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Abstract

Our goal is to identify beneficial interven-
tions from observational data. We consider
interventions that are narrowly focused (im-
pacting few covariates) and may be tailored
to each individual or globally enacted over a
population. For applications where harmful
intervention is drastically worse than propos-
ing no change, we propose a conservative def-
inition of the optimal intervention. Assuming
the underlying relationship remains invariant
under intervention, we develop e�cient algo-
rithms to identify the optimal intervention
policy from limited data and provide theoret-
ical guarantees for our approach in a Gaus-
sian Process setting. Although our methods
assume covariates can be precisely adjusted,
they remain capable of improving outcomes
in misspecified settings where interventions
incur unintentional downstream e↵ects. Em-
pirically, our approach identifies good inter-
ventions in two practical applications: gene
perturbation and writing improvement.

1 Introduction

In many data-driven applications, including medicine,
the primary interest is identifying interventions that
produce a desired change in some associated out-
come. Due to experimental limitations, learning in
such domains is commonly restricted to an observa-
tional dataset D

n

:“
 `
x

piq
, y

piq˘(
n

i“1

which consists of
IID samples from a population with joint distribution
P
XY

over covariates (features) X P Rd and outcomes
Y P R. Typically, such data is analyzed using models
which facilitate understanding of the relations between

Proceedings of the 20

th
International Conference on Artifi-

cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-

erdale, Florida, USA. JMLR: W&CP volume 54. Copy-

right 2017 by the author(s).

variables (eg. assuming linearity/additivity). Based on
conclusions drawn from this analysis, the analyst de-
cides how to intervene in a manner they confidently
believe will improve outcomes.

Formalizing such beliefs via Bayesian inference, we de-
velop a framework that identifies beneficial interven-
tions directly from the data. In our setup, an inter-
vention on an individual with pre-treatment covariates
X produces post-treatment covariate values r

X that
determine the resulting outcome Y (depicted as the
graphical model: X Ñ r

X Ñ Y q. Each possible inter-
vention results in a di↵ferent r

X. More concretely, we
make the following simplifying assumption:

Y “ fp r
Xq ` " with Er"s “ 0, " KK r

X,X (1)

for some underlying function f that encodes the ef-
fects of causal mechanisms (ie. r

X represents a fair de-
scription of the system state, and some covariates in
r
X causally a↵ect Y , not vice-versa). The observed
data is comprised of naturally occurring covariate val-
ues where we presume rxpiq “ x

piq for i “ 1, . . . , n
(ie. the system state remains static without interven-
tion, so the observed covariate values directly influ-
ence the observed outcomes). Moreover, we assume
the relationship between these covariate values and the
outcomes remains invariant, following the same (un-
known) function f for any r

X arising from one of our
feasible interventions (or no intervention at all). Note
that this assumption precludes the presence of hidden
confounding. Peters et al. (2016) have also relied on
this invariance assumption, verifying it as a reasonable
property of causal mechanisms in nature.

Given this data, we aim to learn an intervention policy
defined by a covariate transformation T : Rd Ñ Rd,
applied to each individual in the population. Here,
T pxq presents a desired setting of the covariates that
should be reflected by subsequent intervention to ac-
tually influence outcomes. When T only specifies
changes to a subset of the covariates, an intervention
seeking to realize T may have unintended side-e↵ects
on covariates outside of this subset. We ignore such
“fat hand” settings (Duvenaud et al. 2010) until §7.
Instead, our methods assume interventions can always
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be carried out with great precision to ensure the de-
sired transformation T is exactly reflected in the post-
treatment values: rx “ T pxq. Our goal is to identify
the transformation T which produces the largest corre-
sponding post-treatment improvement with high cer-
tainty. T pxq can either represent a single mapping to
be performed on all individuals (global policy) or en-
code a personalized policy where the intervened upon
variables and their values may change with x.

