A Proofs

Proof of Lemma 4.1. Let T_b be the smallest t at which the positive martingale $\Lambda_t \geq b$, with $T_b = \infty$ if the threshold is never crossed. Then T_b is a stopping time. For some number of visitors t, we have

$$\Lambda_{\min\{T_b,t\}} \ge \begin{cases} b & T_b \le t, \\ 0 & T_b > t. \end{cases}$$

Therefore, we may write

$$1 = \mathbb{E}[\Lambda_{\min\{T_b, t\}}] \ge bP(T_b \le t),$$

where the equality comes from the *optional stopping* theorem. Taking $t \to \infty$ bounds the probability of ever crossing the threshold at $P(T_b \leq \infty) \leq 1/b$, which means $P(\exists t \text{ such that } \Lambda_t \geq b) \leq 1/b$. This completes the proof of this lemma. \Box

Proof of Corollary 4.2. Based on fundamental arguments in probability theory, we have the following chain of inequalities:

$$\mathbb{P}\left(\frac{1}{\max_{n'\leq t}\Lambda_{n'}}\leq\delta\right) = \mathbb{P}\left(\max_{n'\leq t}\Lambda_{n'}\geq1/\delta\right)$$
$$\leq \mathbb{P}\left(\exists t \text{ such that }\Lambda_t\geq1/\delta\right)$$
$$\leq\delta$$

where the last step follows from Lemma 4.1. This completes the proof of this corollary. $\hfill \Box$

Proof of Corollary 4.3. We first show that the likelihood ratio is a positive martingale under the simple null hypothesis H_0 : θ_0 . If we take the expectation under the null hypothesis H_0 from the likelihood ratio Λ_t , i.e.,

$$\Lambda_t = \frac{\Pr(\mathcal{D}_t|\theta_1^*)}{\Pr(\mathcal{D}_t|\theta_0^*)} \stackrel{\text{i.i.d.}}{=} \frac{\prod_{t=1}^n P(x_t|\theta_1^*)}{\prod_{t=1}^n P(x_t|\theta_0^*)}$$

conditioned on whatever observed up to time t - 1, i.e., \mathcal{F}_{t-1} , we have

$$\mathbb{E}_{0}[\Lambda_{t}|\mathcal{F}_{t-1}] = \mathbb{E}_{0}\left[\frac{P(x_{t}|\theta_{1}^{*})}{P(x_{t}|\theta_{0}^{*})}\right]\prod_{t=1}^{t-1}\frac{P(x_{t}|\theta_{1}^{*})}{P(x_{t}|\theta_{0}^{*})}$$
$$= \Lambda_{t-1}\underbrace{\int \frac{P(x_{t}|\theta_{1}^{*})}{P(x_{t}|\theta_{0}^{*})}P(x_{t}|\theta_{0}^{*})dx_{t}}_{=1}$$
$$= \Lambda_{t-1}$$

where \mathbb{E}_0 is the expectation under the null hypothesis H_0 .

We then show that the Bayes factor is also a test martingale if the null hypothesis is simple. To start with, since the null hypothesis is simple, $\int P(\theta_0|M_0)P(\mathcal{D}_n|\theta_0, M_0)d\theta_0 = P(\mathcal{D}_n|M_0, \theta_0)$. Hence we may write the Bayes factor as

$$\Lambda_n = \frac{\int \Pr(\theta_1 | M_1) \Pr(\mathcal{D}_n | \theta_1, M_1) d\theta_1}{\int \Pr(\theta_0 | M_0) \Pr(\mathcal{D}_n | \theta_0, M_0) d\theta_0}$$
$$= \frac{\int P(\theta_1 | M_1) \prod_{t=1}^n P(x_t | \theta_1, M_1) d\theta_1}{\prod_{t=1}^n P(x_t | \theta_0, M_0)}$$

The expectation under the null hypothesis H_0 from Λ_n conditioned on whatever observed up to time n-1, i.e., \mathcal{F}_{n-1} , we have

$$\begin{split} \mathbb{E}_{0}[\Lambda_{n}|\mathcal{F}_{n-1}] \\ &= \mathbb{E}_{0}\left[\int \frac{P(\theta_{1}|M_{1})P(x_{n}|\theta_{1},M_{1})\prod_{t=1}^{n-1}P(x_{t}|\theta_{1},M_{1})}{P(x_{n}|M_{0})\prod_{t=1}^{n-1}P(x_{t}|M_{0})}d\theta_{1}\right] \\ &= \int P(\theta_{1}|M_{1})\underbrace{\mathbb{E}_{0}\left[\frac{P(x_{n}|\theta_{1},M_{1})}{P(x_{n}|M_{0})}\right]}_{=1}\frac{\prod_{t=1}^{n-1}P(x_{t}|\theta_{1},M_{1})}{\prod_{t=1}^{n-1}P(x_{t}|M_{0})}d\theta_{1} \\ &= \int P(\theta_{1}|M_{1})\frac{\prod_{t=1}^{n-1}P(x_{t}|\theta_{1},M_{1})}{\prod_{t=1}^{n-1}P(x_{t}|M_{0})}d\theta_{1} \\ &= \frac{\int P(\theta_{1}|M_{1})P(\mathcal{D}_{n-1}|\theta_{1},M_{1})d\theta_{1}}{P(\mathcal{D}_{n-1}|M_{0})} = \Lambda_{n-1} \end{split}$$

