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Abstract

Importance sampling is widely used in ma-
chine learning and statistics, but its power
is limited by the restriction of using simple
proposals for which the importance weights
can be tractably calculated. We address this
problem by studying black-box importance
sampling methods that calculate importance
weights for samples generated from any un-
known proposal or black-box mechanism. Our
method allows us to use better and richer pro-
posals to solve difficult problems, and (some-
what counter-intuitively) also has the addi-
tional benefit of improving the estimation ac-
curacy beyond typical importance sampling.
Both theoretical and empirical analyses are
provided.

1 Introduction

Efficient Monte Carlo methods are workhorses for mod-
ern Bayesian statistics and machine learning. Impor-
tance sampling (IS) and Markov chain Monte Carlo
(MCMC) are two fundamental tools widely used when
it is intractable to draw exact samples from the un-
derlying distribution p(x). IS uses an simple proposal
distribution q(x) to draw a sample {xi}, and attaches it
with a set of importance weights that are proportional
to the probability ratio p(xi)/q(xi). MCMC methods,
on the other hand, rely on simulating Markov chains
whose equilibrium distribution matches the target dis-
tribution.

Unfortunately, both importance sampling (IS) and
MCMC have their own critical weaknesses. IS heavily
relies on a good proposal q(x) that closely matches the
target distribution p(x) to obtain accurate estimates.
However, it is critically challenging, or even impos-
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sible, to design good proposals for high dimensional
complex target distributions, given the restriction of
using simple proposals. Therefore, alternative methods
that do not require to calculate proposal probabilities
would greatly enhance the power of IS, yielding efficient
solutions for difficulty problems.

On the other hand, MCMC approximates the target
distribution with an (often complex) distribution simu-
lated from a large number of steps of Markov transi-
tions, and has been widely used to solve complex prob-
lems. However, MCMC has a long-standing difficulty
accessing its convergence, and one may get absurdly
wrong results when using non-convergent results [e.g.,
Morris et al., 1996]. In addition, the computational cost
of MCMC becomes critically expensive when the num-
ber of data instances is very large (a.k.a. the big data
setting). A number of approximate versions of MCMC
have been developed recently to deal with the big data
issue [e.g., Welling and Teh, 2011, Alquier et al., 2016],
but these methods usually no longer converge to the
correct stationary distribution.

Motivated by combining the advantages of IS and
MCMC, we study black-box importance sampling meth-
ods that can calculate importance weights for any
given sample {xi}ni=1 generated from arbitrary, un-
known black-box mechanisms. Such methods allow us
to use highly complex proposals that closely match
the target distribution, without worrying about the
computational tractability of the typical importance
weights.

Interestingly, the black-box methods, despite using no
information of the proposal distribution, can actually
give better estimation accuracy than the typical impor-
tance sampling that leverages the proposal information.
This appears to be a paradox (using less information yet
getting better results), but is consistent with the argu-
ments of O’Hagan [1987] that “Monte Carlo (that uses
the proposal information) is fundamentally unsound”,
and the interesting results of Henmi et al. [2007], Delyon
and Portier [2014] that certain types of approximate
versions of IS weights reduce the variance over exact
IS weights.
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As an example of application, we apply black-box im-
portance weights to samples simulated by a number of
short Markov chains, in which MCMC helps provide
a complex proposal that are “crudely” closely to the
target distribution, and the black-box weights further
refine the result. In this way, we obtain consistent
estimators even from un-convergent MCMC results, or
approximate MCMC transitions that appear commonly
in big data settings.

Beyond MCMC, black-box IS can be used to refine
many other approximation methods related to complex
generation mechanisms, including variational inference
with complex proposals [e.g., Rezende and Mohamed,
2015], bootstrapping [Efron, 2012] and perturb-and-
MAP methods [Hazan et al., 2013, Papandreou and
Yuille, 2011]. Further, we envision our method can find
more applications in many areas where importance
sampling or variance reduction plays an importance
role, such as probabilistic inference in graphical model
[e.g., Liu et al., 2015], variance reduction for varia-
tional inference [e.g., Wang et al., 2013, Ranganath
et al., 2014] and policy gradient estimation [e.g., Green-
smith et al., 2004], covariance shift in transfer learning
[e.g., Sugiyama et al., 2008], off-policy evaluation rein-
forcement learning [e.g., Li et al., 2015], and stochastic
optimization [e.g., Zhao and Zhang, 2015].

