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Abstract

We consider semi-supervised regression when
the predictor variables are drawn from an
unknown manifold. A simple two step ap-
proach to this problem is to: (i) estimate
the manifold geodesic distance between any
pair of points using both the labeled and un-
labeled instances; and (ii) apply a k near-
est neighbor regressor based on these dis-
tance estimates. We prove that given suf-
ficiently many unlabeled points, this simple
method of geodesic kNN regression achieves
the optimal finite-sample minimax bound on
the mean squared error, as if the manifold
were known. Furthermore, we show how this
approach can be efficiently implemented, re-
quiring only O(kN logN) operations to es-
timate the regression function at all N la-
beled and unlabeled points. We illustrate
this approach on two datasets with a mani-
fold structure: indoor localization using WiFi
fingerprints and facial pose estimation. In
both cases, geodesic kNN is more accurate
and much faster than the popular Laplacian
eigenvector regressor.

1 Introduction

In recent years, many semi-supervised regression and
classification methods have been proposed, see the sur-
veys by Chapelle et al. (2006); Zhu et al. (2009); Sub-
ramanya and Talukdar (2014). These methods demon-
strated empirical success on some data sets, whereas
on others the unlabeled data did not appear to help.
This raised two key questions of continued interest:
(i) under which conditions can the potentially huge
amount of unlabeled data help the learning process?
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and (ii) can we design statistically sound and com-
putationally efficient methods that benefit from the
unlabeled data?

The cluster assumption and the manifold assumption
are two common models for studying the above ques-
tions regarding semi-supervised learning. Under the
cluster assumption, instances with the same label con-
centrate in well-defined clusters separated by low den-
sity regions (Chapelle and Zien, 2005; Rigollet, 2007;
Singh et al., 2009). Under the manifold assumption
the data points reside in one or several low-dimensional
manifolds, with nearby instances on the manifold hav-
ing similar response values.

Bickel and Li (2007) as well as Lafferty and Wasser-
man (2007) studied semi-supervised learning under
the manifold assumption. They showed that without
knowing the manifold, standard multivariate polyno-
mial regression in the ambient space, using only the la-
beled data, achieves the asymptotic minimax rate for
Sobolev functions. According to these results, it seems
there is little benefit to the availability of additional
unlabeled data. However, these results require that
the number of labeled samples tends to infinity. Intu-
itively, in this limit, the geometry of the data manifold
and the sampling density can be accurately estimated
from the labeled data alone. Thus the benefits of a po-
tentially huge number of unlabeled points when there
is little labeled data remained unclear.

One of the goals of this work is to clarify this bene-
fit of unlabeled data for rather general manifolds, via
a finite sample analysis, whereby the number of la-
beled samples is fixed. In this context, Niyogi (2013)
showed that unlabeled data can indeed help, by pre-
senting a specially constructed manifold, for which su-
pervised learning is provably more difficult than semi-
supervised learning. Goldberg et al. (2009) consid-
ered this question under both the manifold and multi-
manifold cases. In particular, in their Section 2.1, they
conjectured that semi-supervised learning of a Hölder
function on an unknown manifold with intrinsic dimen-
sion d can achieve the finite-sample minimax bound for
nonparametric regression in Rd.
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In this paper we prove that when the regressed func-
tion is Lipschitz, a simple semi-supervised regression
method based on geodesic nearest neighbor averaging
achieves the finite-sample minimax bound when the
amount of unlabeled points is sufficiently large. This
settles the conjecture of Goldberg et al. (2009) for the
Lipschitz case.

The regression method we consider, denoted geodesic
kNN regression, consists of two steps: (i) estimate
the manifold geodesic distances by shortest-path dis-
tances in a graph constructed from both the labeled
and unlabeled points; and (ii) estimate the response at
any point by averaging its k geodesic nearest labeled
neighbors. Section 2 describes the graph construction
and the corresponding nonparametric statistical esti-
mation method. Our main result, detailed in Section
3, is a proof that for a Lipschitz function on a man-
ifold, if enough unlabeled samples are available, then
with high probability this method achieves the finite-
sample minimax bound. In Section 4 we discuss the
computational aspects of this approach, which is very
fast compared to spectral-based semi-supervised meth-
ods. Finally, in Section 5 we apply our method to two
problems with a low dimensional manifold structure,
indoor localization using WiFi fingerprints and facial
pose estimation. On both problems geodesic kNN ex-
hibits a marked improvement compared to classical
kNN, which does not utilize the unlabeled data, and
also compared to the popular semi-supervised regres-
sion method of Belkin and Niyogi (2004).