Proof of Lemma 5.5. Recall that m_0 is the number of true null hypotheses which we assume have indices $1, \ldots, m_0$; thus, $p_T^1, \ldots, p_T^{m_0}$ are all sequential *p*-values. This implies that there must exist an increasing function g^k with $g^k(x) \leq x$ such that $\Pr(g^k(p_T^k) \leq \delta) = \delta$; thus, $g^k(p_T^k) \sim \text{Uniform}[0, 1]$. If p_T^k is discrete, then we may need to allow *g* to be random, e.g. $g^k(p_T^k) + \xi$, where ξ is chosen to interpolate between subsequent values of p_T^k .

Define $V = |\mathcal{P}(g^1(p_T^1), \ldots, g^m(p_t^m)) \cap \{1, \ldots, m_0\}|$ as the number of true hypotheses rejected by \mathcal{P} on the modified *p*-values. We will argue that $V_T \leq V$ almost surely.

First, suppose that \mathcal{P} is a step-up procedure and V = i; this implies that $g^{(k)}(p^{(k)}) \leq \alpha_i$ for all $k \leq i$ and $\alpha_i < g^{(k)}(p^{(k)})$ for all k > i. Since $g(p) \leq p$, we must have

$$\alpha_i < g^{(k)}(p^{(k)}) \le p^{(k)} \quad \forall k < i$$

and hence $V_t \leq V$ a.s.. This implies that $\mathbb{E}[f(V_T, s)] \leq \mathbb{E}[f(V, s)]$, and using the the guarantee of \mathcal{P} on f(V, s) implies $\mathbb{E}[f(V_T, s)] \leq \mathbb{E}[f(V, s)] \leq q$ for all s, which yields the theorem statement by linearity of expectation.

If \mathcal{P} only have an independent guarantee, note that if $p_T^1, \ldots, p_T^{m_0}$ are independent, then so are

 $g^1(p_T^1), \ldots, g^{m_0}(p_T^{m_0})$ and we can apply the same reasoning as above to imply the (f, q) guarantee in the independent case.

Proof of Lemma 5.6. Let $\mathcal{M} = \mathcal{R}(p_{T_1}^1, \dots, p_{T_m}^m)$, $\mathcal{M}' = \mathcal{R}(p_N^1, \dots, p_N^m)$ be the tests rejected by $\mathcal{S}(\mathcal{P})$ and $\mathcal{S}'(\mathcal{P})$ and $R = |\mathcal{M}|, R' = |\mathcal{M}'|$ be their cardinally, respectively.

Consider the case when \mathcal{P} is a step-up procedure. We show that R = R'. The monotonicity of the sequential p-values implies that $p_{T_k}^k \leq p_N^k$ for all k, and thus $R \leq R'$; if $p_{T_k}^k$ is rejected, then p_N^k must be as well. We also argue that $R \geq R'$; suppose, instead, that R < R', which implies that $p_{T_{(R)}}^{(R)} \leq \alpha_R < p_N^{(R')} \leq \alpha_{R'}$, which is a contradiction since $T_k = N$ for all k that were not already stopped. Hence, R = R'.

If the two procedures both reject R tests, then $\alpha_R < p_N^{(V+1)}, \ldots, p_N^{(m)}$ and $\alpha_R < p_{T_{(R+1)}}^{(R+1)}, \ldots, p_{T_{(m)}}^{(m)}$ correspond to the tests that have not been rejected. But we have $T_{(R+1)}, \ldots, T_{(m)} = N$, so $\mathcal{M} = \mathcal{M}'$.

Now consider the case when \mathcal{P} is a step-down procedure. If R tests are rejected by $\mathcal{S}(\mathcal{P})$, then $p_{T_{(1)}}^{(1)} \leq \alpha_1, \ldots, p_{T_{(R)}}^{(R)} \leq \alpha_R$. Since $p_N^{(k)} \leq p_{T_{(k)}}^{(k)}$, we must have $\mathcal{M} \subseteq \mathcal{M}'$. Now, suppose there exists an index k such that test k is rejected by $\mathcal{S}'(\mathcal{P})$ but not $\mathcal{S}(\mathcal{P})$. This implies that $p_N^k \leq \alpha_{R'}$ but $p_{T_k}^k > \alpha_{R'}$. However, by construction of T_k , we have that $T_k < N$ only if test k is rejected, which implies that $p_{T_k}^k > \alpha_{R'}$ cannot happen. Thus, we have $\mathcal{M} = \mathcal{M}'$ for the step-down case as well. \Box