Update xk+1 by

xk+1 = xk − γf̂ ′
k

12: end for
13: x̃s ← xr for randomly chosen r ∈ {0, · · · ,K −

1}
14: end for

Bounded Jacobian of Inner Functions We as-
sume that the following upper bounds on all
inner component functions:

∥∂Gj(x)∥ ⩽ BG, ∀x,∀j ∈ {1, · · · ,m}. (7)

Lipschitzian Gradients We assume there exist con-
stants LF , LG and Lf satisfying ∀x, ∀y,∀i ∈
{1, · · · , n}, ∀j ∈ {1, · · · ,m}:

∥∇Fi(x)−∇Fi(y)∥ ⩽ LF ∥x− y∥, (8)

∥∂Gj(x)− ∂Gj(y)∥ ⩽ LG∥x− y∥, (9)

∥(∂Gj(x))
⊤∇Fi(G(x))− (∂Gj(y))

⊤∇Fi(G(y))∥
⩽Lf∥x− y∥, (10)

Note that we immediately have

∥∇f(x)−∇f(y)∥

=
1

mn

∥∥∥∥∥∑
i,j

(
∂Gj(x))

⊤∇Fi(G(x))− (∂Gj(y))
⊤∇Fi(G(y)

)∥∥∥∥∥
⩽ 1

mn

∑
i,j

∥∥∥∂Gj(x))
⊤∇Fi(G(x))− (∂Gj(y))

⊤∇Fi(G(y)
∥∥∥

⩽Lf∥x− y∥, ∀x, y. (11)

Thus the Lipschitz constant for the gradient of
the whole objective f is also Lf .

Algorithm 3 Compositional-SVRG-2

Require: K,S,A,B, γ, x̃0 ▷ The meaning of the
variables are the same as in Algorithm 2. B is the
size of another minibatch multiset.

Ensure: x̃S .
1: for s = 1, 2, . . . , S do
2: Update the reference point x̃← x̃s−1

3: G̃← G(x̃) ▷ m queries
4: G̃′ ← ∂G(x̃) ▷ m queries
5: f̃ ′ ← ∇f(x̃) ▷ n queries
6: x0 ← x̃
7: for k = 0, 1, 2, . . . ,K − 1 do
8: Uniformly sample from {1, 2, . . . ,m} for A

and B times with replacement to form two mini-
batch multiset Ak and Bk respectively

9: Estimate G(xk) by Ĝk using (4) ▷ 2A
queries

10: Estimate ∂G(xk) by Ĝ′
k using (5) ▷ 2B

queries
11: Uniformly sample pick ik from {1, 2, . . . , n}
12: Estimate ∇f(xk) by f̂ ′

k using (6) ▷ 2
queries

13: Update xk+1 by

xk+1 ← xk − γf̂ ′
k

14: end for
15: x̃s ← xr for randomly chosen r ∈ {0, · · · ,K −

1}
16: end for

Solution Existence The problem (1) has at least
one solution x∗.

Next we use two theorems to show our main results
on the compositional-SVRG algorithms. All theo-
rems and corollaries hold under the assumptions stated
above.

Theorem 1 (Convergence for Algorithm 2). For Al-
gorithm 2 we have

1

K

K−1∑
k=0

E∥xk − x∗∥2 ⩽ β1

β2
E∥x̃− x∗∥2,

where

β1 =
1

K
+

(
16γB2

GL
2
F

µf
+ 4γ2B2

GL
2
F

)
8B2

G

A
+ 10γ2L2

f ;

β2 =
7µfγ

4
−

(
16γB2

GL
2
F

µf
+ 4γ2B2

GL
2
F

)
8B2

G

A
− 8γ2L2

f .