2 Semi-supervised learning with
geodesic distances

We consider the following framework for semi-
supervised learning. Given n labeled instances L =
{(xi, yi)}ni=1 and m unlabeled instances U = {xj}mj=1

from an instance space X equipped with a distance
function d(x,x′):

1. Construct an undirected (sparse) graph G whose
vertices are all the labeled and unlabeled points.
Pairs of close points x,x′ are then connected by
an edge with weight w(x,x′) = d(x,x′).

2. Compute the shortest-path graph distance
dG(xi,xj) for all xi ∈ L and xj ∈ L ∪ U .

3. Apply standard metric-based supervised learning
methods, such as kNN or Nadaraya-Watson, using
the computed graph distances dG.

This framework generalizes the work of Bijral et al.
(2011), which assumed that the samples are vectors
in RD and the distance function is ‖xi − xj‖qp. The

use of geodesic nearest neighbors for classification was
also considered by Belkin and Niyogi (2004). Specific
edge selection rules include the distance-cutoff rule,
whereby two points are connected by an edge if their
distance is below a threshold, and the symmetric kNN
rule, where every point is connected by an edge to its
k nearest neighbors and vice versa. (Alamgir and von
Luxburg, 2012; Ting et al., 2010)

The elegance of this framework is that it decouples the
unsupervised and supervised parts of the learning pro-
cess. It represents the geometry of the samples by a
single metric dG, thus enabling the application of any
supervised learning algorithm based on a metric. For
classification, a natural choice is the k nearest neigh-
bors algorithm. For regression, one may similarly em-
ploy a k nearest neighbor regressor. For any xi ∈ L∪U ,
let kNN(xi) ⊆ L denote the set of k (or less) nearest
labeled neighbors to xi, as determined by the graph
distance dG. The geodesic kNN regressor at xi is

f̂(xi) :=
1

|kNN(xi)|
∑

(xj ,yj)∈kNN(xi)

yj . (1)

We now extend the definition of f̂(x) to the inductive
setting. Assume we have already computed the regres-
sion estimates f̂(xi) of Eq. (1) for all points in L∪U .
For a new instance x /∈ L ∪ U , we first find its Eu-
clidean nearest neighbor x∗ from L ∪ U . This can be
done in sublinear time either using data structures for
spatial queries (Omohundro, 1989; Bentley, 1975) or
by employing approximate nearest neighbor methods
(Andoni and Indyk, 2006). Then the geodesic kNN
regression estimate at x is

f̂(x) := f̂(x∗) = f̂

(
argmin
x′∈L∪U

‖x− x′‖
)
. (2)

3 Statistical analysis under the
manifold assumption

We now analyze the statistical properties of the
geodesic kNN regressor f̂ of Eq. (2), under the man-
ifold assumption. We consider a standard nonpara-
metric regression model, Y = f(X) +N (0, σ2) where
X ∈ RD is drawn according to a measure µ on M.
We prove that if f is Lipschitz with respect to the
manifold distance and if enough unlabeled points are
available then f̂ obtains the minimax bound on the
mean squared error.

To this end, we first review some classical results in
nonparametric estimation. Let f̂ : RD → R be an
estimator of a function f , based on n noisy sam-
ples. Let MSE(f̂ ,x) := E

[
(f̂(x)− f(x))2

]
be its
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mean squared error at a point x ∈ RD, where the ex-
pectation is over the random draw of data points. It
can be shown that for any estimator f̂ and any point
x ∈ RD, there is some Lipschitz function f such that
MSE(f̂ ,x) ≥ cn−

2
2+D for some constant c > 0 that

depends only on the Lipschitz constant and the noise
level. The term n−

2
2+D is thus termed a finite-sample

minimax lower bound on the MSE at a point. Several
results of this type were derived under various mea-
sures of risk and classes of functions (Tsybakov, 2009;
Györfi et al., 2002).

Standard nonparametric methods such as Nadaraya-
Watson or kNN regression have an upper bound on
their MSE that is also of the form c′n−

2
2+D . Hence

these methods are termed minimax optimal for esti-
mating a Lipschitz function.

