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Abstract

We introduce co-occurring directions sketch-
ing, a deterministic algorithm for approxi-
mate matrix product (AMM), in the stream-
ing model. We show that co-occurring direc-
tions achieves a better error bound for AMM
than other randomized and deterministic ap-
proaches for AMM. Co-occurring directions
gives a (1 + ")-approximation of the optimal
low rank approximation of a matrix product.
Empirically our algorithm outperforms com-
peting methods for AMM, for a small sketch
size. We validate empirically our theoretical
findings and algorithms.

1 Introduction

The vast and continuously growing amount of multi-
modal content poses some challenges with respect to
the collection and the mining of this data. Multimodal
datasets are often viewed as multiple large matrices
describing the same content with different modality rep-
resentations (multiple views) such as images and their
textual descriptions. The product of large multimodal
matrices is of practical interest as it models the corre-
lation between different modalities. Methods such as
Partial Least Squares (PLS) [Weg00], Canonical Corre-
lation Analysis (CCA)[Hot36], Spectral Co-Clustering
[Dhi01], exploit the low rank structure of the correlation
matrix to mine the hidden joint factors, by computing
the truncated singular value decomposition of a matrix
product.

The data streaming paradigm assumes a single pass
over the data and a small memory footprint, resulting
in a space/accuracy tradeoff. Multimodal data can
occupy a large amount of memory or may be generated
sequentially, hence it is important for the streaming
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model to capture the data correlation .

Approximate Matrix Multiplication (AMM), is gaining
an increasing interest in streaming applications (See the
recent monograph [Woo14] for more details ). In AMM
we are given matrices X,Y , with a large number of
columns n, and the goal is to compute matrices B

X

, B
Y

,
with smaller number of columns `, such that ||XY > �
B

X

B>
Y

||
Z

is small for some norm k.k
Z

. In streaming
AMM, columns of B

X

, B
Y

, need to be updated as the
data arrives sequentially. We refer to B

X

and B
Y

as
sketches of X and Y .

Randomized approaches for AMM were pioneered by
the work of [DKM06]. The approach of [DKM06]
is based on the sampling of ` columns of X and Y .
[DKM06] shows that by choosing an appropriate sam-
pling matrix ⇧ 2 Rn⇥`, we obtain a Frobenius error
guarantee (k.k

Z

= k.k
F

):
��XY > �X⇧(Y⇧)

>��
F

 " kXk
F

kY k
F

, (1)

for ` = ⌦(1/"2), with high probability. The same
guarantee of Eq. (1) was achieved in [Sar06], by us-
ing a random projection ⇧ 2 Rn⇥` that satisfies the
guarantees of a Johnson- Lindenstrauss (JL) transform
(8x 2 Rn k⇧xk2 ⇠ (1±") kxk2 , with probability 1��),
where ` = O(1/"2 log(1/�)). Other randomized ap-
proaches focused on error guarantees given in spectral
norm (k.k

Z

= k.k) , such as JL embeddings or ef-
ficient subspace embeddings [Sar06, MZ11, ATKZ14,
CNW15] that can be applied to any type of matrices X
in input sparisty time [CW13]. [CNW15] showed that
using a subspace embedding ⇧ 2 Rn⇥` we have with a
probability 1� �:

��XY > �X⇧(Y⇧)

>��  " kXk kY k , (2)

for ` = O((sr(X) + sr(Y ) + log(1/�))/"2), where
sr(X) =

kXk2
F

kXk2 is the stable rank of X. Note that
sr(X)  rank(X), hence results stated in term of sta-
ble rank are sharper and more robust than the one
stated with the rank [Sar06, MZ11, ATKZ14].

Covariance sketching refers to AMM for X = Y . An
elegant deterministic approach for covariance sketch-
ing called frequent directions was introduced recently
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in [Lib13, GLPW15], drawing the connection between
covariance matrix sketching, and the classic problem
of estimation of frequent items [MG82]. Another ap-
proach for AMM, consists of concatenating matrices
X and Y, and of applying a covariance sketch tech-
nique on the resulting matrix, this approach results
in a looser guarantee; The right hand side in Equa-
tions (1),(2) is replaced by "(kXk2

F

+ kY k2
F

). Based
on this observation, [YLZ16] proposed to use the fre-
quent directions algorithm of [Lib13] to perform AMM
in a deterministic way, we refer to this approach as
FD-AMM. FD-AMM [YLZ16] outputs B

X

, B
Y

such
that

��XY > �B
X

B>
Y

��  "(kXk2
F

+ kY k2
F

), (3)

for ` = d 1
"

e. The sketch length ` dependency on " in
randomized methods is quadratic, FD-AMM improves
this dependency to linear.