Our black-box importance weights are calculated by a
convex quadratic optimization, based on minimizing
a recently proposed kernelized Stein discrepancy that
measures the goodness-of-fit of a sample to an unnor-
malized distribution [Oates et al., 2017, Chwialkowski
et al., 2016, Liu et al., 2016]; this makes our method
widely applicable for unnormalized distributions that
widely appear in machine learning and statistics.

Related Works

Our method is closely related to Briol et al. [2015b,a],
Oates et al. [2017], which combine Stein’s identity with
Bayesian Monte Carlo [O’Hagan, 1991, Ghahramani
and Rasmussen, 2002] and control variates, respectively,
and can also be interpreted as a form of importance
weights similar to our method. The key difference is
that the weights in their method can be negative and
are not normalized to sum to one, while our approach
explicitly optimizes the weights in the probability sim-
plex, which helps provide more stable practical results
as we illustrate both theoretically and empirically in
our work. We provide a more throughout discussion in
Section 3.3.

An alternative approach for black-box weights is to
directly approximate the underlying proposal distribu-
tion q with an estimator q̂ and use the corresponding
ratio p(x)/q̂(x) as the importance weight. Henmi et al.

[2007], Delyon and Portier [2014] showed that certain
types of approximation q̂ can improve, rather than
deteriorate, the performance compared with the exact
importance weight p(x)/q(x). However, the method
by Henmi et al. [2007] is not widely applicable since
it requires to solve a maximum likelihood estimator in
a parametric family that include the proposal distri-
bution; The method in Delyon and Portier [2014] uses
a kernel density estimator for q and tends to give un-
stable empirical results as we show in our experiments.
Related to this, there is a literature in semi-supervised
learning for covariance shifts [e.g., Nguyen et al., 2010,
Sugiyama and Kawanabe, 2012] that estimates the den-
sity ratio p(x)/q(x) given two samples {xi} ∼ p and
{yi} ∼ q, when both p and q are unknown.

There are also other directions where the advantages
of IS and MCMC can be combined, including adaptive
importance sampling [e.g., Martino et al., Botev et al.,
2013, Beaujean and Caldwell, 2013, Yuan et al., 2013],
and sequential Monte Carlo [e.g., Smith et al., 2013,
Robert and Casella, 2013, Neal, 2001]. The black-box
techniques can be combined with these methods to
obtain more powerful, adaptive methods.

Preliminary and Notation Let k(x, x′) : X ×X →
R be a positive definite kernel; we denote by k(x, ·) the
one-variable function for each fixed x. The reproduc-
ing kernel Hilbert space (RKHS) H of k(x, x′) is the
closure of linear span {f : f =

∑m
i=1 aik(x, xi), ai ∈

R, m ∈ N, xi ∈ X}, equipped with an inner product
〈f, g〉H =

∑
ij aibjk(xi, xj) for f =

∑m
i=1 aik(x, xi)

and g =
∑
i bik(x, xi). One can verify that such H has

a reproducing property in that f = 〈f, k(x, ·)〉H. We
use O(·) for the Big O in probability notation.

2 Background: Kernelized Stein
Discrepancy

We give a brief introduction to Stein’s identity and
kernelized Stein discrepancy (KSD) [Liu et al., 2016,
Oates et al., 2017, Chwialkowski et al., 2016] which
forms the foundation of our method.

Let p(x) be a continuously differentiable (also called
smooth) density supported on X ⊆ Rd. We say that a
smooth function f(x) is in the Stein class of p(x) if∫

X
∇x(p(x)f(x))dx = 0, (1)

which can be implied by a zero boundary condi-
tion

∮
∂X

p(x)f(x)dS = 0 when X is bounded, or
limr→∞

∮
Br
f(x)p(x)dS = 0 when X = Rd, where Br

denotes the sphere with radius r. For f(x) in the Stein
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class of p(x), Stein’s identity shows

Ex∼p[sp(x)f(x) +∇xf(x)] = 0,

where sp(x) = ∇x log p(x),
(2)

which is in fact a direct rewrite of (1) using the product
rule of derivatives. We call sp(x) := ∇x log p(x) the
score function of p(x). Note that calculating sp(x) does
not depend on the normalization constant in p(x), that
is, when p(x) = f(x)/Z where Z is the normalization
constant and is often critically difficult to calculate,
we have sp(x) = ∇x log f(x), independent of Z. This
property makes Stein’s identity a powerful practical tool
for handling unnormalized distributions that widely
appear in machine learning and statistics.

