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A Proofs

Proof of Lemma 4.1. Let Tb be the smallest t at which
the positive martingale Λt ≥ b, with Tb = ∞ if the
threshold is never crossed. Then Tb is a stopping time.
For some number of visitors t, we have

Λmin{Tb,t} ≥

{
b Tb ≤ t,
0 Tb > t.

Therefore, we may write

1 = E[Λmin{Tb,t}] ≥ bP (Tb ≤ t),

where the equality comes from the optional stopping
theorem. Taking t→∞ bounds the probability of ever
crossing the threshold at P (Tb ≤ ∞) ≤ 1/b, which
means P (∃ t such that Λt ≥ b) ≤ 1/b. This completes
the proof of this lemma.

Proof of Corollary 4.2. Based on fundamental argu-
ments in probability theory, we have the following
chain of inequalities:

P
(

1

maxn′≤t Λn′
≤ δ
)

= P
(

max
n′≤t

Λn′ ≥ 1/δ

)
≤ P (∃ t such that Λt ≥ 1/δ)

≤ δ

where the last step follows from Lemma 4.1. This
completes the proof of this corollary.

Proof of Corollary 4.3. We first show that the likeli-
hood ratio is a positive martingale under the simple
null hypothesis H0 : θ0. If we take the expectation
under the null hypothesis H0 from the likelihood ratio
Λt, i.e.,

Λt =
Pr(Dt|θ∗1)

Pr(Dt|θ∗0)

i.i.d.
=

∏n
t=1 P (xt|θ∗1)∏n
t=1 P (xt|θ∗0)

conditioned on whatever observed up to time t − 1,
i.e., Ft−1, we have

E0[Λt|Ft−1] = E0

[
P (xt|θ∗1)

P (xt|θ∗0)

] t−1∏
t=1

P (xt|θ∗1)

P (xt|θ∗0)

= Λt−1

∫
P (xt|θ∗1)

P (xt|θ∗0)
P (xt|θ∗0)dxt︸ ︷︷ ︸

=1

= Λt−1

where E0 is the expectation under the null hypothesis
H0.

We then show that the Bayes factor is also a
test martingale if the null hypothesis is simple.

To start with, since the null hypothesis is simple,∫
P (θ0|M0)P (Dn|θ0,M0)dθ0 = P (Dn|M0, θ0). Hence

we may write the Bayes factor as

Λn =

∫
Pr(θ1|M1) Pr(Dn|θ1,M1)dθ1∫
Pr(θ0|M0) Pr(Dn|θ0,M0)dθ0

=

∫
P (θ1|M1)

∏n
t=1 P (xt|θ1,M1)dθ1∏n

t=1 P (xt|θ0,M0)

The expectation under the null hypothesis H0 from Λn
conditioned on whatever observed up to time n − 1,
i.e., Fn−1, we have

E0[Λn|Fn−1]

= E0

[∫
P (θ1|M1)P (xn|θ1,M1)

∏n−1
t=1 P (xt|θ1,M1)

P (xn|M0)
∏n−1
t=1 P (xt|M0)

dθ1

]

=

∫
P (θ1|M1)E0

[
P (xn|θ1,M1)

P (xn|M0)

]
︸ ︷︷ ︸

=1

∏n−1
t=1 P (xt|θ1,M1)∏n−1
t=1 P (xt|M0)

dθ1

=

∫
P (θ1|M1)

∏n−1
t=1 P (xt|θ1,M1)∏n−1
t=1 P (xt|M0)

dθ1

=

∫
P (θ1|M1)P (Dn−1|θ1,M1)dθ1

P (Dn−1|M0)
= Λn−1

Proof of Lemma 5.5. Recall that m0 is the number of
true null hypotheses which we assume have indices
1, . . . ,m0; thus, p1

T , . . . , p
m0

T are all sequential p-values.
This implies that there must exist an increasing func-
tion gk with gk(x) ≤ x such that Pr(gk(pkT ) ≤ δ) = δ;
thus, gk(pkT ) ∼ Uniform[0, 1]. If pkT is discrete, then we
may need to allow g to be random, e.g. gk(pkT ) + ξ,
where ξ is chosen to interpolate between subsequent
values of pkT .

Define V =
∣∣P (g1(p1

T ), . . . , gm(pmt )
)
∩ {1, . . . ,m0}

∣∣ as
the number of true hypotheses rejected by P on the
modified p-values. We will argue that VT ≤ V almost
surely.

First, suppose that P is a step-up procedure and V = i;
this implies that g(k)(p(k)) ≤ αi for all k ≤ i and
αi < g(k)(p(k)) for all k > i. Since g(p) ≤ p, we must
have

αi < g(k)(p(k)) ≤ p(k) ∀k < i

and hence Vt ≤ V a.s.. This implies that E[f(VT , s)] ≤
E[f(V, s)], and using the the guarantee of P on f(V, s)
implies E[f(VT , s)] ≤ E[f(V, s)] ≤ q for all s, which
yields the theorem statement by linearity of expecta-
tion.

If P only have an independent guarantee, note
that if p1

T , . . . , p
m0

T are independent, then so are
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g1(p1
T ), . . . , gm0(pm0

T ) and we can apply the same rea-
soning as above to imply the (f, q) guarantee in the
independent case.

Proof of Lemma 5.6. Let M = R(p1
T1
, . . . , pmTm

),
M′ = R(p1

N , . . . , p
m
N ) be the tests rejected by S(P)

and S ′(P) and R = |M|, R′ = |M′| be their cardinally,
respectively.

Consider the case when P is a step-up procedure. We
show that R = R′. The monotonicity of the sequential
p–values implies that pkTk

≤ pkN for all k, and thus
R ≤ R′; if pkTk

is rejected, then pkN must be as well. We
also argue that R ≥ R′; suppose, instead, that R < R′,
which implies that p(R)

T(R)
≤ αR < p

(R′)
N ≤ αR′ , which is

a contradiction since Tk = N for all k that were not
already stopped. Hence, R = R′.

If the two procedures both reject R tests, then αR <
p

(V+1)
N , . . . , p

(m)
N and αR < p

(R+1)
T(R+1)

, . . . , p
(m)
T(m)

corre-
spond to the tests that have not been rejected. But we
have T(R+1), . . . , T(m) = N , soM =M′.

Now consider the case when P is a step-down proce-
dure. If R tests are rejected by S(P), then p

(1)
T(1)
≤

α1, . . . , p
(R)
T(R)
≤ αR. Since p(k)

N ≤ p
(k)
T(k)

, we must have
M⊆M′. Now, suppose there exists an index k such
that test k is rejected by S ′(P) but not S(P). This
implies that pkN ≤ αR′ but pkTk

> αR′ . However, by
construction of Tk, we have that Tk < N only if test
k is rejected, which implies that pkTk

> αR′ cannot
happen. Thus, we have M = M′ for the step-down
case as well.