In this paper we introduce co-occurring directions, a
deterministic algorithm for AMM. Our algorithm is
inspired by frequent directions and enables similar guar-
antees to (2) in spectral norm, but with a linear de-
pendency of ` on " as in FD-AMM. Given with stable
ranks, co-occurring direction achieves the guarantee of
(2) for ` = O(

p
sr(X)sr(Y )/").

The paper is organized as follows: In Section 2 we
review frequent directions, introduce our co-occurring
directions sketching algorithm, and give error bounds
analysis in AMM and in low rank approximation of
a matrix product. We state our proofs in Section
3. In section 2.2.2 and Section 4 we discuss error
bounds, space and time requirements, and compare
our approach to related work on AMM and low rank
approximation. Finally we validate the empirical per-
formance of co-occurring directions in Section 5, on
both synthetic and real world multimodal datasets.

Notation. We note by C = U⌃V >, the thin svd of
C, and by �

max

(C) the maximum singular value, Tr
refers to the trace. �

j

are the singular values that are
assumed to be given in decreasing order. Note that for
C 2 Rm

x

⇥m

y the spectral norm is defined as follows
kCk = max

u,v,kuk=kvk=1

��u>Cv
��
= �

max

(C). The nu-
clear norm (known also as trace or 1� schatten norm)
is defined as follows: kCk⇤ = Tr(⌃). The stable rank
of C is sr(C) =

kCk2
F

kCk2 . Assume C and D have the same
number of column, [C;D] denotes their concatenation
on their row dimensions. For n 2 N, [n] = {1, . . . n}.

2 Sketching from Covariance to

Correlation

In this section we review covariance sketching with
the frequent directions algorithm of [Lib13] and state

its theoretical guarantees [Lib13, GLPW15]. We then
introduce correlation sketching and present and analyze
our co-occurring directions algorithm.

2.1 Covariance Sketching: Frequent

Directions

Let X 2 Rm

x

⇥n, where n is the number of samples
and m

x

the dimension. We assume that n > m
x

.
The goal of covariance sketching is to find a small
matrix D

X

2 Rm

x

⇥`, where ` << n (` is assumed
to be an even number ), such that XX> ⇡ D

X

D>
X

.
Frequent directions algorithm introduced in [Lib13]
(Algorithm 1) achieves this goal. Intuitively frequent
directions algorithm sets a noise level using the median
of the spectrum of the covariance of the sketch D

X

. It
then discards directions below that level and replaces
them with fresh samples. This results in the updated
covariance estimate. This process is repeated as the
data is streaming.

Algorithm 1 Frequent Directions
1: procedure FD(X 2 Rm

x

⇥n)
2: D

X

 0 2 Rm

x

⇥` .
3: for i 2 [n] do
4: Insert column X

i

into a zero column of D
X

5: if D
X

has no zero valued column then
6: [U,⌃, V ] SVD(D

X

)

7: �  �2

`/2

. median value of ⌃2

8:

˜

⌃ p
max(⌃

2 � �I
`

, 0) . shrinkage
9: D

X

 U ˜

⌃

10: end if
11: end for
12: return D

X

13: end procedure

Theorem 1 ([Lib13]) D
X

the output of algorithm 1
satisfies:

��XX> �D
X

D>
X

��  2 kXk2
F

`
. (4)

2.2 Correlation Sketching: Co-occurring

Directions

We start by defining correlation sketching:

Definition 1 (Correlation Sketching/AMM)
Let X 2 Rm

x

⇥n, Y 2 Rm

y

⇥n, where
n > max(m

x

,m
y

). Let B
X

2 Rm

x

⇥` and B
Y

2 Rm

y

⇥`

(` < n, `  min(m
x

,m
y

)). Let ⌘ > 0 . The matrix pair
(B

X

, B
Y

) is called an ⌘-correlation sketch of (X,Y ) if
it satisfies in spectral norm:

��XY > �B
X

B>
Y

��  ⌘.