We can “kernelize” Stein’s identity with a smooth posi-
tive definite kernel k(x, x′) for which k(x, x′) is in the
Stein class of p(x) for each fixed x′ ∈ X (we say such
k(x, x′) is in the Stein class of p in this case). By first
applying (2) on k(x, x′) with fixed x′ and subsequently
with fixed x, we can get the following kernelized version
of Stein’s identity:

Ex∼p
[
kp(x, x

′)
]

= 0, ∀x′ ∈ X ,
Ex,x′∼p

[
kp(x, x

′)
]

= 0,
(3)

where x, x′ are i.i.d. drawn from p and kp(x, x′) is a
new kernel function defined via

kp(x, x
′) = sp(x)>k(x, x′)sp(x

′) + sp(x)>∇x′k(x, x′)

+ sp(x
′)>∇xk(x, x′) + trace(∇x,x′k(x, x′)). (4)

See Theorem 3.5 of Liu et al. [2016]. We remark that
kp(x, x

′) can be easily calculated with given k(x, x′)
and sp(x), even when p(x) is unnormalized.

If we now replace the expectation Ep[·] in (3) with Eq[·]
of a different smooth density q(x) supported on X , (3)
would not equal zero; instead, it gives a non-negative
discrepancy measure of p and q:

S(q, p) = D(q, p)2 = Ex,x′∼q
[
kp(x, x

′)
]
≥ 0, (5)

where D(q, p) is called the kerenelized Stein discrepancy
(KSD), and S(q, p) is the square of KSD, introduced
for notation convenience. Here Ex,x′∼q

[
kp(x, x

′)
]
is

always nonnegative because kp(x, x′) can be shown to
be positive definite if k(x, x′) is positive definite [e.g.,
Liu et al., 2016, Theorem 3.6].

In addition, one can further show that S(q, p) equals
zero if and only if p = q if k(x, x′) is strictly positive def-
inite in certain sense: strictly integrally positive definite
in Liu et al. [2016], and cc-universal in Chwialkowski
et al. [2016] and Oates et al. [2016]. Meanwhile,
kp(x, x

′) is obviously not strictly positive definite, since
p(x) is an eigenfunction with zero eigenvalue as sug-
gested by (3). In fact, let Hp be the RKHS related

to kp(x, x′), then all the functions h(x) in Hp are or-
thogonal to p(x) in that Ep[h(x)] = 0. Such Hp were
first studied in Oates et al. [2017], in which it was
used to define an infinite dimensional control variate
for variance reduction.

One can further consider kernel k+
p (x, x′) = kp(x, x

′) +
1, whose corresponding RKHS H+

p consists of functions
of form h(x) + c with h ∈ Hp and c is a constant in R.
Therefore, H+

p includes functions with arbitrary values
of mean Eph. Oates et al. [2016] showed that H+

p is
dense in L2(X , p) when k(x, x′) in c-universal and X
is a compact subset of Rd; see Oates et al. [2016] for
more discussion.

3 Stein Importance Weights

Let {xi}ni=1 be a set of points in Rd and we want to
find a set of weights {wi}ni=1, wi ∈ R, such that the
weighted sample {xi, wi}ni=1 closely approximates the
target distribution p(x) in the sense that

n∑
i=1

wih(xi) ≈ Ep[h(x)],

for general test function h(x). For this purpose, we
define an empirical version of the KSD in (5) to measure
the discrepancy between {xi, wi}ni=1 and p(x),

S({xi, wi}, p) =

n∑
i,j=1

wiwjkp(xi, xj) = w>Kpw,

where Kp = {kp(xi, xj)}ni,j=1 and w = {wi}ni=1, and
we assume the weights are self normalized, that is,∑

i wi = 1. We then select the optimal weights by
minimizing the discrepancy S({xi, wi}, p),

ŵ = arg min
w

{
w>Kpw, s.t.

n∑
i=1

wi = 1, wi ≥ 0

}
,

(6)

where in addition to the normalization constraint∑
i wi = 1, we also restrict the weights to be non-

negative; these two simple constraints have important
practical implications as we discuss in the sequel. Note
that the optimization in (6) is a convex quadratic pro-
gramming that can be efficiently solved by off-the-shelf
optimization tools. For example, both mirror descent
and Frank Wolfe take O(n2/ε) to find the optimum
with ε-accuracy. Solving (6) does not require to know
how the points {xi}ni=1 are generated, and hence gives
a black-box importance sampling.

Theoretically, minimizing the empirical KSD can be
justified by the following bound.



Black-Box Importance Sampling

Proposition 3.1. Let h(x) be a test function and h−
Eph ∈ Hp. Assume

∑n
i=1 wi = 1, we have

|
n∑
i=1

wih(xi) − Eph| ≤ Ch
√

S({xi, wi}, p), (7)

where Ch = ||h− Eph||Hp , which depends on h and p,
but not on {xi, wi}ni=1.