To ensure the convergence, one should appropriately
choose parameters γ, A, and K to make the ratio
β1/β2 < 1. The following provides one specification
for those parameters.
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Corollary 1 (Linear Rate for Algorithm 2). Choose
parameters in Algorithm 2 as follows:

γ =
µf

32L2
f

,

A =
512B4

GL
2
F

µ2
f

,

K =
512L2

f

µ2
f

,

The following convergence rate for Algorithm 2 holds:

E∥x̃s+1 − x∗∥2 =
1

K

K−1∑
k=0

E∥xk − x∗∥2 ⩽ 7

8
E∥x̃s − x∗∥2.

Corollary 1 essentially suggests a linear conver-
gence rate. To achieve a fixed solution accuracy
ϵ, that is, E(∥x̃s − x∗∥2) ≤ ϵ, the required num-
ber of queries is O ((m+ n+KA+K) log(1/ϵ)) =

O
((

m+ n+
L2

FL2
f

µ4
f

+
L2

f

µ2
f

)
log(1/ϵ)

)
based on the

query complexity of each step in Algorithm 2. Let
κ = max{LF

µf
,
Lf

µf
}.3 we see the query complexity of

Algorithm 2 is O((m + n + κ4) log(1/ϵ)). Note that
this κ4 is much smaller in some special cases, because
LF /µf (and also LG/Lf in Corollary 2 we will discuss
later) could be much smaller than Lf/µf .

To analyze the convergence of Algorithm 3, we need
one more assumption on the gradients of the outer
functions:

Bounded Gradients of Outer Functions

∥∇Fi(x)∥ ⩽ BF ,∀x,∀i ∈ {1, · · · , n}. (12)

Then together with the new assumption in (12), we
have the following convergence result for Algorithm 3.

Theorem 2 (Convergence for Algorithm 3). For al-
gorithm 3 we have

1

K

K−1∑
k=0

E(f(xk)− f∗) ⩽ β3

β4
E(f(x̃)− f∗),

where

β3 =
2

Kµf
+

256γB4
GL

2
F

µfA

+ γ2

(
128

µf

(
B2

FL
2
G

B
+

B4
GL

2
F

A

)
+ 20Lf

)
;

β4 =
3γ

2
− 256γB4

GL
2
F

µfA

− γ2

(
128

µf

(
B2

FL
2
G

B
+

B4
GL

2
F

A

)
+ 16Lf

)
.

3Note that in classical SVRG, G is an identity function,
so LF = Lf . The κ reduces to the conventional condition
number.

This theorem admits a similar structure to Theorem 1.
We essentially need to appropriately choose γ, K, A,
and B to make β3/β4 < 1. The following corollary
provides a specification for these parameters.

Corollary 2 (Linear Rate for Algorithm 3). Choose
parameters in Algorithm 3 as follows:

γ =
1

320Lf
;

K ⩾ 5120Lf

µf
;

A ⩾ max

{
1024B4

GL
2
F

µ2
f

,
32B4

GL
2
F

5µfLf

}
;

B ⩾ 32B2
FL

2
G

5µfLf
,

we have the following linear convergence rate for Al-
gorithm 3:

E(f(x̃s+1)− f∗) ⩽ 9

17
E(f(x̃s)− f∗).

Let κ = max{LF

µf
, LG

Lf
,
Lf

µf
}. Corollary 2 suggests

a total query complexity of O((m + n + K(A +
B)) log(1/ϵ)) = O((m + n + κ3) log(1/ϵ)). Here the
query complexity is slightly better4 than that in Corol-
lary 1. However we need a new assumption that the
gradient of Fi’s to be bounded and we need an extra
estimation for the Jacobian of G at the beginning of
each epoch.

5 EXPERIMENT

We conduct empirical studies for the proposed two al-
gorithms by comparing them to three state-of-the-art
algorithms:

• Gradient descent,

• Compositional SGD [Wang et al., 2014, Algorithm
1],

• Accelerating Compositional SGD [Wang et al.,
2016, Algorithm 1].

We use the mean-variance optimization in portfolio
management as the objective. Given N assets, let
rt ∈ RN (t = 1, . . . , n) be the reward vectors observed
at different time points. The goal is to maximize the
return of the investment as well as controlling the in-
vestment risk. Let x ∈ RN be the quantities invested

4Here we mean “roughly better”, because the definitions
of κ are different in Corollary 1 and 2, though in most cases
they are of the same order.
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(c) κcov = 20

0 325000 650000 975000

number of oracle calls

10−1

100

101

102

103

ob
je

ct
iv

e-
op

tim
um

n=5000 N=300

Compositional SGD
A-Compositional SGD
Gradient descent
Compositional SVRG-1
Compositional SVRG-2