Our strong assumptions are made to ensure that sta-
tistical modeling alone su�ces to identify beneficial in-
terventions. While many real-world tasks violate these
conditions, there exist important domains in which vi-
olations are su�ciently minor that our methods can
discover e↵ective interventions (cf. Rojas-Carulla et al.
(2016), Peters et al. (2016)). We use two applications
to illustrate our framework. One is a writing improve-
ment task where the data consists of documents la-
beled with associated outcomes (eg. grades or popu-
larity) and the goal is to suggest beneficial changes to
the author. Our second example is a gene perturbation
task where the expression of some regulatory genes
can be up/down-regulated in a population (eg. cells or
bacteria) with the goal of inducing a particular phe-
notype or activation/repression of a downstream gene.
In these examples, covariates are known to cause out-
comes and our other assumptions may hold to some
degree, depending on the type of external intervention
used to alter covariate values.

The contributions of this work include: (1) a formal
definition of the optimal intervention that exhibits de-
sirable characteristics under uncertainty due to limited
data, (2) widely applicable types of (sparse) interven-
tion policy that are easily enacted across a whole pop-
ulation, (3) algorithms to find the optimal intervention
under practical constraints, (4) theoretical insight re-
garding our methods’ properties in Gaussian Process
settings as well as certain misspecified applications.

2 Related Work

The same invariance assumption has been exploited
by Peters et al. (2016) and Rojas-Carulla et al. (2016)
for causal variable selection in regression models. Re-
cently, researchers such as Duvenaud et al. (2010) and
Kleinberg et al. (2015) have supported a greater role
for predictive modeling in various decision-making set-
tings. Zeevi et al. (2015) use gradient boosting to pre-
dict glycemic response based on diet (and personal/mi-
crobiome covariates), and found they can naively lever-
age their regressor to select personalized diets which
result in superior glucose levels than the meals pro-
posed by a clinical dietitian. As treatment-selection

in high-impact applications (eg. healthcare) grows in-
creasingly reliant on supervised learning methods, it is
imperative to properly handle uncertainty.

Nonlinear Bayesian predictive models have been em-
ployed by Hill (2011), Brodersen et al. (2015), and
Krishnan et al. (2015) for quantifying the e↵ects of a
given treatment from observations of individuals who
have been treated and those who have not. Rather
than considering a single given intervention, we intro-
duce the notion of an optimal intervention under var-
ious practical constraints, and how to identify such a
policy from a limited dataset (in which no individuals
have necessarily received any interventions).

Although our goals appear similar to Bayesian opti-
mization and bandit problems (Shahriari et al. 2016,
Agarwal et al. 2013), additional data is not collected
in our setup. Since we consider settings where in-
terventions are proposed based on all available data,
acquisition functions for sequential exploration of the
response-surface are not appropriate. As most existing
data is not generated through sequential experimenta-
tion, our methods are more broadly applicable than
iterative approaches like Bayesian optimization.

A greater distinction is our work’s focus on the pre vs.
post-intervention change in outcome for each partic-
ular individual, whereas Bayesian optimization seeks
a single globally optimal configuration of covariates.
In practice, feasible covariate transformations are con-
strained based on an individual’s naturally occurring
covariate-values, which stem from some underlying
population beyond our control. For example in the
writing improvement task, the goal is not to identify
a globally optimal configuration of covariates that all
texts should strive to achieve, but rather to inform a
particular author of simple modifications likely to im-
prove the outcome of his/her existing article. Appro-
priately treating such constraints is particularly im-
portant when we wish to prescribe a global policy cor-
responding to a single intervention applied to all indi-
viduals from the population (there is no notion of an
underlying population in Bayesian optimization).

3 Methods

Our strategy is to first fit a Bayesian model for Y | X
whose posterior encodes our beliefs about the underly-
ing function f given the observed data. Subsequently,
the posterior for f | D

n

is used to identify a trans-
formation of the covariates T : Rd Ñ Rd which is
likely to improve expected post-intervention outcomes
according to our current beliefs. The posterior for
f | D

n

may be summarized at any points x, x1 P Rd by
mean function Erfpxq | D

n

s and covariance function
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Covpfpxq, fpx1q | D
n

q.