Youssef Mroueh, Etienne Marcheret, Vaibhava Goel

We now present our co-occurring directions algorithm
(Algorithm 2). Intuitively Algorithm 2 sets a noise
level using the median of the singular values of the
correlation matrix of the sketch B

X

B>
Y

. The SVD of
B

X

B>
Y

is computed efficiently in lines 8,9 and 10 of
Algorithm 2 using QR decomposition. Left and right
singular vectors below this noise threshold are replaced
by fresh samples from X and Y , correlation sketches
are updated and the process continues. Theorem 2
shows that our co-occurring directions algorithm out-
puts (B

X

, B
Y

) a correlation sketch of (X,Y ) as defined
above in Definition 1.

Algorithm 2 Co-occurring Directions
1: procedure Co-D(X 2 Rm

x

⇥n, Y 2 Rm

y

⇥n)
2: B

X

 0 2 Rm

x

⇥` .
3: B

Y

 0 2 Rm

y

⇥` .
4: for i 2 [n] do
5: Insert a column X

i

into a zero valued column
of B

X

6: Insert a column Y
i

into a zero valued column
of B

Y

7: if B
X

, B
Y

have no zero valued column then
8: [Q

x

, R
x

] QR(B
X

)

9: [Q
y

, R
y

] QR(B
Y

)

10: [U,⌃, V ] SVD(R
x

R>
y

)

11: . Q
x

2 Rm

x

⇥`, R
x

2 R`⇥`,
12: . Q

y

2 Rm

y

⇥`, R
y

2 R`⇥`, U,⌃, V 2 R`⇥`.
13: C

x

 Q
x

U
p
⌃

14: C
y

 Q
y

V
p
⌃

15: . C
x

, C
y

not computed
16: �  �

`/2

(⌃) . the median value of ⌃
17:

˜

⌃ max(⌃� �I
`

, 0) . shrinkage
18: B

X

 Q
x

U
p

˜

⌃

19: B
Y

 Q
y

V
p

˜

⌃

20: . at least last `/2 columns are zero
21: end if
22: end for
23: return B

X

, B
Y

24: end procedure

It is important to see that while frequent directions
shrinks ⌃

2, co-occurring directions filters ⌃. We prove
in the following an approximation bound in spectral
norm for co-occurring directions.

2.2.1 Main Results

We give in the following our main results, on the ap-
proximation error of co-occurring direction in AMM
(Theorem 2), and in the k�th rank approximation of
a matrix product (Theorem 3). Proofs are given in
Section 3.

Theorem 2 (AMM) The output of co-occurring di-
rections (Algorithm 2) gives a correlation sketch
(B

X

, B
Y

) of (X,Y ), for `  min(m
x

,m
y

) satisfying:

For a correlation sketch of length `, we have:

��XY > �B
X

B>
Y

��  2 kXk
F

kY k
F

`
.

2) Algorithm 2 runs in O(n(m
x

+m
y

+ `)`) time and
requires a space of O((m

x

+m
y

+ `)`).

Theorem 3 (Low Rank Product Approximation)
Let (B

X

, B
Y

) be the output of Algorithm 2. Let k  `.
Let U

k

, V
k

be the matrices whose columns are the
k-th largest left and right singular vectors of B

X

B>
Y

.
Let ⇡k

U

(X) = U
k

U>
k

X,⇡k

V

(Y ) = V
k

V >
k

Y . Let

" > 0, for ` � 8

p
sr(X)sr(Y )

"

||X||||Y ||
�

k+1(XY

>
)

we have:��XY > � ⇡k

U

(X)⇡k

V

(Y )

>��  �
k+1

(XY >
)(1 + ").