In Theorem 1 below we prove that given a sufficient
number of unlabeled points, the MSE of the geodesic
kNN regressor is upper-bounded by cn−

2
2+d where c

is some constant and d is the intrinsic dimension of
the manifold. Hence the geodesic kNN regressor is
minimax-optimal and adaptive to the geometry of the
unknown manifold.

3.1 Notation and prerequisites

Our main result relies on the analysis of Tenenbaum
et al. (2000) regarding the approximation of manifold
distances by graph distances. Before stating our result,
we thus first introduce some notation, our assumptions
and a description of the key results of Tenenbaum et al.
(2000) that we shall use.

For a general background on smooth manifolds, see for
example the book by Lee (2012). We assume that the
data manifold M ⊆ RD is a compact smooth man-
ifold of known intrinsic dimension d, possibly with
boundaries and corners. We further assume that M
is geodesically convex, i.e. that every two points
in M are connected by a geodesic curve. We de-
note by dM(x,x′) the length of the shortest path
between two points in M, the diameter of M by
diam(M) := supx,x′ dM(x,x′) and the manifold-ball
of points around x by Bx(r) := {x′ ∈M : dM(x,x′) <
r}. We denote the volume of M by V and the
minimum volume of a manifold ball of radius r by
Vmin(r) := minx∈M V ol(Bx(r)). We denote by r0
the minimal radius of curvature of M and by s0 its
minimal branch separation (see the supplementary of
Tenenbaum et al. (2000) for precise definitions). We
assume that the data points are sampled i.i.d. from
some measure µ on M with associated density func-
tion µ(x). For every point x ∈ M and radius r ≤ R
we assume that µ(Bx(r)) ≥ Qrd where R,Q > 0.
This condition means that the measure of small balls

grows with the radius as is typical for dimension d.
In particular, it guarantees that the minimum density
µmin := minx∈M µ(x) > 0. Finally, we assume that
f :M→ R is a bounded L-Lipschitz function onM,

∀x,x′ ∈M : |f(x)− f(x′)| ≤ LdM(x,x′). (3)

We now reproduce the statement of Theorem B.

Theorem B. (Tenenbaum et al., 2000) LetM⊆
RD be a compact smooth and geodesically convex man-
ifold of intrinsic dimension d. Let δ, ε, r > 0 be con-
stants. Let X1, . . . , XN

i.i.d.∼ µ be a sample of points
on M and suppose we use these points to construct a
graph G using the distance-cutoff rule with threshold r
where r < min{s0, (2/π)r0

√
24δ}.

Denote by A the event that the following inequalities

1− δ ≤ dG(Xi, Xj)/dM(Xi, Xj) ≤ 1 + δ. (4)

hold for all pairs Xi, Xj, where 1 ≤ i, j ≤ N . Then

Pr

[
A
∣∣∣N >

log
(
V/εVmin

(
δr
16

))
µminVmin

(
δr
8

) ]
≥ 1− ε. (5)

Remark 1. By Theorem C in (Tenenbaum et al., 2000),
a similar result holds for the symmetric kNN rule.
Remark 2. In the typical case where Vmin(r) ∼ r−d,
if we fix ε, δ we must have N & 1

µmin
(8/δr)d. In other

words, the required number of samples for Eq. (4) to
hold is exponential in the intrinsic dimension d.
Remark 3. If we fix N, δ, r and invert Eq. (5), we
conclude that Pr [Ac] decays exponentially with N ,

Pr [Ac] < ε = cae
−cbN (6)

where ca = V/Vmin(
δr
16 ) and cb = Vmin(

δr
8 ) · µmin. A

similar bound holds for the symmetric kNN graph.
Remark 4. Theorems B and C consider points drawn
from a Poisson point process. However, they hold also
in the case of an i.i.d. draw of N points. See page 11
of the supplement of Tenenbaum et al. (2000).

3.2 Main result

We are now ready to state our main theorem. It
bounds the expected MSE of the geodesic kNN regres-
sor f̂(x) at a fixed point x ∈M, where the expectation
is over the draw of n labeled and m unlabeled points.
Theorem 1. Consider a fixed point x ∈ M. Sup-
pose the manifoldM, the measure µ and the regression
function f satisfy all the assumptions stated above.
Then, the geodesic kNN regressor of Eq. (2) computed
using the distance-cutoff rule with r as in Theorem B,
or a symmetric kNN rule with a suitable k, satisfies

E
[
(f̂ (x)− f(x))2

]
≤ cn−

2
2+d + c′e−c

′′·(n+m)f2D. (7)
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where fD := fmax − fmin. The coefficients c, c′, c′′ are
independent of the sample size. They depend only on
the Lipschitz constant of f , the noise level σ, properties
ofM and µ and on the parameters ε, δ in Theorem B.