3.1 Intervening at the Individual Level

For x P Rd representing the covariate-measurements
from an individual, we are given a set C

x

Ä Rd that de-
notes constraints of possible transformations of x. Let
T pxq “ rx P C

x

denote the new covariate-measurements
of this individual after a particular intervention on
x which alters covariates as specified by transforma-
tion T : Rd Ñ Rd. Recall that we assume an inter-
vention can be conducted to produce post-treatment
covariate-values that exactly match any feasible trans-
formation: rx “ T pxq, and we thus write fpT pxqq in
place of E

"

rY | r
X “ T pxqs.

We first consider personalized interventions in which T

may be tailored to a particular x. Under the Bayesian
perspective, f | D

n

is randomly distributed according
to our posterior beliefs, and we define the individual
expected gain function:

G

x

pT q :“ fpT pxqq ´ fpxq | D
n

(2)

Since fpxq “ E
"

rY | r
X “ xs, random functionG

x

eval-
uates the expected outcome-di↵erence at the post vs.
pre-intervention setting of the covariates (this expecta-
tion is over the noise ", not our posterior). To infer the
best personalized intervention (assuming higher out-
comes are desired), we use optimization over vectors
T pxq P Rd to find:

T

˚pxq “ argmax
T pxqPC

x

F

´1

G

x

pT qp↵q (3)

where F

´1

Gp¨qp↵q denotes the ↵

th quantile of our poste-

rior distribution over Gp¨q. We choose 0 † ↵ † 0.5,
which implies the intervention that produces T

˚pxq
should improve the expected outcome with probabil-
ity • 1 ´ ↵ under our posterior beliefs.

Defined based on known constraints of feasible inter-
ventions, the set C

x

Ä Rd enumerates possible trans-
formations that can be applied to an individual with
covariate values x. If the set of possible interventions
is independent of x (ie. C

x

“ C @x), then our goal is
similar to the optimal covariate-configuration problem
studied in Bayesian optimization. However, in many
practical applications, x-independent transformations
are not realizable through intervention. Consider gene
perturbation, a scenario where it is impractical to si-
multaneously target more than a few genes due to
technological limitations. If alternatively intervening
on a quantity like caloric intake, it is only realistic to
change an individual’s current value by at most a small
amount. The choice C

x

:“ tz P Rd : ||x ´ z||
0

§ ku
reflects the constraint that at most k covariates can

be intervened upon. We can denote limits on the
amount that the s

th covariate may be altered by
C
x

:“ tz P Rd : |x
s

´ z

s

| § �

s

u for s P t1, . . . , du. In
realistic settings, C

x

may be the intersection of many
such sets reflecting other possible constraints such as
boundedness, impossible joint configurations of multi-
ple covariates, etc.

For any x, T pxq P Rd: the posterior distribution for
G

x

pT q has:

mean “ ErfpT pxq | D
n

s ´ Erfpxq | D
n

(4)

variance “ VarpfpT pxqq | D
n

q ` Varpfpxq | D
n

q
´ 2CovpfpT pxqq, fpxq | D

n

q (5)

which is easily computed using the corresponding
mean/covariance functions of the posterior f | D

n

.
When T pxq “ x, the objective in (3) takes value 0, so
any superior optimum corresponds to an intervention
we are confident will lead to expected improvement.
If there is no good intervention in C

x

(corresponding
to a large increase in the posterior mean) or too much
uncertainty about fpxq given limited data, then our
method simply returns T˚pxq “ x indicating no inter-
vention should be performed.

Our objective exhibits these desirable characteris-
tics because it relies on the posterior beliefs re-
garding both fpT pxqq and fpxq, which are tied via
the covariance function. In contrast, a similarly-
conservative lower confidence bound objective (ie.
the UCB acquisition function with lower rather than
upper quantiles) would only consider fpT pxqq, and
could propose unsatisfactory transformations where
Erfpxq | D

n

s ° ErfpT pxqq | D
n

s.