2.2.2 Discussion of Main Results

For ` = d 1
"

e, " 2 [

1

min(m

x

,m

y

)

, 1] from Theorem 2 we
see that (B

X

, B
Y

) produced by Algorithm 2 is an ⌘-
correlation sketch of (X,Y ) for ⌘ = 2" kXk

F

kY k
F

. In
AMM, bounds are usually stated in term of the product
of spectral norms of X and Y as in Equation (2). Let
sr(X) =

kXk2
F

kXk2 be the stable rank of X. It is easy to see

that co-occurring directions for ` = 2

p
sr(X)sr(Y )

"

, gives
an error bound of " kXk kY k. While in randomized
methods the error is O(1/

p
`), co-occurring direction’s

error is O(1/`). Moreover the dependency on stable
ranks in co-occurring directions is 2

p
sr(X)sr(Y ) 

sr(X) + sr(Y ), the latter appears in subspace em-
bedding based AMM [CNW15, MZ11, ATKZ14]. For
X = Y co-occurring directions reduces to frequent di-
rections of [Lib13], and Theorem 2 recovers Theorem 1
of [Lib13].

Stronger bounds for frequent directions were given in
[GLPW15] where the bound in Equation (4) is im-
proved, for ` > 2k, for any k:

��XX> �D
X

D>
X

��  2

`� 2k
kX �X

k

k2
F

,

where X
k

is the k�th rank approximation of X
(with X

0

= 0). Hence by defining Z = [X;Y ] 2
R(m

x

+m

y

)⇥n and applying frequent directions to Z
(FD-AMM [YLZ16]), we obtain B

X

, B
Y

satisfying:��XY > �B
X

B>
Y

��  2

`�2k

kZ � Z
k

k2
F

, hence the perfo-
mance of FD-AMM depends on the low rank structure
of Z. A sharper analysis for co-occurring directions
remains an open question, but the following discussion
of Theorem 3 will shed some light on the advantages
of co-occurring directions on FD-AMM [YLZ16].
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Theorem 3 shows that co-occurring directions sketching
gives a (1 + ")- approximation of the optimal low rank
approximation of the matrix product XY >. Note that

�
k+1

(XY >
)  kXY

>k⇤
k+1

. Hence for ` � 8(k + 1)/", we
obtain a 1 + "- approximation of the optimal k rank
approximation of XY >. This highlights the relation
between the sketch length in co-occurring directions
` and the rank of XY >. Note that the maximum
rank of XY > is min(rank(X), rank(Y )). When us-
ing FD-AMM, based on the covariance sketch of the
concatenation of X and Y , the sketch length ` is re-
lated to the rank of Z = [X;Y ]. Note that the max-
imum rank of the concatenation (Z) is bounded by
rank(X) + rank(Y ). Hence we see that co-occurring
directions guarantees a 1 + " approximation of the
optimal k-rank approximation of XY > for a smaller
sketch size then FD-AMM (min(rank(X), rank(Y )) for
co-occurring directions versus rank(X) + rank(Y ) for
FD-AMM).

In the following we comment on the running time of
co-occurring directions.

2.2.3 Running Time Analysis and
Parralelization.

Running Time. We compare the space and the run-
ning time of our sketch to a naive implementation of
the correlation sketch.
1) Naive Correlation Sketch: In the if statement of
Algorithm 2, compute the ` thin svd SVD(B

X

B>
Y

) =

[U,⌃, V ], B
X

 U
p

˜

⌃, B
Y

 V
p

˜

⌃. We need a space
O(m

x

m
y

) to store B
X

B>
y

. The running time is domi-
nated by computing an ` thin svd O(m

x

m
y

`) each n

`/2

that is O(nm
x

m
y

), hence no gain with respect to brute
force.
2) Co-occurring Directions: Algorithm 2 avoids comput-
ing B

X

B>
Y

by using the QR decomposition of B
X

and
B

Y

. The space needed is O(`(m
x

+m
y

+`)). We have a
computation done every n

`/2

, that is dominated by com-
puting QR factorization and svd : O((m

x

+m
y

+ `)`2)
(computing R

x

R>
y

requires O(`3) operations). This
results in a total running time : O(n(m

x

+m
y

+ `)`).
There is a computational and memory advantage when
` <

m

x

m

y

m

x

+m

y

.