Proof. By Eq. (2), f̂(x) = f̂(x∗), where x∗ is the
nearest point to x from L∪U . Since (a+b)2 ≤ 2a2+2b2

E
[
(f̂(x)− f(x))2

]
= E

[
(f̂(x∗)− f(x))2

]
= E

[(
(f̂ (x∗)− f(x∗)) + (f(x∗)− f(x))

)2]
≤ 2E

[
(f̂ (x∗)− f(x∗))2

]
+ 2E

[
(f (x∗)− f(x))2

]
.

Bounds on these two terms are given by lemmas 1
and 2 below. In each of these lemmas the bound is
composed of a term c1n

− 2
2+d and an exponential term

of the form c2e
−c3(n+m)f2D. Hence, Eq. (7) follows.

Remark 5. While the exponential term in Eq. (7) may
be huge for small sample sizes, if the number of unla-
beled samples is large enough then it is guaranteed to
be small with respect to the first term for any number
of labeled samples n. It thus can be absorbed into the
coefficient c with negligible effect.
Remark 6. Kpotufe (2011, Theorem 1) proved that for
data sampled from an unknown manifold, even clas-
sical (supervised) kNN based on Euclidean distances
achieves the minimax bound up to log factors. How-
ever, his result requires O(log n) labeled points in a
small Euclidean ball around x. This is different from
our result that holds for any number of labeled points
n, and does not include log factors.

We now state and prove the two lemmas used
in the proof of Theorem 1. To this end, let
X1, . . . , Xn+m

i.i.d.∼ µ, and let Yi = f(Xi) + ηi be
the observed responses at the first n (labeled) points,
where η1, . . . , ηn

i.i.d.∼ N (0, σ2).

Lemma 1. Let x ∈ M and let x∗ be its Eu-
clidean nearest point from {X1, . . . , Xn+m}. For any
L-Lipschitz function f and measure µ that satisfies
µ(Bz(r)) ≥ Qrd for all r ≤ R and z ∈M,

E
[
(f (x∗)− f(x))2

]
≤ 2L2

(1− e−Q)2
n−

2
2+d +

e−QR
d(n+m) · f2D.

Proof. Let ER denote the event that dM(x,x∗) ≤ R.

E
[
(f(x∗)− f(x))2

]
(8)

≤ Pr [ER] · E
[
(f(x∗)− f(x))2 |ER

]
+ Pr [EcR] f

2
D.

Since µ(Bx(r)) ≥ Qrd for any r ≤ R,

Pr [EcR] = Pr [dM(x,x∗) > R]

≤ (1−QRd)n+m ≤ e−QR
d(n+m).

Next, we bound the first term of (8). Since f is L-
Lipschitz w.r.t. the manifold,

E
[
(f(x∗)− f(x))2 |ER

]
≤ L2E

[
d2M(x∗,x)|ER

]
.

Recall that for a non-negative random variable,
E [Z] =

∫∞
0

Pr [Z > t] dt. Applying this to d2M(x∗,x)

E
[
d2M(x∗,x)|ER

]
=

∫ diam(M)

0

Pr
[
d2M(x∗,x) > t|ER

]
dt

=

∫ diam(M)

0

Pr
[
d2M(x∗,x) > t and ER

]
Pr [ER]

dt

=
1

Pr [ER]

∫ R2

0

Pr
[
d2M(x∗,x) ∈ (t, R2)

]
dt

≤ 1

Pr [ER]

∫ R2

0

Pr
[
dM(x∗,x) >

√
t
]
dt.

Lemma A.1 in the supplementary gives the following
bound, which is independent of R∫ R2

0

Pr
[
dM(x∗,x) >

√
t
]
dt

≤ 2(1− e−Q)−2(n+m)−
2
d ≤ 2(1− e−Q)−2n−

2
2+d .

Combining all of the above concludes the proof.

Lemma 2. Under the same conditions of Lemma 1,

E
[
(f̂(x∗)− f(x∗))2

]
≤
(
2L2

(
1+δ
1−δ
)2
c1(M, µ, δ) + σ2

)
n−

2
2+d

+ 4cae
−cbµmin·(n+m)f2D.

where δ is the approximation ratio of Eq. (4). The
coefficients ca and cb depend on δ and on the manifold
M and graph construction parameters (see Eq. (6)).

