
Minimax-optimal semi-supervised regression on unknown manifolds:
supplementary material

Amit Moscovich Ariel Jaffe Boaz Nadler
Weizmann Institute of Science Weizmann Institute of Science Weizmann Institute of Science

A Auxiliary lemmas

Consider a graph G constructed from {X1, . . . , XN}
as described in Section 2 of the main text. For any
x ∈ {X1, . . . , XN}, denote by X(`)

G (x) and X(`)
M (x) its

closest point from X1, . . . X` points, according to ei-
ther the graph or the manifold distance,

X
(`)
G (x) := argmin

Xj∈{X1,...,X`}
dG(Xi, Xj),

X
(`)
M (x) := argmin

Xj∈{X1,...,X`}
dM(Xi, Xj).

Lemma A.1. Let X1, . . . , X`
i.i.d.∼ µ and let x ∈ M.

Assume that µ(Bx(r)) ≥ Qrd for all r ≤ R. Then for
any λ > 0,

∫ λ2R2

0

Pr

[
dM

(
x, X

(`)
M (x)

)
>

√
r

λ

]
dr ≤ 2λ2`−

2
d

(1− e−Q)2
.

Proof. Substituting t =
√
r/λ, the integral becomes

∫ R

0

Pr
[
dM

(
x, X

(`)
M (x)

)
> t
]
2λ2tdt. (A.1)

Now, dM(x, X
(`)
M (x)) > t if and only if all ` samples

fall outside the manifold ball Bx(t). Hence,

Pr
[
dM(x, X

(`)
M (x)) > t

]
= (1− µ(Bx(t)))

`.

Since µ(Bx(t)) ≥ Qtd for all t ≤ R,

Pr
[
dM(x, X

(`)
M (x)) > t

]
≤ (1−Qtd)` ≤ e−Qt

d`

(A.2)

We insert (A.2) into (A.1), extend the domain of in-
tegration to (0,∞) and split it into intervals of length
`−

1
d . Each integral is bounded separately using the

fact that t is increasing and e−Qt
d` is decreasing.∫ R

0

t · e−Qt
d`dt <

∞∑
k=0

∫ (k+1)`−
1
d

k`−
1
d

t · e−Qt
d`dt

≤
∞∑
k=0

`−
2
d (k + 1) · e−k

dQ ≤ `− 2
d

∞∑
k=0

(k + 1) · e−kQ

= `−
2
d

(∞∑
k=0

e−kQ

)2

=
`−

2
d

(1− e−Q)2
.

Inserting this bound into (A.1) concludes the proof.

Lemma A.2. Consider a fixed point x ∈ M and let
x∗ = argminx′∈{X1,...,Xn+m} ‖x − x′‖ be its Euclidean
nearest neighbor from the sample. We denote by A the
event that all the inequalities in Eq. (4) hold. Condi-
tioned on this event,

E
[
d2M(x∗, X

(n)
G (x∗))

∣∣A] ≤ c1(M, µ, δ)n−
2
d (A.3)

Proof. Assume that A holds. By applying Eq. (4)
twice, we obtain an upper bound on the manifold dis-
tance to the closest labeled point in the graph.

dM(x∗, X
(n)
M (x∗)) ≥

dG(x
∗, X

(n)
M (x∗))

1 + δ
(A.4)

≥
dG(x

∗, X
(n)
G (x∗))

1 + δ
≥ 1− δ

1 + δ
dM(x∗, X

(n)
G (x∗))

Now we apply the well-known equality for a non-
negative random variable E [X] =

∫∞
0

Pr [X > r] dr,

E
[
d2M(x∗, X

(n)
G (x∗))

∣∣A]
=

∫
Pr
[
d2M(x∗, X

(n)
G (x∗)) > r

∣∣A] dr
=

∫ diam(M)2

0

Pr
[
dM

(
x∗, X

(n)
G (x∗)

)
>
√
r
∣∣A] dr

≤
∫ diam(M)2

0

Pr

[
dM

(
x∗, X

(n)
M (x∗)

)
>

1− δ
1 + δ

√
r

∣∣∣∣A] dr
=

∫ (1+δ
1−δ)

2
R2

0

Pr [. . .] dr +

∫ diam(M)2

(1+δ
1−δ)

2
R2

Pr [. . .] dr.