Parallelization of Co-occurring Directions
(Sketches of Sketches). Similarly to the
frequent directions [Lib13], co-occurring di-
rections algorithm is simply parallelizable.
Let X = [X

1

, X
2

] 2 Rm

x

⇥(n1+n2), and
Y = [Y

1

, Y
2

] 2 Rm

x

⇥(n1+n2). Let (B1

X

, B1

Y

) be
the correlation sketch of (X

1

, Y
1

), and (B2

X

, B2

Y

)

be the correlation sketch of (X
2

, Y
2

). Then the
correlation sketch (C

X

, C
Y

) of ([B1

X

, B2

X

], [B1

Y

, B2

Y

])

is a correlation sketch of (X,Y ), and is as good as

(B
X

, B
Y

) the correlation sketch of (X,Y ). Hence we
can sketch the data in M -independent chunks on M
machines then merge by concatenating the sketches
and performing another sketch on the concatenation,
by doing so we divide the running time by M .

3 Proofs

In this Section we give proofs of our main results:

Proof 1 (Proof of Theorem 2) By construction
we have:

C
x

C>
y

=

⇣
Q

x

U
p
⌃

⌘⇣
Q

y

V
p
⌃

⌘>

= Q
x

�
U⌃V >�Q>

y

= Q
x

�
R

x

R>
y

�
Q>

y

= (Q
x

R
x

) (Q
y

R
y

)

>
.

Hence the algorithm is computing a form of R-SVD
of B

X

B>
Y

, followed by a shrinkage of the correlation
matrix. Let Bi

x

, Bi

y

, Ci

x

, Ci

y

,⌃i, ˜⌃i, �
i

, the values of
B

X

, B
Y

, C
x

, C
y

,⌃, ˜⌃, � after the execution of the main
loop.if we don’t enter the if statement �

i

= 0 (Bi

x

= Ci

x

and Bi

y

= Ci

y

in that case).
Hence we have at an iteration i:

Ci

x

Ci,>
y

= Bi�1

x

Bi�1,>
y

+X
i

Y >
i

.

Note that:

XY > �B
X

B>
Y

= XY > �Bn

x

Bn,>
y

=

nX

i=1

�
X

i

Y >
i

+Bi�1

x

Bi�1,>
y

�Bi

x

Bi,>
y

�

=

nX

i=1

�
Ci

x

Ci,>
y

�Bi

x

Bi,>
y

�
.

By the triangle inequality we can bound the spectral
norm:

��XY > �B
X

B>
Y

�� 
nX

i=1

��Ci

x

Ci,>
y

�Bi

x

Bi,>
y

�� .

We are left with bounding
��Ci

x

Ci,>
y

�Bi

x

Bi,>
y

��:
Ci

x

Ci,>
y

=

�
Qi

x

U i

�
⌃

i

�
Qi

y

V i

�>
, Bi

x

Bi,>
y

=

�
Qi

x

U i

�
˜

⌃

i

�
Qi

y

V i

�>
. Note that:

��Ci

x

Ci,>
y

�Bi

x

Bi,>
y

��
=

���(Qi

x

U i

)(⌃

i � ˜

⌃

i

)(Qi

y

V i

)

>
���

=

���⌃i � ˜

⌃

i

���
 �

i

,

where the first equality follows from the fact that,
Qi

x

U i, Qi

y

V i, are orthonormal. And ⌃

i � ˜

⌃

i is a diag-
onal matrix with at least `/2 entries equal �

i

or 0, and
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the other entries are less than �
i

. It follows that we
have in spectral norm:

��XY > �B
X

B>
Y

�� 
nX

i=1

�
i

. (5)

Now we want to relate
P

n

i=1

�
i

to `, and propreties of
X,Y .
Let k.k⇤, the 1� schatten norm. For a matrix A of
rank r, and singular values �

i

: kAk⇤ =

P
r

i=1

�
i

(A).
We have:
��B

X

B>
Y

��
⇤ =

��Bn

x

Bn,>
y

��
⇤

=

nX

i=1

��Bi

x

Bi,>
y

��
⇤ �

��Bi�1

x

Bi�1,>
y

��
⇤

=

nX

i=1

⇣��Ci

x

Ci,>
y

��
⇤ �

��Bi�1

x

Bi�1,>
y

��
⇤

⌘

�
nX

i=1

⇣��Ci

x

Ci,>
y

��
⇤ �

��Bi

x

Bi,>
y

��
⇤

⌘
(6)

We have at an iteration i, the R-SVD of Ci

x

Ci,>
y

and
Bi,

x

Bi,>
y

:
��Ci

x

Ci,>
y

��
⇤ = Tr(⌃i

) and
��Bi

x

Bi,>
y

��
⇤ = Tr(˜⌃i

).