3.2 Intervening on Entire Populations

The above discussion focused on personalized interven-
tions tailored on an individual basis. In certain appli-
cations, policy-makers are interested in designing a sin-
gle intervention which will be applied to all individuals
from the same underlying population as the data. Re-
lying on such a global policy is the only option in cases
where we no longer observe covariate-measurements
of new individuals outside the data. In our gene per-
turbation example, gene expression may no longer be
individually profiled in future specimens that receive
the decided-upon intervention to save costs/labor.

Here, the covariatesX are assumed distributed accord-
ing to some underlying (pre-intervention) population,
and we define the population expected gain function:

G

X

pT q :“ E
X

rG
x

pT qs “ E
X

“
fpT pxqq ´ fpxq | D

n

‰

which is also randomly distributed based on our poste-
rior (E

X

is expectation with respect to the covariate-
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distribution X which is not modeled by f | D
n

). Our
goal is now to find a single transformation T : Rd Ñ Rd

corresponding to a population intervention which will
(with high certainty under our posterior beliefs) lead
to large outcome improvements on average across the
population:

T

˚ “ argmax
TPT

F

´1

G

X

pT qp↵q (6)

Here, the family of possible transformations T is con-
strained such that T pxq P C

x

for all T P T , x P Rd. As
a good model of our multivariate features may be un-
known, we instead work with the empirical estimate:

T

˚ “ argmax
TPT

F

´1

G

n

pT qp↵q (7)

where G

n

pT q :“ 1

n

nÿ

i“1

“
fpT pxpiqqq ´ fpxpiqq

‰
| D

n

is the empirical population expected gain, whose pos-
terior distribution has:

mean “ 1

n

nÿ

i“1

ErfpT pxpiqqq | D
n

s ´ Erfpxpiqq | D
n

s (8)

variance “ 1

n

2

nÿ

i“1

nÿ

j“1

”
Cov

´
fpxpiqq, fpxpjqq | D

n

¯

´ Cov
`
fpT pxpiqqq, fpxpjqq | D

n

˘

´ Cov
`
fpxpiqq, fpT pxpjqqq | D

n

˘

` Cov
`
fpT pxpiqqq, fpT pxpjqqq | D

n

˘ı
(9)

The population intervention objective in (7) is again
0 for the identity mapping T pxq “ x. Under excessive
uncertainty or a dearth of beneficial transformations
in T , the policy produced by this method will again
simply be to perform no intervention. In this pop-
ulation intervention setting, T is designed assuming
future individuals will stem from the same underlying
distribution as the samples in D

n

. Although T is a
function of x, the form of the transformation must be
agnostic to the specific values of x (so the intervention
can be applied to new individuals without measuring
their covariates).

We consider two types of transformations that we
find widely applicable. Shift interventions involve
transformations of the form: T pxq “ x ` � where
� P Rd represents a (sparse) shift that the policy ap-
plies to each individuals’ covariates (eg. always adding
3 to the value of the second covariate corresponds to
T pxq “ rx

1

, x

2

` 3, . . . , x
d

s). Covariate-fixing inter-
ventions are policies which set certain covariates to a
constant value for all individuals, and involve trans-
formations TI�z

pxq “ rz
1

, . . . , z

d

s such that for some
covariate-subset I Ñ t1, . . . , du : z

j

“ x

j

@j R I and

for j P I: z

j

P R is fixed across all x (eg. always
setting the first covariate to 0, for example in gene
knockout, corresponds to T pxq “ r0, x

2

, . . . , x

d

s @x).
Figure 1 depicts examples of these di↵erent interven-
tions. Under a sparsity constraint, we must carefully
model the underlying population in order to identify
the best covariate-fixing intervention (here, setting X

1

to a large value is superior to intervening on X

2

).