Minimax-optimal semi-supervised regression on unknown manifolds: supplementary material

Lemma A.1 with λ = (1+ δ)/(1− δ) gives a bound on
the first integral. For the second integral, the proba-
bility inside it is monotonically decreasing, and by Eq.
(A.2) it is in particular smaller than e−QR

dn. Hence,

E
[
d2M(x∗, X

(n)
G (x∗))

∣∣A]
≤ 2(1 + δ)2

(1− δ)2(1− e−Q)2
n−

2
d + diam(M)2 · e−QR

dn.

As a function of n, the second summand is negligible
with respect to the first. Hence Eq. (A.3) follows.

B Fast computation of transductive
geodesic nearest neighbors

In this section we provide more details regarding the
efficient computation of geodesic kNN for all vertices
in a graph. We begin by proving the correctness of Al-
gorithm 1 and analyzing its runtime. Then, in Section
B.3 we present Algorithm 2 by Har-Peled (2016) which
has a tighter bound on the asymptotic running time.
Finally, in Section B.4 we test the empirical running
time of these algorithms on the simulated WiFi data
set.

B.1 Proof of correctness

We start with some auxiliary definitions and lemmas
regarding shortest paths. Given an undirected and
weighted graph G, we denote paths in G by vi → vj →
. . . → vk or simply vi vk when the context makes
it clear what path we are referring to. The length of a
path is the sum of its edge weights,

w(v1 → v2 → . . . vm) =

m−1∑
i=1

w(vi, vi+1).

The length of the shortest (geodesic) path between two
vertices v, v′ ∈ V is denoted by dG(v, v′). A path v
v′ is called a shortest path if w(v v′) = dG(v, v

′).
The following lemma is the key to the correctness of
Algorithms 1 and 2.
Lemma B.1. Let v ∈ V be a vertex and let s be its
j-th nearest labeled vertex. If s u v is a shortest
path then s ∈ NLV(u, j), where NLV(u, j) is the set of
j nearest labeled vertices to u.

Proof. Assume by contradiction that there are j la-
beled nodes s1, . . . , sj such that

∀i : dG(si, u) < dG(s, u).

Then

dG(si, v) ≤ dG(si, u) + dG(u, v) (triangle inequality)
< dG(s, u) + dG(u, v) (by assumption)
= dG(s, v). (B.1)

where the last equality is derived from the assumption
that u is on a shorted path between s and v. Eq. (B.1)
implies that the vertices s1, . . . , sj are all closer than
s to v, which contradicts the assumption.

We now continue to the main part of the proof.

Lemma B.2. For every triplet(dist, seed, v0) popped
from Q there is a path seed v0 of length dist.

Proof. We prove the claim by induction on the
elements inserted into Q.

Base of the induction: The first L inserts corre-
spond to the labeled vertices {(0, s, s) : s ∈ L}. For
these triplets the claim holds trivially.

Induction step: Any triplet inserted into Q or up-
dated is of the form (dist + w(v, v0), seed, v) where
(dist, seed, v0) was previously inserted into Q. Hence,
by the induction hypothesis there exists a path seed
v0 of length dist. Since v is a neighbor of v0 with edge
weight w(v0, v), there exists a path seed v0 → v
of length w(seed v0) + w(v0 → v) = dist +
w(v0, v).

Lemma B.3. The distances popped from Q in the
main loop form a monotone non-decreasing sequence.

Proof. This follows directly from the fact that Q is
a minimum priority queue and that the edge weights
are non-negative, hence future insertions or updates
will have a priority that is higher or equal to that of
an existing element in the queue.

Lemma B.4. Every time a triplet (dist, seed, v0) is
popped from Q, the following conditions hold

1. If seed ∈ NLV (v0, k) then dist = dG(seed, v0).

2. All pairs (s, v) ∈ L×V that satisfy dG(s, v) < dist
and s ∈ NLV (v, k) are in the visited set.

Proof. We prove both claims simultaneously by
induction on the popped triplets.