Hence we have by the definition of the shrinking opera-
tion:

��Ci

x

Ci,>
y

��
⇤ �

��Bi

x

Bi,>
y

��
⇤ = Tr(⌃i � ˜

⌃

i

) =

`X

j=1

�i

j

� �̃i

j

=

X

j,�

i

j

>�

i

�
i

+

X

j,�

i

j

�

i

�i

j

� `

2

�
i

. (7)

On the other hand using the reverse triangle inequality
for the 1� schatten norm we have:
��Ci

x

Ci,>
y

��
⇤�
��Bi�1

x

Bi�1,>
y

��
⇤ 

��Ci

x

Ci,>
y

�Bi�1

x

Bi�1,>
y

��
⇤

Recall that: Ci

x

Ci,>
y

= Bi�1

x

Bi�1,>
y

+X
i

Y >
i

, hence we
have:
��Ci

x

Ci,>
y

��
⇤�
��Bi�1

x

Bi�1,>
y

��
⇤ 

��X
i

Y >
i

��
⇤ = kX

i

k
2

kY
i

k
2

,
(8)

since X
i

Y >
i

is rank one. Finally putting together Equa-
tions (6), (7),(8), we have:

��B
X

B>
Y

��
⇤ 

nX

i=1

kX
i

k
2

kY
i

k
2

� `

2

nX

i=1

�
i

. (9)

It follows from Equation (9) that:
nX

i=1

�
i

 2

`

 
nX

i=1

kX
i

k
2

kY
i

k
2

� ��B
X

B>
Y

��
⇤

!

 2

`

0

@

vuut
nX

i=1
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i

k2
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vuut
nX

i=1

kY
i

k2
2

1

A

=

2

`
kXk

F

kY k
F

, (10)

where in the last inequality we used the Cauchy-Schwarz
inequality. Putting together Equations (5) and (10) we
have finally:

��XY > �B
X

B>
Y

��  2

`
kXk

F

kY k
F

. (11)

2) Refer to Section 2.2.3.

Proof 2 (Proof of Theorem 3) Let ⇡k

U

(X) =

U
k

U>
k

X,⇡k

V

(Y ) = V
k

V >
k

Y . Let Hx

k

be the span of
{u

1

, . . . u
k

}, and Hx

m

x

�k

be the orthogonal of Hx

k

. Sim-
ilarly define Hy

k

the span of {v
1

, . . . v
k

}, and Hy

m

y

�k

its orthogonal. For all u 2 Rm

x , kuk = 1, there exits
a
x

, b
x

2 R, a2
x

+ b2
x

= 1, such that u = a
x

w
x

+ b
x

z
x

,
where w

x

2 Hx

k

, ||w
x

|| = 1 and z
x

2 Hx

m

x

�k

, ||z
x

|| = 1.
Similarly for v 2 Rm

y , kvk = 1 there exits a
y

, b
y

2 R,
a2
y

+ b2
y

= 1, such that v = a
y

w
y

+ b
y

z
y

, where
w

y

2 Hy

k

, ||w
y

|| = 1 and z
y

2 Hy

m

y

�k

, ||v
y

|| = 1 .

Let � = XY > � ⇡k

U

(X)⇡k

V

(Y )

>, we have k�k =
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u2Rm

x

,v2Rm
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,||u||=||v||=1

|u>
�v|

|u>
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y

2 Hy

k

, we have w>
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�w
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z
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�z
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XY >z
y

. Simi-
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x

�z
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XY >z
y

, and z>
x

�w
y

= z>
x

XY >w
y

.
Note that |a

x

|, |b
x

|, |a
y

|, |b
y

| are bounded by 1. Hence
we have (maximum is taken on each appropriate set
defined above, all vectors are unit norm):

max
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|u>
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we have:
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|, by definition of
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. The last inequality follows from weyl inequality
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Note that for w
x

2 Hx

k
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y
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m

y
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we have
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x

B
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Y
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= 0. To see that, note that w
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Hence we have:
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Similarly for for z
x

2 Hx

m

x

�k

and w
y

2 Hy

k

we conclude
that: |w>

x

XY >z
y

|  ��XY > �B
X

B>
Y

��. Finally we
have:

k�k  4

��XY > �B
X

B>
Y

��
+ �

k+1

(XY >
)

 8 kXk
F

kY k
F

`
+ �

k+1

(XY >
)

 �
k+1

(XY >
)(1 + 8

p
sr(X)sr(Y )

`

||X||||Y ||
�
k+1

(XY >
)

)

For ` � 8

p
sr(X)sr(Y )

"

||X||||Y ||
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>
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, we have: k�k 
�
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(XY >
)(1 + ").