Proof. By the bias-variance decomposition and the law
of total variance,

E
[
(f̂(x∗)− f(x∗))2

]
= bias2

(
f̂(x∗)

)
+Var

(
f̂(x∗)

)
= bias2

(
f̂(x∗)

)
+ E

[
Var

(
f̂(x∗)|X1, . . . , Xn+m

)]
+Var

(
E
[
f̂(x∗)|X1, . . . , Xn+m

])
. (9)

We now bound these three terms separately. We start
with the bias term, which we split into two parts, de-
pending on the event A

bias(f̂(x∗)) = Pr [A] · bias(f̂(x∗)|A) +
Pr [Ac] · bias(f̂(x∗)|Ac)

≤ (1− ε) · bias(f̂(x∗)|A) + ε · fD.
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Therefore,

bias2(f̂(x∗)) ≤ (1− ε)2bias2(f̂(x∗)|A)

+ 2ε(1− ε)bias(f̂(x∗)|A)fD + ε2f2D

≤ bias2(f̂(x∗)|A) + 3εf2D. (10)

Denote by X(i,n)
G (x∗) the i-th closest labeled point to

x∗ according to the graph distance. Let Y (i,n)
G (x∗) be

its response and η(i,n)G (x∗) = Y
(i,n)
G (x∗)−f(X(i,n)

G (x∗))
the noise. Using this notation, the geodesic kNN re-
gression estimate of Eq. (1) is

f̂(x∗) =

k∑
i=1

Y
(i,n)
G (x∗)

k
=

k∑
i=1

f(X
(i,n)
G (x∗)) + η

(i,n)
G (x∗)

k
.

(11)

For any random variable Z, we have E2 [Z] ≤ E
[
Z2
]
.

Applying this, we get a bound on bias2(f̂(x∗)|A).

bias2(f̂(x∗)|A) = E2
[
1
k

k∑
i=1

f(X
(i,n)
G (x∗))− f(x∗)

∣∣∣A]
≤ E

[(
1
k

k∑
i=1

(f(X
(i,n)
G (x∗))− f(x∗))

)2∣∣∣A] (12)

≤ E
[(

1
k

k∑
i=1

L · dM(X
(i,n)
G (x∗),x∗)

)2∣∣∣A]. (13)

Conditioned on A, Eq. (A.4) in the supplementary
gives the bound

dM

(
X

(i,n)
G (x∗),x∗

)
≤ 1+δ

1−δdM

(
X

(i,n)
M (x∗),x∗

)
Randomly split the labeled samples X1, . . . , Xn into
disjoint subsets S1, . . . , Sk+1, such that |S1| = . . . =
|Sk| = bnk c and Sk+1 contains the remaining elements.
Let Si(x∗) := argminx′∈Si

dM(x∗,x′) be the closest
element to x∗ in Si. Clearly,

k∑
i=1

dM

(
X

(i,n)
M (x∗),x∗

)
≤

k∑
i=1

dM (Si(x
∗),x∗) . (14)

Inserting this into Eq. (13) and applying Jensen’s in-
equality

bias2(f̂(x∗)|A) ≤ L2E
[(1
k

k∑
i=1

1+δ
1−δdM(Si(x

∗),x∗)
)2∣∣A]

≤ L2
(
1+δ
1−δ
)2E[1

k

k∑
i=1

d2M(Si(x
∗),x∗)

∣∣A]
= L2

(
1+δ
1−δ
)2E[d2M (S1(x

∗),x∗)
∣∣A].

The set S1 is simply a random draw of bnk c
points. By Lemma A.2 in the supplementary,

E
[
d2M (S1(x

∗),x∗)
∣∣∣A] ≤ c1(M, µ, δ)bnk c

− 2
d . Plugging

this back into Eq. (10), we obtain a bound on the
squared bias.

bias2 ≤ L2
(

1+δ
1−δ

)2
c1(M, µ, δ)bnk c

− 2
d + 3εf2D. (15)

We now bound the second term in Eq. (9). Consider
the definition of f̂(x∗) in Eq. (11). Conditioned on
X1, . . . , Xn+m, the terms f(X(i,n)

G (x∗)) are constants.
The noise η has zero mean and is independent of the
draw of X1, . . . , Xn+m. Therefore

Var
(
f̂(x∗)

∣∣X1, . . . , Xn+m

)
= σ2/k. (16)

To bound the third term in (9), we note that for
any real random variable Z and any c ∈ R, we have
Var (Z) = E

[
(Z − E [Z])2

]
≤ E

[
(Z − c)2

]
. Hence,

Var
(
E
[
f̂(x∗)

∣∣X1...n+m

])
= Var

(
1
k

k∑
i=1

f(X
(i,n)
G (x∗))

)
≤ E

[(
1
k

k∑
i=1

f(X
(i,n)
G (x∗))− f(x∗)

)2]
.