Base of the induction: The first L triplets are equal
to {(0, s, s) : s ∈ L}. Part 1 holds since dG(s, s) = 0.
Part 2 holds because there are no paths shorter than 0.

Induction step:

Part 1. (If seed ∈ NLV (v0, k) then dist =
dG(seed, v0))

Amit Moscovich, Ariel Jaffe, Boaz Nadler

By Lemma B.2, dist is the length of an actual
path, so it cannot be smaller than the shortest
path length dG(seed, v0). Assume by contradiction
that dG(seed, v0) < dist. There is some shortest
path seed vp → v0 of length dG(seed, v0) (vp
may be equal to seed, but not to v0). Clearly
dG(seed, vp) ≤ dG(seed, v0) < dist and by Lemma
3.1, seed ∈ NLV (vp, k). Thus by Part 2 of the
induction hypothesis (seed, vp) ∈ visited. This
implies that (seed, vp) was visited in a previous iter-
ation. Note that it follows from seed ∈ NLV (vp, k)
and from Lemma B.3 that during the visit of
(seed, vp) the condition length(kNN [vp]) < k
was true. Therefore the command dec-or-
insert(Q, dG(seed, vp) + w(vp, v0), seed, v0) should
have been called, but because seed vp → v0 is a
shortest path, dG(seed, vp)+w(vp, v0) = dG(seed, v0),
leading to the conclusion that the triplet
(dG(seed, v0), seed, v0) must have been inserted
into Q in a previous iteration, which leaves two
options:

1. Either (dG(seed, v0), seed, v0) was never popped
from Q, in that case it should have been
popped from Q in the current iteration instead
of (dist, seed, v0). Contradiction.

2. The triplet (dG(seed, v0), seed, v0) was popped
from Q in a previous iteration. However this im-
plies a double visit of (seed, v0), which is impos-
sible due to the use of the visited set.

Part 2. (All pairs (s, v) ∈ L×V that satisfy dG(s, v) <
dist and s ∈ NLV (v, k) are contained in visited)

Let (s, v) ∈ L × V be a pair of vertices that satis-
fies dG(s, v) < dist and s ∈ NLV (v, k). Assume by
contradiction that (s, v) /∈ visited. Let s v′ →
v′′ v be a shortest path such that (s, v′) ∈ vis-
ited but (s, v′′) /∈ visited. Such v′, v′′ must exist since
(s, s) ∈ visited and by our assumption (s, v) /∈ visited.
We note that smay be equal to v′ and v′′ may be equal
to v. Since (s, v′) ∈ visited, some triplet (d, s, v′) was
popped from Q in a previous iteration and by Part 1
of the induction hypothesis d = dG(s, v

′). By Lemma
3.1 we know that s ∈ NLV (v′, k), therefore during
the visit of (s, v′) the condition length(kNN [v′]) < k
was true. Following this, there must have been a call
to decrease-key-or-insert(Q, dG(s, v′)+w(v′, v′′), s, v′′).
Now,

dG(s, v
′) + w(v′, v′′)

= dG(s, v
′′) (s v′ → v′′ is a shortest path)

≤ dG(s, v) (s v′′ is a subpath)

Hence the pair (s, v′′) was previously stored in Q
with distance dG(s, v

′′) ≤ dG(s, v) < dist. Since

(s, v′′) /∈ visited, it should have been present in
Q with a smaller distance than (s, v) as key, thus
(dG(s, v

′′), s, v′′) should have been popped instead of
(dist, seed, v0), contradiction.

Finally, we are ready to state the theorem that Al-
gorithm 1 produces correct output, namely that its
output for every vertex v ∈ V is indeed the set of its
k nearest labeled points, as measured by the geodesic
graph distance.

Theorem B.1. Let G = (V,E,w) be a graph with
non-negative weights. For every vertex v ∈ V let Lv
denote the set of labeled vertices in the connected com-
ponent of v and let `v = min{k, |Lv|}. Then

1. Algorithm 1 stops after a finite number of steps.

2. Once stopped, for every v ∈ V the out-
put list kNN [v] is of the form kNN [v] =
[(dG(s1, v), s1), . . . , (dG(s`, v), s`v)] where
s1, . . . , s`v are the nearest labeled vertices,
sorted by their distance to v.