4 Previous Work on Approximate

Matrix Multilply

We list here a catalog of baselines for AMM:

Brute Force. We keep a running correlation C  
C+X

i

Y >
i

. We perform an ` thin svd at the end of the
stream. Space O(m

x

m
y

), running time: O(nm
x

m
y

) +

O(m
x

m
y

`), the cost of the sketch update and the `
thin svd.

Sampling [DKM06]. We define a distribution over
[n], p

i

=

kX
i

kkY
i

k
S

, where S =

P
n

i=1

kX
i

k kY
i

k. Form
B

X

and B
Y

by taking ` iids samples (column indices),
using p

i

. In the streaming model, since S is not known,
we use ` independent reservoir samples. Hence the
space needed is O(`(m

x

+ m
y

)), the running time is
O(`(m

x

+m
y

)n).

Random Projection [Sar06]. B
X

, B
Y

are of the
form X⇧ and Y⇧, where ⇧ 2 Rn⇥` , and ⇧

ij

2
{�1/p`, 1/p`}, uniformly. This is easily implemented
in the streaming model and requires O(`(m

x

+ m
y

))

space and O(`(m
x

+m
y

)n) time.

Hashing [CW13]. Let h : [n] ! [`], and s : [n] !
{�1, 1} be perfect hash functions. We initialize B

X

, B
Y

to all zeros matrices. When processing columns of X
and Y we update columns of B

X

and B
Y

as follows:
B

X,h(i)

 B
X,h(i)

+ s(i)X
i

, B
Y,h(i)

 B
Y,h(i)

+ s(i)Y
i

.
Hashing requires O(`(m

x

+m
y

)) space and O(n(m
x

+

m
y

)) time.

FD-AMM [YLZ16]. Let Z = [X;Y ] 2 R(m

x

+my)⇥n,
let D

Z

be the output of frequent directions (Algoritm
1). We partition D

Z

= [B
X

;B
Y

], and use B
X

and
B

Y

in AMM. This requires O(`(m
x

+m
y

)) space and
O(n(m

x

+m
y

)`) time.

5 Experiments

AMM of Low Rank Matrices. We consider X 2
Rm

x

⇥n and Y 2 Rm

y

⇥n, generated using a non-noisy
low rank model [GLPW15] as follows: X = V

x

S
x

U>
x

,

where U
x

2 Rn⇥k

x , (U
x

)

i,j

⇠ N (0, 1), S
x

2 Rk

x

⇥k

x is
a diagonal matrix with (S

x

)

jj

= 1 � (j � 1)/k
x

, and
V
x

2 Rm

x

⇥k

x is such that V >
x

V
x

= I
k

x

. Similarly we
generate Y = V

y

S
y

U>
y

, U
y

2 Rn⇥k

y , S
y

2 Rk

y

⇥k

y , V
y

2
Rm

y

⇥k

y . Hence X and Y are at most rank k
x

, and
k
y

respectively. We consider n = 10000, m
x

= 1000,
m

y

= 2000, and three regimes: both matrices have
a large rank (k

x

= 400, k
y

= 400), one matrix has a
smaller rank then the other (k

x

= 400, k
y

= 40), and
both matrices have a small rank (k

x

= 40, k
y

= 40).
We compare the performance of co-occurring directions
to baselines given in Section 4 in those three regimes.
For randomized baselines we run each experiments
50 times and report mean and standard deviations of
performances. Experiments were conducted on a single
core Intel Xeon CPU E5-2667, 3.30GHz, with 265 GB
of RAM and 25.6 MB of cache.
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Figure 1: Time given in seconds versus sketch length `.