We split this expectation with respect to the event A
and apply the bound we computed for Eq. (12).

E
[(

1
k

k∑
i=1

f(X
(i,n)
G (x∗))− f(x∗)

)2] (17)

= Pr [A] · E
[(

1
k

k∑
i=1

f(X
(i,n)
G (x∗))− f(x∗)

)2∣∣A]
+ Pr [Ac] · f2D ≤ L2

(
1+δ
1−δ

)2
c1(M, µ, δ)bnk c

− 2
d + εf2D.

To conclude, by inserting equations (15), (16) and (17)
into Eq. (9), and applying the bound on ε in Eq. (6),
we obtain

E
[
(f̂(x∗)− f(x∗))2

]
≤ 2L2

(
1+δ
1−δ

)2
c1(M, µ, δ)bnk c

− 2
d

+ 4cae
−cb(n+m) · f2D +

σ2

k
.

The lemma follows by setting k = dn
2

2+d e.

4 Computation of geodesic kNN

Theorem 1 shows that the geodesic kNN regressor out-
lined in Section 2 is minimax optimal. In this section
we describe how it can also be computed efficiently,
assuming that the graph has already been constructed
(more on this in Section 4.1 below). Computing f̂(x)
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for all points in a dataset reduces to the following algo-
rithmic problem: Let G = (V,E) be a weighted undi-
rected graph and let L ⊆ V be a subset of labeled
vertices. How can we efficiently find the k nearest la-
beled neighbors of every vertex in the graph? Denote
n = |L|, N = |V |. A simple approach to this problem
is to first apply Dijkstra’s algorithm from each of the
labeled points, forming an n×N matrix of all pairwise
shortest graph distances dG(s, v), where s ∈ L and
v ∈ V . The k nearest labeled vertices of the jth vertex
correspond to the k smallest cells in the jth column.
The runtime of this method is O (nN logN + n|E|)
(Dasgupta et al., 2006).

For k = 1, where one computes the single nearest la-
beled vertex to every vertex in a graph, the result is
known as the graph Voronoi diagram, with the labeled
vertices acting as the centers of the Voronoi cells. A
fast algorithm for this problem was developed by Er-
wig (2000). Algorithm 1 that we present here is a
generalization of his approach for any k ≥ 1. Before
describing it, we briefly recall Dijkstra’s shortest path
algorithm: Given a seed vertex s ∈ V , Dijkstra’s algo-
rithm keeps, for every vertex v ∈ V , an upper bound
on dG(s, v), denoted u[v], initialized to 0 if v = s and to
+∞ otherwise. At every iteration, the vertex v0 with
the lowest upper bound is visited : For every neighbor
v of v0, if u[v0] + w(v0, v) < u[v], then the current
upper bound u[v] is lowered. v0 is never visited again.

The basic idea behind Algorithm 1 can be described
as running n instances of Dijkstra’s algorithm "simul-
taneously" from all labeled vertices. This is combined
with an early stopping rule whenever k paths from dif-
ferent labeled vertices have been found.

As in Dijkstra’s algorithm, Algorithm 1 uses a priority
queue based on a Fibonacci heap with the 3 standard
operations: insert, pop-minimum and decrease-key.
We use decrease-or-insert as a shorthand for decreas-
ing the key of an element if it is stored in the queue,
and otherwise inserting it. Instead of storing vertices
in the priority queue, as in Dijkstra’s algorithm, Al-
gorithm 1 stores pairs (seed, v) keyed by dist, where
dist is the current upper bound on dG(seed, v). In the
supplementary we prove that whenever (dist, seed, v)
is popped from the queue, we have dist = dG(seed, v).
At every iteration, the pair (seed, v0) with the lowest
upper bound is visited : we examine every neighbor v
of v0 and possibly update the current upper bound of
dG(seed, v) using a decrease-or-insert operation. We
keep a set Sv for every vertex v ∈ V to prevent multi-
ple visits from the same seed.