Remark 1. Oates et al. [2017, Theorem 3] has a sim-
ilar result which does not require

∑
i wi = 1, but has

a constant term larger than Ch when
∑
i wi = 1 does

hold. We propose to enforce
∑
i wi = 1 because it gives

exact estimation for constant functions h(x) = c, and
is a common practice for importance sampling (which
is referred to as self-normalized importance sampling).
In our empirical results, we find that the normalized
weights can significantly stabilize the algorithm, espe-
cially for high dimensional models.

2. One can show that the S(q, p) as defined in (5) can
be treated as a square maximum mean discrepancy
(MMD) between p and q, equipped with the (p-specific)
kernel kp(x, x′). In the light of this, bound (7) is a form
of the worse case bounds of the kernel-based quadra-
ture rules [e.g., Chen et al., 2010, Bach, 2015, Huszár
and Duvenaud, 2012, Niederreiter, 2010]. The use of
the special kernel kp(x, x′) allows us to calculate the
discrepancy tractably for general unnormalized distri-
butions, in contrast with MMD with typical kernels
that are intractable to calculate due to the need for
evaluating the a term related to the expectation of the
kernel under distribution p.

3.1 Practical Applications

Our method as summarized in Algorithm 1 can be
used to refine any sample {xi}ni=1 generated with ar-
bitrary black-box mechanisms, and allows us to apply
importance sampling in cases that are otherwise dif-
ficult. As an example, we can generate {xi}ni=1 by
simulating n parallel MCMC chains for m steps, where
the length m of the chains can be smaller than what
is typically used in MCMC, because it just needs to
be large enough to bring the distribution of {xi}ni=1

“roughly” close to the target distribution. This also
makes it easy to parallelize the algorithm compared
with running a single long chain. In practice, one may
heuristically decide if m is large enough by checking
the variance of the estimated weights {wi}ni=1 (or the
effective sample size). One can also simulate {xi}ni=1

using MCMC with approximate translation kernels as
these required for massive datasets [e.g., Welling and
Teh, 2011, Alquier et al., 2016], so our method provides
a new solution for big data problems.

We should remark that when {xi}ni=1 is simulated

Algorithm 1 Stein Importance Sampling
1. Generate {xi}ni=1 using any mechanism that is
believed to resemble p(x) (e.g., by running n inde-
pendent MCMC chains for a small number of steps,
or using parametric bootstrap).
2. Calculate importance weights {ŵi}ni=1 by (6).
3. Calculate

∑
i ŵih(xi) to approximate Ep[h]for test

function h.

from n independent MCMC initialized from a distri-
bution q0(x), the weight w0(x) = n−1p(x)/q0(x) does
provide a valid importance sampling weights in that∑
i w0(xi)h(xi) gives an unbiased estimator [MacEach-

ern et al., 1999, Theorem 6.1]. However, this weight
does not update as we run more MCMC steps, and
performs poorly in practice.

There are many other cases where black-box IS can be
found useful. For example, we can simulate {xi}ni=1

from bootstrapping or perturbed maximum a posteri-
ori (MAP) [Papandreou and Yuille, 2011, Hazan et al.,
2013], that is, xi = arg maxx p̃(x) where p̃(x) is a per-
turbed version of p(x), or the bootstrapping likelihood.
The idea of using importance weighted bootstrapping
to carry out Bayesian calculation has been discussed be-
fore [e.g., Efron, 2012], but was limited to simple cases
when the bootstrap distribution is computable. Black-
box IS can also be used to refine the results of varia-
tional inference [e.g., Wainwright and Jordan, 2008],
especially for the cases with complex variational pro-
posal distributions [e.g., Salimans et al., 2015, Rezende
and Mohamed, 2015].

3.2 Convergence Rate

Our procedure does not assume the generation mecha-
nism of {xi}ni=1, but if {xi}ni=1 is indeed generated
“nicely”, error bounds can be easily established us-
ing Proposition 3.1: if there exists a set of “refer-
ence” positive normalized weights {w∗i }ni=1 such that
S({xi, w∗i }, p) = O(n−δ), then the mean square error
of our estimator with weight {ŵi}ni=1 returned by (6)
should also be O(n−δ) by following (6) and (7).