We see in Figure 1, that hashing timing is, as ex-
pected, independent from the sketch length. Random
projection requires the most amount of time. Co-
occurring directions timing is on par with sampling
and slightly better than FD-AMM. From Figure 2
1 we see that the deterministic baselines (a,c,e) con-
sistently outperform the randomized baselines (b,d,f)
in all three regimes. As discussed previously ran-
domized methods error bound are of the order of
O(1/

p
`), while both co-occurring directions and FD-

AMM have an error bound order O(1/`). Note that
the brute force error becomes zero (up to machine pre-
cision) when ` exceeds min(rank(X), rank(Y )). When
comparing co-occurring direction to FD-AMM we
see a clear phase transition for co-occurring direc-
tion as ` exceeds O(min(rank(X), rank(Y ))). For
FD-AMM the phase transition happens when ` ex-
ceeds O(rank(X) + rank(Y )). The phase transition
happens earlier for co-occurring directions and hence
co-occurring directions outperforms FD-AMM for a
smaller sketch size. This is in line with our discussion
in Section 2.2.2. For instance plot (c) illustrates this

1
Better seen in color.
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Figure 2: (a),(c),(e)Error of co-occurring directions versus the deterministic baseline FD-AMM, for clarity the
error is given in log scale. (b)(d)(f) Error of co-occurring directions versus randomized baselines (sampling,
random projection and hashing), for clarity the error is given in linear scale.

effect, k
x

= 400, k
y

= 40, as ` exceeds 50, the error
of co-occurring directions sharply decreases , while
FD-AMM error is still high. The latter starts a steep

decreasing tendency when ` exceeds 400. We give plots
for the low rank approximation as given in Theorem 3
for k = min(k

x

, k
y

) in the appendix, we see a similar
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trend in the approximation error.

AMM of Noisy Low Rank Matrices (Robust-
ness). We consider the same model as before but
we add a gaussian noise to the low rank matrices, i.e
X = V

x

S
x

U>
x

+N
x

/⇣
x

, where ⇣
x

> 0, and N
x

2 Rm

x

⇥n,
(N

x

)

i,j

⇠ N (0, 1). Similarly for Y = V
y

S
y

U>
y

+N
y

/⇣
y

.
In this scenario X and Y have still decaying singular
values but with non zeros tails. We consider ⇣

x

= 1000,
and ⇣

y

= 100. We compare here deterministic baselines
in Figures 3,4, and 5, in the three scenarios we see that
co-occurring directions still outperforms FD-AMM, but
the gap between the two approaches becomes smaller
in the low rank regimes (Figures 4, and 5), this hints to
a weakness in the shrinking of singular values in both
algorithms getting affected by the noise (Step 17 in
Alg. 2). We give plots for the low rank approximation
in the appendix.
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Figure 3: Noisy (k
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= 400, k
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= 400). log scale.
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Figure 4: Noisy(k
x

= 400, k
y

= 40). Error in log scale.

Multimodal Data Experiments. In this section
we study the empirical performance of co-occurring
directions in approximating correlation between images
and captions. We consider Microsoft COCO [LMB+14]
dataset. For visual features we use the residual CNN
Resnet101, [HZRS16]. The last layer of Resnet results
in a feature vector of dimension m

x

= 2048. For text
we use the Hierarchical Kernel Sentence Embedding
HSKE of [MMG16] that results in a feature vector of
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Figure 5: Noisy (k
x

= 40, k
y

= 40). Error in log scale.

dimension m
y

= 3000. The training set size is n =

113287. We see in Fig. 6 that co-occurring directions
outperforms FD-AMM in this case as well (timing
experiment is given in the appendix).
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Figure 6: AMM error on MS-COCO.

6 Conclusion

In this paper we introduced a deterministic sketching
algorithm for AMM that we termed co-occurring direc-
tions . We showed its error bounds (in spectral norm)
for AMM and the low rank approximation of a product.
We showed empirically that co-occurring directions out-
performs deterministic and randomized baselines in the
streaming model. Indeed co-occurring direction has
the best error/space tradeoff among known baselines
with errors given in spectral norm in the streaming
model. We are left with two open questions. First,
whether guarantees of Theorem 2 can be improved
akin to the improved guarantees for frequent directions
given [GLPW15]. This would give an explicit link of
the sketch length `, to the low rank structure of the
matrix product XY >, and/or the low rank structure of
the individual matrices. Second, whether robustness of
co-occurring directions can be improved using robust
shrinkage operators as in [GDP14].
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