Proof. Part 1 follows trivially from the fact that every
pair (seed, v0) can be popped at most once and part
2 follows from Lemma B.4 and an induction on the
popped triplets (d, s, v).

B.2 Transductive runtime analysis of
Algorithm 1

Lemma B.1 explains why Algorithm 1 can stop explor-
ing the neighbors of vertices whose k nearest labeled
neighbors were found. As Theorem B.2 shows, this
can lead to dramatic runtime savings.

Theorem B.2. Given a graph G = (V,E) with n la-
beled vertices, the runtime of Algorithm 1 is bounded
by O (k|E|+Np log |V |) where Np is the total num-
ber of pop-minimum operations, which satisfies Np ≤
min{n|V |, k|E|}.

Proof. Recall that in a priority queue based on a Fi-
bonacci heap all operations cost O(1) amortized time
except pop-minimum which costs log |Q|. The runtime
is dominated by the cost of all pop-minimum opera-
tions, plus the total cost of traversing the neighbors of
the examined vertices. The latter takes O(k|E|) time.
Denote the total number of pop-minimum operations
by Np. We derive two different bounds on Np. Every
time a (seed, v) pair is popped from Q, it is added to
the visited set, which prevents future insertions of that
pair into Q. Hence, each pair (seed, v) ∈ L × V may
be popped at most once from Q, which implies that
Np ≤ n|V |. In addition, Np is bounded by the num-
ber of insertions into Q. First, there are n insertions

Minimax-optimal semi-supervised regression on unknown manifolds: supplementary material

during the initialization phase. Then, for each ver-
tex v0 ∈ V , the "if length(kNN [v0]) < k" clause can
hold true at most k times for that vertex. Each time,
the neighbors of v0 are examined and up to deg(v0)
neighbors are inserted into Q. This yields the second
bound, Np ≤ n+ k|E| = O(k|E|).

B.3 Saving unneeded extractions

Algorithm 1 keeps a priority queue with pairs
(seed, v) ∈ L × V . However, once a vertex v has been
visited from k different seed vertices, we no longer need
to process it further. Thus any later pop operations
which involve v are a waste of CPU cycles. Concep-
tually, once v is visited for the kth time, we would
like to purge the queue of all pairs (s, v), but this is
expensive since every pop operation costs log |Q|. In-
stead we use an idea by Har-Peled (2016), which we
detail in Algorithm 2. For every vertex v ∈ V we keep
a separate priority queue Qv, which will be disabled
once v is visited k times. A global priority queue Q
is maintained that keeps the lowest element of each of
the local queues Qv. Now popping an element involves
popping some v from Q and then popping Qv. This
is followed by an insert of the new minimum element
from Qv into Q.

Theorem B.3. Given a graph G = (V,E) with n la-
beled vertices, the runtime of Algorithm 2 is bounded
by O (k|E|+ kV log |V |)

Proof. The runtime of Algorithm 2 is bounded by
O (k|E|+Np log |V |). Let v ∈ V be a vertex. Pairs
of the form (seed, v) may be popped at most k times.
hence Np ≤ k|V |.

An immediate corollary of Theorem B.3 is that for a
graph G = (V,E) of bounded degree d, the runtime
of Algorithm 2 is O(k|V | log |V |). In contrast, the run-
time of the naïve approach based on multiple Dijkstra
runs is O (n|V | log |V |). Comparing these two formu-
las, we see that major speedups are obtained in typi-
cal cases where n� k. As we illustrate empirically in
the following Section, these speedups are very large in
practice, even on graphs of moderate size.