To gain more intuition, assume kp(x, x′) has a set of
eigenfunctions {φ`(x)} and eigenvalues {λ`} such that
kp(x, x

′) =
∑
` λ`φ`(x)φ`(x

′), then we have

|
∑
i

ŵih(xi)− Eph|2 ≤ C2
h S({xi, ŵi}, p)

= C2
h

∑
`

λ` (
∑
i

wiφ`(xi)− Epφ`)2,

where Ch = ||h − Eph||Hp and we used the fact that
Epφ` = 0 since φ` ∈ Hp. Therefore, it is enough to
find a set of positive and normalized reference weights
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whose error on estimating Epφ` is low. Note that
such reference weight does not necessarily need to be
practically computable to establish the bound.

As an obvious example, when {xi}ni=1 is i.i.d. drawn
from an (unknown) proposal distribution q(x), the
typical importance sampling weight w∗i ∝ p(xi)/q(xi)
(up to the normalization) can be used as a reference
weight to establish an O(n−1/2) error rate as the typical
Monte Carlo methods have.

Theorem 3.2. Assume h − Eph ∈ Hp and
{xi}ni=1 is i.i.d. drawn from q(x) with the same
support as p(x). Define w∗(x) = p(x)/q(x)
and assume Ex∼p(|w∗(x)kp(x, x)|) < ∞, and
E{x,x′}∼p[w∗(x)w∗(x

′)kp(x, x
′)2] < ∞. For {ŵi}ni=1

defined in (6), we have

|
n∑
i=1

ŵih(xi)− Eph| = O(n−1/2).

Interestingly, it turns out the typical importance weight
w∗(x) ∝ p(x)/q(x) is not the best possible reference
weight; better options can be constructed using various
variance reduction techniques to give convergence rates
better than the typical O(n−1/2) rate.

Theorem 3.3. Assume {xi}ni=1 is i.i.d. drawn from
q(x) and w∗(x) = p(x)/q(x). Let {φ`}∞`=1 be the set of
orthogonal eigenfunctions w.r.t. p(x) with eigenvalues
{λ`}∞`=1. Assume all the following quantities are upper
bounded by M uniformly for ∀x ∈ X :

∑∞
`=1 λ`, w∗(x),

|φ(x)|, max`,`′ varx∼q[w∗(x)2φ`(x)φ′`(x)], we have

Ex∼q
[
|
∑
i

ŵih(xi)− Eph|2
]1/2

= O
(
n−(1+α)/2

)
,

where α is a number that satisfies 0 < α ≤ 1 and is
decided by the boundM and the decay of the eigenvalues
R(n) =

∑
`>n λ` of kernel kp(x, x

′). See Theorem B.5
in Appendix for more details.

The proof of Theorem 3.3 (see Section 2.2 in Appendix)
is based on constructing a reference weight using a con-
trol variates method based on the orthogonal basis func-
tions {φ`}. Our constructed reference weights can be
treated as a perturbed version of the typical importance
weights w∗(x) ∝ p(x)/q(x) as used in Theorem (3.2),
where the perturbation is introduced to cancel the es-
timation error and increase the accuracy. Since this
reference weights concentrate around w∗ ∝ p(x)/q(x)
which is positive, we can zero out its negative val-
ues without much impact on the error bound. This
provides a justification on the non-negative garrote con-
straint, and allows us to construct a set of non-negative
reference weights for our proof.

Similar theoretical analysis can be found in Briol et al.
[2015b], Bach [2015]. In particular, Briol et al. [2015b]
used a similar “reference weight” idea to establish a
convergence rate for Bayesian Monte Carlo. The main
technical challenge in our proof is to make sure that
the reference weight satisfies the non-negative and self-
normalization constraints. Section 2.2 in Appendix
provides more detailed discussions.

3.3 Other “Super-Efficient” Weights

We review several other types of “super-efficient”
weights that also give better convergence rates than the
typical O(n−1/2) rate; this includes Bayesian Monte
Carlo and the related (linear) control variates method,
as well as methods based on density approximation of
the proposal distributions, which can be interpreted
as multiplicative control variates [Nelson, 1987] that
reduce the variance.

Bayesian Monte Carlo and Control Variates
Bayesian Monte Carlo [O’Hagan, 1991, Ghahramani
and Rasmussen, 2002] was originally developed to eval-
uate integrals using Bayesian inference procedure with
Gaussian prior, which turns out to be equivalent to
a weighted form

∑
i wih(xi) with wi being a set of

weights independent of the test function h; unlike our
method, these weights are not normalized to sum to
one and can take negative values.