Independently of our work, this algorithm was recently
described by Har-Peled (2016) for the L = V case.
Furthermore, an optimization of the priority queues

Algorithm 1 Geodesic k nearest labeled neighbors

Input: An undirected weighted graph G = (V,E,w)
and a set of labeled vertices L ⊆ V .
Output: For every v ∈ V a list kNN [v] with the k
nearest labeled vertices to v and their distances.
Q← PriorityQueue()
for v ∈ V do

kNN[v] ← Empty-List()
Sv ← φ
if v ∈ L then

insert(Q, (v, v), priority = 0)

while Q 6= φ do
(seed, v0, dist) ← pop-minimum(Q)
Sv0 ← Sv0 ∪ {seed}
if length(kNN[v0]) < k then

append (dist, seed) to kNN[v0]
for all v ∈ neighbors(v0) do

if length(kNN[v]) < k and seed /∈ Sv
then

decrease-or-insert(Q, (seed, v),
priority = dist +w(v0, v))

was proposed that bounds the runtime at

O(k|V | log |V |+ k|E|). (18)

In the supplementary, we give a detailed description
of this method, which we dub Algorithm 2. We for-
mally prove the correctness of both algorithms, present
asymptotic bounds on their running time and perform
an empirical runtime comparison using the indoor lo-
calization data set. In our experiments, both Algo-
rithm 1 and Algorithm 2 have a similar runtime, which
is orders of magnitude faster than the naïve method of
computing geodesic nearest neighbors using Dijkstra’s
algorithm. It is also significantly faster than stan-
dard methods to compute eigenvectors, as required by
Laplacian eigenvector regression.

Both Algorithm 1 and Algorithm 2 use memory
bounded by the minimum of O(n|V |) and O(k|E|).
The first bound follows from the fact that Q cannot
have more than |L × V | elements. The second holds
since every vertex v is visited at most k times and may
insert up to deg(v) neighbors into Q.

Remark 7. Bijral et al. (2011) also proposed a vari-
ant of Dijkstra’s algorithm. However, their method is
an improvement of single-source Dijkstra in the set-
ting of a dense graph constructed from points in RD,
whereas the methods we discuss here compute paths
from multiple sources and are applicable to any graph.
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4.1 Notes on the graph construction time

For the construction of G, the straightforward ap-
proach is to compute the distances between all pairs
of points in time O(D|V |2). In light of Eq. (18)
this may take much longer than actually computing
geodesic kNN on the graph G. One way to reduce the
runnning time is to store all of the data points in a k-
d tree (Bentley, 1975) a ball tree (Omohundro, 1989)
or some other data structure for spatial queries and
then find nearby neighbors for every point. These data
structures are suitable for constructing both distance-
cutoff graphs and symmetric-kNN graphs from low-
dimensional data. For high-dimensional data, several
works have appeared in recent years which propose
fast methods of constructing approximate kNN graphs
(Zhang et al., 2013; Wang et al., 2013). The running
time of these methods is O(D|V | log |V |) multiplied by
some constant which is empirically small. Combining
these constructions with fast algorithms for computing
geodesic kNN yields a runtime of O((k+D)|V | log |V |).
This is much faster than many other semi-supervised
methods, which typically involve expensive calcula-
tions such as matrix inversion (Zhu et al., 2003) or
eigenvector computation (Belkin and Niyogi, 2004).

5 Applications

5.1 Indoor localization using Wi-Fi signals

One motivation for our work is the problem of esti-
mating the location of a mobile device in a closed en-
vironment using its Wi-Fi signature as received by a
wireless router. This problem is gaining considerable
interest in recent years due to its many potential ap-
plications, such as indoor navigation inside large com-
mercial spaces (Liu et al., 2007). In indoor settings,
the signal received by the router is a superposition of
multiple reflections of the same source, which differ in
their arrival time, direction and intensity. This limits
the use of classic outdoor positioning methods such as
triangulation, which require a direct line-of-sight be-
tween the transmitting device and the receiver.

A common approach for tackling this problem, known
as fingerprinting in the signal processing community, is
based on nearest-neighbor search. First, a labeled set
{(xi, yi)}ni=1 is collected, where yi ∈ R2 is the location
of the transmitter and xi is a feature vector extracted
from the received signal. The location of new instances
is then estimated via non-parametric regression meth-
ods such as k nearest neighbors.