B.4 Empirical runtime comparison

We compare the runtime of Algorithms 1 and 2 to
the naïve method of running Dijkstra’s algorithm from
each of the labeled points. To make the comparison
meaningful we implemented all of these algorithms in
Python, using a similar programming style and the
same heap data structure. The running times were
measured for the simulated WiFi signals data set. Fig-
ure B.2 shows the relative speedup (measured in sec-

Algorithm 2 Geodesic k nearest labeled neighbors
with faster priority queue handling

Input: An undirected weighted graph G = (V,E,w)
and a set of labeled vertices L ⊆ V .
Output: For every v ∈ V a list kNN [v] with the k
nearest labeled vertices to v and their distances.
Q←PriorityQueue()
for v ∈ V do

Qv ←PriorityQueue()
kNN[v] ← Empty-List()
Sv ← φ
if v ∈ L then

insert(Q, v, priority = 0)
insert(Qv, v, priority = 0)

while Q 6= φ do
(v0, dist) ← pop-minimum(Q)
(seed, dist) ← pop-minimum(Qv0)
Sv0 ← Sv0 ∪ {seed}
append (seed, dist) to kNN[v0]
if length(kNN[v0]) < k and Qv0 6= φ then

(newseed, newdist) ← minimum(Qv0)
insert(Q, v0, priority = newdist)

for all v ∈ neighbors(v0) do
if length(kNN[v]) < k and seed /∈ Sv then

decrease-or-insert(Qv, seed,
priority = dist +w(v0, v))

decrease-or-insert(Q, v,
priority = dist +w(v0, v))

x coordinate (m)
0 1 2 3 4 5

y
 c

o
o

rd
in

at
e

(m
)

0

1

2

3

4

5

signals
labeled locations
unlabeled locations

Figure B.1: Schematic of the labeled and unlabeled
point generation for the simulated data set. Labeled
locations (green circles) were placed on a 4m grid,
whereas the unlabeled locations (grey circles) were
placed at random. The signature of a location is com-
puted by Eq. (C.1) using all the signals in a 1m square
neighborhood of the location.

Amit Moscovich, Ariel Jaffe, Boaz Nadler

5000 10000 15000 20000 25000 30000

Number of unlabeled locations

100

200

300

400

500

600

700

800

900

1000
Sp

ee
du

p Algorithm 1 (k=1)
Algorithm 2 (k=1)
Algorithm 1 (k=7)
Algorithm 2 (k=7)

5000 10000 15000 20000 25000 30000

Number of unlabeled locations

0

50

100

150

200

250

300

Sp
ee

du
p Algorithm 1 (k=1)

Algorithm 2 (k=1)
Algorithm 1 (k=7)
Algorithm 2 (k=7)

Figure B.2: Relative speedup computing the geodesic
1NN and 7NN of all points in a graph using Algorithms
1 and 2. The speedup of both algorithms is compared
to the naïve approach of running Dijkstra’s algorithm
from each labeled point. Top panel: 1600 labeled lo-
cations are placed on a 2m square grid. Bottom panel:
400 labeled locations placed on a 4m grid.

onds) of both algorithms compared to multiple Dijk-
stra runs. Interestingly, while Algorithm 2 has better
asymptotic guarantees than Algorithm 1, both show
similar speedups on this particular data set.

Table 1: Runtime of Geodesic 7-NN vs. time to com-
pute Laplacian eigenvectors

#unlabeled G7NN Laplacian Graph build
1000 2.3s 7.6s 9s
10000 7s 195s 76s
100000 56s 114min 66min

Table 1 compares the runtime of the geodesic 7NN
method to the runtime of computing the top eigen-
vectors of the Laplacian matrix, using the simulated
indoor localization data set with labeled locations ev-
ery 2m. The number of eigenvectors was chosen to be
320, which is equal to 20% of the number of labeled
points. Computing the geodesic nearest neighbors by
using Algorithm 1 is several orders of magnitude faster
than computing the eigenvectors. This is despite the

m
3 6 9 12 15 18 21 24 27 30

m

3

6

9

12

15

18

21

24
labeled locations
unlabeled locations
Wi-Fi Receiver

Figure B.3: Schematic of the mapped areas in the real
data set

fact that the eigenvector computation is performed us-
ing the highly optimized Intelr Math Kernel Library
whereas the geodesic nearest neighbor computation
uses a simple Python implementation. We expect an
efficient implementation of geodesic kNN to be at least
10 times faster. For completeness, the third column
shows the graph construction time, using the naïve
O(n2) algorithm.