From a RKHS perspective, one can interpret Bayes
MC as approximating Ep[h(x)] with Ep[ĥ(x)] where
ĥ(x) is an approximation of h(x) constructed by ker-
nel linear regression based on the data-value pair
{xi, h(xi)}ni=1. Let k0(x, x′) be the kernel used in Bayes
MC, then one can show that Bayes MC estimate equals∑
i ŵih(xi) with ŵ = [ŵi]

n
i=1 = (K0 + λI)−1b, where

K0 = [k0(xi, xj)]ij and b = [Ex∼p(k0(x, xi))]
n
i=1, and

λ a regularization coefficient. Equivalently, Bayes MC
can be treated as minimizing the maximum mean dis-
crepancy (MMD) between {xi, wi} and p, with a form
of

ŵ = arg min
w

{
w>K0w − 2b>w + λ||w||22

}
.

One of the main difficulty of Bayesian MC, however,
is that it depends on b = Ep[k0(x, x′)], which can be
intractable to calculate for complex p(x).

The control variates method [e.g., Liu, 2008] also relies
on a (kernel) linear regressor ĥ(x), but estimates Eph
with a bias-correction term 1

n

∑n
i=1(h(xi) − ĥ(xi)) +

Ep[ĥ(xi)], which can also be rewritten into a weighted
form. Note that when λ = 0 and K0 is strictly positive
definite, the ĥ(xi) becomes an interpolation of h(x)

(i.e., h(xi) = ĥ(xi)), and control variates and Bayes



Black-Box Importance Sampling

MC becomes equivalent. In control variates, one can
also use only a subset of the data to estimate ĥ(x) and
use the remaining data to estimate the expectation of
the difference h(x) − ĥ(x); this ensures the resulting
estimator is unbiased.

Closely related to our work, Oates et al. [2017] and
Briol et al. [2015b] proposed to use the Steinal-
ized kernel k+

p (x, x′) = kp(x, x
′) + 1 in control vari-

ates and Bayesian MC, respectively,1 for which b =
Ex∼p[k+

p (x, x′)] = 1. We can show that their method
is equivalent to using the following weight

ŵ = arg min
w
{w>Kpw + (

∑
i

wi − 1)2 + λ||w||22}.

This form is similar to our (6), but does not enforce the
non-negative garrote constraint [Breiman, 1995] and re-
placing the normalization constraint

∑
i wi = 1 with a

quadratic regularization with regularization coefficient
of one. Here the L2 penalty λ||w||22 is necessary for
ensuring numerical stability in practice. In our case,
it is the non-negative constraint that helps stabilize
the optimization problem, without needing to specify
a regularization parameter.

Approximating the Proposal Distribution An-
other (perhaps less well known) set of methods are
based on replacing the importance weight w∗(x) =
p(x)/q(x) with an approximate version w̃(x) =
p(x)/q̂(x), where q̂(x) is an estimator of proposal den-
sity q(x) from {xi}ni=1. While we may naturally ex-
pect that such approximation would decrease the accu-
racy compared with the typical IS that uses the exact
q(x), surprising results [Henmi et al., 2007, Delyon and
Portier, 2014] show that in certain cases the approxi-
mate weights w̃(x) actually improve the accuracy. To
gain an intuition why this can be the case, observe that
we have w̃(x) = [p(x)/q(x)] · [q(x)/q̂(x)], where the
second term q(x)/q̂(x) may acts as a (multiplicative)
control variate [Nelson, 1987] which can decrease the
variance if it is negatively correlated with the other
parts of the estimator. For asymptotic analysis, it is
common to expand multiplicative control variates using
Taylor expansion, which reduces it to linear control
variates.

In particular, Henmi et al. [2007] showed that when
q(x) is embedded in a parametric family Q = {q(x | θ),
θ ∈ Θ}, replacing w∗(x) with the approximate weight
w̃(x) = p(x)/q̂(x), where q̂ is the maximum likelihood
estimator of q(x) withinQ, would guarantee to decrease
the asymptotic variance compared with the standard
IS. The result in Delyon and Portier [2014] forms a non-
parametric counterpart of Henmi et al. [2007], in which

1kp(x, x
′) can be not used directly in Bayesian Monte

Carlo since it only includes functions with zero mean.

it is shown that taking q̂(x) to be a leave-one-out kernel
density estimator of q(x) would give super-efficient error
rate O(n−(1+α)/2) where α is a positive number that
depends on the smoothness of q(x) and p(x)h(x).