(d) κcov = 50

Figure 1: Mean-variance portfolio optimization on synthetic data (n = 2000, N = 200). The y-axis is the objec-
tive value minus the optimal value of the objective. The x-axis is the number of oracle calls. The “Compositional
SVRG-1” is the Algorithm 2, the “Compositional SVRG-2” is the Algorithm 3. The “Compositional SGD” is
the Algorithm 1 in Wang et al. [2014] and The “A-Compositional SGD” is the Algorithm 1 in Wang et al. [2016].
Both SVRG version algorithms use “Compositional-SGD” algorithm to initialize first several steps. The κcov

is the conditional number of the covariance matrix of the corresponding Gaussian distribution used to generate
reward vectors in each figure. Subfigures (a), (b), (c), and (d) draw the convergence curves for all algorithms
with each figure having a different κcov.

to each portfolio. The problem can be formulated into
the following mean-variance optimization5:

max
x

1

n

n∑
i=1

⟨ri, x⟩ −
1

n

n∑
i=1

⟨ri, x⟩ − 1

n

n∑
j=1

⟨rj , x⟩

2

.

It can be viewed as an instance of the composition
optimization (1) with the specification for Gj(·) and

5This formulation is just used for proof of concept.
A more efficient way would be simply calculating

∑
j rj .

Then the problem reduces to a standard stochastic opti-
mization.

Fi(·) as the following:

Gj(x) =

(
x

⟨rj , x⟩

)
, j = 1, . . . , n;

Fi(y) = −yN+1 + (⟨ri, y1:N ⟩ − yN+1)
2, i = 1, . . . , n,

where y1:N denotes the sub-vector consisting of the
first N components of the vector y ∈ RN+1 and yN+1

denotes the last component of y.

In the experiment we choose n = 2000 and N = 200.
The reward vectors are generated with the procedure
below:
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(b) κcov = 40

Figure 2: Mean-variance portfolio optimization on synthetic data with n = 5000, N = 300. Other settings are
the same as Figure 1.

1. Generate a random Gaussian distribution on RN

with the condition number of its covariance ma-
trix denoted by κcov.

2. Each ri is sampled from this Gaussian distribution
with all elements set to its absolute value to make
sure the problem has a solution.

We can then control κcov to roughly control the κ of
our composition optimization problem, because κ is
proportional to κcov. We report the comparison re-
sults in Figure 1. The initial points are chosen to be
the same for all algorithms and the x-axis in Figure
1 is the computational cost measured by the number
of queries to the oracle. That is, whenever the al-
gorithm queries ∇Fi(y) or ∂Gi(x) or Gi(x) for some
i at some point, the x-axis value is incremented by
1. Like the SVRG algorithm [Johnson and Zhang,
2013], both compositional-SVRG algorithms run the
compositional-SGD algorithm (which is the Algorithm
1 in Wang et al. [2014]) for the first 10000 iterations
and then run the proposed SVRG algorithms. We ob-
serve that

• The proposed two algorithms (Compositional
SVRG-1 and Compositional SVRG-2) converge
at a linear rate and outperform other algorithms
overall;

• Compositional SVRG-2 becomes faster than
Compositional SVRG-1 when κcov becomes
larger, while they are comparable when κcov are
small. This observation is consistent with our
theoretical analysis, since Compositional SVRG-2
has a better dependency on the condition number
than Compositional SVRG-1.

We also test our algorithms on problem with a larger
size (n = 5000, N = 300), and show the results in
Figure 2.

6 Conclusion and Future Work

This paper considers the finite-sum composition opti-
mization and proposes two efficient algorithm by using
the SVRG technique to reduce variance of composi-
tional gradient. The proposed two algorithms admit
the linear convergence rate for strongly convex objec-
tives with query complexity O((m+ n+ κ4) log(1/ϵ))
and O((m+n+κ3) log(1/ϵ)) respectively. To the best
of our knowledge, this is the first work to study the
general finite-sum composition optimization. The fu-
ture work will be 1) the convergence rate and query
complexity for weakly convex problem; 2) the conver-
gence rate and query complexity for nonconvex op-
timization; 3) how (or is it possible) to improve the
query complexity to O((m+ n+ κ) log(1/ϵ)) to make
it consistent with SVRG for the classical stochastic
optimization?
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J. Konecnỳ and P. Richtárik. Semi-stochastic gradient
descent methods. 2013.
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