For applications requiring high accuracy, recording
and maintaining a suitable labeled data set may be
prohibitively expensive. On the other hand, collecting
vast amounts of unlabeled data may be done simply by

Figure 1: 3D model of a 80× 80m× 5m floor.

recording the Wi-Fi signals of various devices moving
through the venue. Indoor localization is thus a nat-
ural application for semi-supervised methods. More-
over, the space of feature vectors is parameterized by a
2 or 3 dimensional position. Thus, we expect manifold-
based methods to perform well in this task. To test
this empirically, we used two data sets of indoor lo-
calization: a simulated and a real data set. A brief
description follows. See the supplementary for details.

Simulated data: This data consists of 802.11 Wi-Fi
signals in an artificial 80m × 80m indoor office envi-
ronment generated by Kupershtein et al. (2013) using
a 3D radio wave propagation software, see Figure 1.

Real data: These are actual 802.11 signals, recorded
by a Wi-Fi router placed roughly in the middle of a
27m×33m office, see Figure B.3 of the supplementary.

The Signal Subspace Projection (SSP) of Kupershtein
et al. (2013) and Jaffe and Wax (2014) is used as the
fingerprint for localization. It is based on the assump-
tion that signals received from close locations have
similar properties of differential delays and directions
of arrival. In our experiments, the SSP features are
48× 48 projection matrices, where the projected sub-
space is 10-dimensional. We use the Frobenius norm
as the distance metric and construct a symmetric-4NN
graph as described in Section 2. For more details on
the datasets and SSP features, see the supplementary.

We compare our semi-supervised geodesic kNN regres-
sor to Laplacian eigenvector regression (Belkin and
Niyogi, 2004). As a baseline we also applied classic
kNN regression, using only the labeled samples and
optimizing over k. Figure 2 shows the median local-
ization error on the simulated data set as a function of
the number of unlabeled locations, where the labeled
points are placed on a fixed grid. Specifically, for the
geodesic kNN regressor we used k = 7 and exponen-
tially decaying weights such that the weight of the i-
th neighbor is proportional to 1/2i. Since the weights
decay exponentially, the specific choice of k is not im-
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Table 1: Mean accuracy of kNN, geodesic kNN and
Laplacian eigenbasis regression on the real data set

Labeled grid n kNN GNN Laplacian
1.5m 73 1.49m 1.11m 1.36m
2.0m 48 2.27m 1.49m 1.65m
3m 23 3.41m 2.41m 2.79m
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Figure 2: Median localization error vs. number of un-
labeled points. Top: 1600 labeled points placed on a
regular grid with a side length of 2m. Bottom: 400
labeled points on a 4m grid.

portant, with larger values of k giving nearly identi-
cal results. For Laplacian eigenvector regression, we
optimized over the number of eigenvectors by taking
the best outcome after repeating the experiment with
10%, 20%, 30%, 40% and 50% of the labeled points.

Table 1 shows the mean localization error on the
real data set for different densities of labeled points.
The results on both the simulated and real datasets
show a clear advantage for the geodesic kNN regres-
sor. As expected, the improvement shown by the semi-
supervised methods increases with the number of un-
labeled locations. Moreover geodesic kNN regression
is much faster to compute than the Laplacian eigen-
vector regressor, see Table 1 in the supplementary.
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Figure 3: Top: mean prediction error for the left-right
angle of the face. Bottom: sample images from the
faces data set, showing different poses and lighting.

5.2 Facial pose estimation

We illustrate the performance of geodesic kNN on an-
other regression problem, using the faces data set
where the predicted value is the left-right angle of a
face image.1 This data set contains 698 greyscale im-
ages of a single face rendered at different angles and
lighting. The instance space is the set of all 64 × 64
images whereas the intrinsic manifold dimension is 3.
For our benchmark, we computed the `1 distance be-
tween all pairs of images and constructed a symmetric
4-NN graph. For the geodesic kNN algorithm, the edge
weights were set to the `1 distances and k was set to
1. For Laplacian eigenvector regression we used binary
weights and set the number of eigenvectors to 20% of
the number of labeled points. This is a common rule-
of-thumb, and gave good results over the whole range.
Figure 3 shows that geodesic kNN performs uniformly
better than the nearest neighbor regressor and also
outperforms the semi-supervised Laplacian regressor.
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