4 Experiments

We empirically evaluate our method and compare it
with the methods mentioned above, first on an illustra-
tive toy example based on Gaussian mixture, and then
on Bayesian probit regression. The methods we tested
all have a form of

∑
i wih(xi), where the weights wi

are decided by one of the following algorithms:

1. Uniform weights wi = 1/n (Uniform).

2. Our method that solves (6) (referred as Stein),
for which we use RBF kernel k(x, x′) = exp(− 1

h ||x −
x′||22); the bandwidth h is heuristically chosen to be the
median of the pairwise square distance of data {xi}ni=1

as suggested by Gretton et al. [2012].

3. The control functional method Control Func fol-
lowing the empirical guidance in Oates et al. [2017],
which is also equivalent to Bayesian MC with kernel
k+
p (x, x′) = kp(x, x

′) + 1. Note that the weights {wi}
in this method may be negative and do not necessar-
ily sum to one. We also test a modified version of
it
∑
i wih(xi)/

∑
i wi that normalizes the weights and

refer it as Control Func (Normalized). The kernel
k(x, x′) and the bandwidth are taken to be the same as
our method. We follow Oates et al. [2017]’s guidance to
select that an L2 regularization coefficient to stabilize
the algorithm.

4. The kernel density estimator (KDE) based method
by Delyon and Portier [2014] (KDE), which uses weights
wi = n−1p(xi)/q̂i(xi), where q̂i(x) is a leave-one-out
KDE of form q̂i(x) =

∑
j 6=i k(x, xj)/n. We report

the result when using RBF kernel with bandwidth de-
cided by the rule of thumb h = σ̂

(d2d+5Γ(d/2+3)
(2d+1)n

)1/(4+d),
where σ̂ is the standard deviation of {xi}ni=1 and d is
the dimension of x. We also tested the choice of kernel
and bandwidth suggested in Delyon and Portier [2014]
but did not find consistent improvement. Similar to
the case of the control functional method, we also test
a self-normalized version of KDE and denote it by KDE
(Normalized).

We evaluate these methods by comparing their mean
square errors (MSE) for estimating Ephj , with hj(x)
taken to be xj , (xj)2 or cos(ωxj + b), where xj is the
j-th component of vector x; we calculate the MSE for
each hj and report the average MSE over j = 1, . . . , d.
For hj(x) = cos(ωxj + b), we draw ω ∼ N (0, 1) and
b ∼ Uniform([0, 2π]) and average the MSE over 20
random trials.
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Figure 1: Gaussian Mixture Example. (a) The contour of the distribution p(x) that we use; the red dots represent
the centers of the mixture components. The sample {xi} is i.i.d. drawn from p(x) itself. (b) - (c) The MSE of
the different weighting schemes for estimating Ephj , when hj(x) equals xj , (xj)2, and cos(ωxj + b), respectively,
where xj is the j-th component of vector x; the MSE is calculated for each j = 1, . . . , d and the average MSE is
reported. For h = cos(ωxj + b) in (d), we draw ω ∼ N (0, 1) and b ∼ Uniform([0, 2π]), averaged over 20 trials.
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Figure 2: (a) Results on p(x|λ) where λ indexes the Gaussianity: p(x|λ) equals N (0, 1) when λ = 1 and it reduces
to the p(x) in Figure 1(a) when λ = 0. (b) Results on standard Gaussian distribution with increasing dimensions.
The sample size is fixed to be n = 100 in both (a) and (b). The MSE is for estimating E((xj)2), averaged on
different coordinates j = 1, . . . , d.
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Figure 3: The result of our method on the p(x) in
Figure 1(a) when the non-negative constraint wi ≥ 0
replaced by a general lower bound wi ≥ −b with differ-
ent values of b. The MSE is for estimating E((xj)2),
averaged on different coordinates j.

Gaussian Mixture We start with a 2-D Gaussian
mixture distribution p(x) =

∑
j βjN (x; µj , σ

2
j ) with

20 randomly located mixture components shown in Fig-
ure 1(a), and draw {xi}ni=1 from p(x) itself. The MSEs
for estimating Eph with different h(x) as the sample
size n increases are shown in Figure 1(b)-(d), where
we generally find that our method tends to perform
among the best.

In Figure 2(a), we study the performance of the al-

gorithms on distributions with different Gaussianity,
where we replace p(x) with a series of distributions
p(x | λ) whose random variable is (1− λ)x+ λξ where
x ∼ p, ξ ∼ N (0, 1) and λ ∈ [0, 1] controls the Gaussian-
ity of p(x | λ): it reduces to p(x) when λ = 0 and equals
N (0, 1) when λ = 1. We observe that Stein tends to
perform the best when the distribution has high non-
Gaussianity, but is suboptimal compared with Control
Func when the distribution is close to Gaussian.