C Indoor localization details

C.1 Dataset description

Simulated data: This data consists of 802.11 Wi-Fi
signals in an artificial yet realistic environment gen-
erated by Kupershtein et al. (2013) using a 3D radio
wave propagation software. The environment is an
80m ×80m floor. In its center is a Wi-Fi router with
p = 6 antennas. See Figure 1. At various locations
(x, y) ∈ R2, N = 8 consecutive samples of a Wi-Fi
packet’s (constant) preamble are recorded, at equally
spaced time intervals of 50µs. The samples are stored
in a complex-valued vector sx,y ∈ CpN which we re-
fer to as the signal received from location (x, y). The
simulated signals were generated on a dense 0.1m grid
covering the entire area of the floor.

Real data: This data consists of actual 802.11 sig-
nals, recorded by a Wi-Fi router with p = 6 antennas
placed approximately in the middle of a 27m×33m
office, see Figure B.3. The transmitter was a tablet
connected to the router via Wi-Fi. The signal vector
of each location (x, y) was sampled N = 8 times from
every antenna. The transmitter locations were entered
manually by the operator. For both the labeled and
unlabeled locations, we first generated a square grid
covering the area of the office, and then kept only the

Minimax-optimal semi-supervised regression on unknown manifolds: supplementary material

locations that contained received signals. For the la-
beled points, we repeated the experiments with several
grid sizes ranging from 1.5m to 3m. The location of
the WiFi router is marked by the green circle.

C.2 Feature extraction and distance metric
for the SSP method

The Signal Subspace Projection method is based on
the assumption that signals originating from nearby
locations are high dimensional vectors contained in a
low dimensional subspace. Hence, signals originating
from nearby locations are contained in a low dimen-
sional subspace. The subspace around each location is
used as its signature. Specifically, the signature P` of a
location ` = (x, y) ∈ R2 is computed as follows. First,
the covariance matrix of the signals in the proximity
of ` is computed, using all the signals in the dataset
that are inside a 1m square around ` (see Figure B.1),

R` :=
∑

`′∈R2:‖`−`′‖∞<0.5m

s`′s
∗
`′ (C.1)

where s∗`′ denotes the Hermitian transpose of the col-
umn vector s`′ ∈ CpN . Next, we compute the npc lead-
ing eigenvectors of R`, forming a matrix V` ∈ CpN×npc .
The SSP signature is the projection matrix onto the
space spanned by these eigenvectors, P` := V`V

∗
` . In

our experiments, we picked npc = 10, though other
choices in the range {8, . . . , 12} gave results that are
almost as good. The distance between pairs of loca-
tions is defined as the Frobenius norm of the difference
of their projection matrices, di,j := ‖P`i −P`j‖F . gave
us results that are on par with the best methods of
Jaffe and Wax (2014).

For the simulated dataset, to mimic how a real-world
semi-supervised localization system might work, we
generated the labeled locations on a regular square
grid, whereas the unlabeled locations were randomly
distributed over the entire area of the floor (see Figure
B.1). For the real dataset, due to physical constraints,
labeled and unlabeled points were not placed on a reg-
ular grid. Then, we created a symmetric kNN graph by
connecting every point xi with its kG closest neighbors,
with corresponding weights given by wi,j = 1 + εdi,j .
Here ε > 0 is a small constant which gives preference
to paths with smaller di,j . Experimentally using the
symmetric kNN graph construction with k = 4 gave
slightly better results than choosing k ∈ {3, 5, 6} for
both the geodesic kNN regressor and for the Laplacian
eigenvector regressor.

References
Har-Peled, S. (2016). Computing the k Nearest-
Neighbors for all Vertices via Dijkstra. ArXiv e-

prints.

Jaffe, A. and Wax, M. (2014). Single-Site Localiza-
tion via Maximum Discrimination Multipath Fin-
gerprinting. IEEE Transactions on Signal Process-
ing, 62(7):1718–1728.

Kupershtein, E., Wax, M., and Cohen, I. (2013).
Single-site emitter localization via multipath finger-
printing. IEEE Transactions on Signal Processing,
61(1):10–21.

	Auxiliary lemmas
	Fast computation of transductive geodesic nearest neighbors
	Proof of correctness
	Transductive runtime analysis of Algorithm 1
	Saving unneeded extractions
	Empirical runtime comparison

	Indoor localization details
	Dataset description
	Feature extraction and distance metric for the SSP method