In Figure 2(b), we consider how the different algorithms
scale to high dimensions by setting p(x) to be the stan-
dard Gaussian distribution with increasing dimensions.
We generally find that our Stein tends to perform
among the best under the different settings, except
for low dimensional standard Gaussian under which
Control Func performs the best. The self-normalized
versions of KDE and Control Func can help to stabi-
lize the algorithm in various cases, for example, KDE
(Normalized) significantly improves over KDE in all
the cases, and Control Func (Normalized) is signifi-
cantly better than Control Func in high dimensional
cases as shown in Figure 2(b).

Figure 3 shows the performance of our method with the
non-negativity constraint (wi ≥ 0) replaced by (wi ≥
−b) where b is a positive number that takes different



Black-Box Importance Sampling

Sample Size (n)
50  100 250 500 1000

lo
g
1
0
 M

S
E

-4.5

-4

-3.5

-3

Sample Size (n)
50  100 250 500 1000

lo
g
1
0
 M

S
E

-3.5

-3

-2.5

-2

Uniform
Control Func
Stein
Control Func (Normalized)

(a) Estimating E(xj) (b) Estimating E((xj)2)

Figure 4: Results of Bayesian probit model with
simulated data. We generate {xi}ni=1 by simulating n
parallel chains of stochastic gradient Langevin Dynam-
ics with a mini-batch size of 100 for 100-steps. KDE and
KDE (Normalized) perform significantly worse in this
case, and are not show in the figure.
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Figure 5: Results of Bayesian probit model on the
Covtype dataset. We generate {xi}ni=1 by simulating n
parallel chains of stochastic gradient Langevin Dynam-
ics with a mini-batch size of 100 for 1000-steps. The
unnormalized Control Func, as well as KDE and KDE
(Normalized) perform significantly worse in this case,
and are not show in the figure.

values. We find that the result of wi ≥ 0 generally
performs the best when n is small (e.g., n < 1000),
but is slightly suboptimal when n is large. Because
the stability in the small n case is more practically
important than the large n case, given that the absolute
difference on MSE would be negligible in the large n
region, we think enforcing wi ≥ 0 is a simple and good
practical procedure.

Bayesian Probit Model We consider the Bayesian
probit regression model for binary classification. Let
D = {χ`, ζ`}N`=1 be a set of observed data with feature
vector χ` and binary label ζ` ∈ {0, 1}. The distribution
of interest is p(x) := p(D|x)p0(x) with

p(D|x) =

N∏
`=1

[
ζ`Φ(x>χ`) + (1− ζ`)(1− Φ(x>χ`))

]
,

where Φ(·) is the cumulative distribution function
of the standard normal distribution, and p0(x) =

N (x; 0, 0.1 × I) is the prior, where I is the identity
matrix.

To test our method, we simulate {xi}ni=1 by running
n parallel chains of stochastic Langevin dynamics
[Welling and Teh, 2011]. Since this method is an inex-
act MCMC, its stationary distribution is different from
the target distribution p(x), and as a result, directly
averaging {xi}ni=1 with uniform weights (Unif) can give
relatively poor results (although it is still possible to
get consistent estimation for Eph by averaging the tem-
poral trajectory with a properly decreasing step-size
and weighting scheme as shown by Teh et al. [2016]).

We apply the black-box weights to refine the result
of stochastic Langevin dynamics. Figure 4 shows
the result on a small simulated dataset with 100
data instances and 10 features. We can find that
Stein and Control Func (Normalized) significantly
improve the performance over Unif. Interestingly, we
find that the unnormalized Control Func, as well as
KDE and KDE (normalized) (not show in the figure)
perform significantly worse in this case.

Figure 5 shows the result on the Forest Covtype dataset
from the UCI machine learning repository [Bache and
Lichman, 2013]; it has 54 features, and is reprocessed to
get binary labels following Collobert et al. [2002]. For
our experiment, we take the first 10,000 data points,
so that it is feasible to evaluate the ground truth with
No-U-Turn Sampler (NUTS) [Hoffman and Gelman,
2014]. We again find that Stein and Control Func
(Normalized) improves over the uniform weights, and
the unnormalized Control Func and KDE and KDE
(normalized) again perform significantly worse and
are not shown in the figure.

5 Conclusion

We propose a black-box importance sampling method
that calculates importance weights without knowing
the proposal distribution, which also has the additional
benefit of providing variance reduction. We expect
our method provides a powerful tool for solving many
difficult problems were previously intractable via im-
portance sampling.
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