X1

X 2

−20
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20

−2 0 2 4
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Figure 1: Contour plot of expected outcomes over fea-
ture space rX

1

, X

2

s for relationship Y “ X

1

¨ X
2

` ".
Black points: the underlying population. Gold dia-
mond: optimal covariate-setting if any transformation
in the box were feasible. Red points: same population
after shift intervention � “ r´3, 0s. Light (or dark)
green points (along border): best covariate-fixing in-
tervention which can only set X

2

(or only X

1

) to a
fixed value. Blue, purple, light blue points: individuals
who receive a single-variable personalized intervention
(arrows indicate direction of optimal transformation).

4 Algorithms

Throughout this work, we use Gaussian Process (GP)
regression (Rasmussen 2006) to model Y | X as de-
scribed in §S1 (‘S’ indicates references in the Supple-
mentary Material). This nonparametric method has
been favored in many applications as it produces both
accurate predictions and e↵ective measures of uncer-
tainty (with closed-form estimators available in the
standard case). Furthermore, a variety of GP mod-
els exist for di↵erent settings including: non-Gaussian
response variables (Rasmussen 2006), non-stationary
relationships (Paciorek & Schervish 2004), deep rep-
resentations (Daminaou & Lawrence 2013), measure-
ment error (McHutchon & Rasmussen 2011), and het-
eroscedastic noise (Le et al. 2005). While these vari-
ants are not employed in this work, our methodology
can be directly used in conjunction with such exten-
sions (or more generally, any model which produces a
useful posterior for f | D

n

).

Under the standard GP model, G
x

pT q follows a Gaus-
sian distribution and the ↵

th quantile of our personal-
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ized gain is simply given by:

F

´1

G

x

pT q “ErG
x

pT qs ` �´1p↵q ¨ VarrG
x

pT qs (10)

where �´1 denotes the Np0, 1q quantile function. The
quantiles of the empirical population gain may be sim-
ilarly obtained. When a smooth smooth covariance
kernel kp¨, ¨q is adopted in the GP prior, derivatives of
our intervention-objectives are easily computed with
respect to T .

In many practical settings, an intervention that only
a↵ects a small subset of variables is desired. Soft-
ware to improve text, for example, should not over-
whelm authors with a multitude of desired changes,
but rather present a concise list of the most benefi-
cial revisions in order to retain underlying semantics.
Note that identifying a sparse transformation of the
covariates is di↵erent from feature selection in super-
vised learning (where the goal is to identify dimensions
along which f varies most). In contrast, we seek the
dimensions I Ä t1, . . . , du along which one of our feasi-
ble covariate-transformations can produce the largest
high-probability increase in f , assuming the other co-
variates remain fixed at their initial pre-treatment val-
ues (in the case of personalized intervention) or follow
the same distribution as the pre-intervention popula-
tion (in the case of a global policy).

For a shift intervention T pxq “ x`�, we introduce the
convenient notation G

n

p�q :“ G

n

pT q. In applications
where shifting x

s

(the s

th covariate for s P t1, . . . , du)
by one unit incurs cost �

s

, we account for these costs
by considering the following regularized intervention-
objective:

J

�

p�q :“ F

´1

G

n

p�qp↵q ´ �

dÿ

s“1

�

s

|�
s

| (11)

By maximizing this objective over feasible set C
�

:“
t� P Rd : x ` � P C

x

for all x P Rdu, policy-makers
can decide which variables to intervene upon (and how
much to shift them), depending on the relative value
of outcome-improvements (specified by �).

This optimization is performed using the proximal gra-
dient method (Bertsekas 1995), where at each iterate:
a step in the gradient direction is followed by a soft-
thresholding operation (Bach et al. 2012) as well as
a projection back onto the feasible set C

�

. However,
a simple gradient method may su↵er from local op-
tima. To avoid severely suboptimal solutions, we de-
velop a continuation technique (Mobahi et al. 2012)
that performs a series of gradient-based optimizations
over variants of this objective with tapering levels of
added smoothness (details in §S2).
In some settings, one may want to ensure at most k † d

covariates are intervened upon. We identify the op-

timal k-sparse shift intervention via the Sparse Shift
Algorithm below, which relies on `

1

-relaxation (Bach
et al. 2012) and the regularization path of our penal-
ized objective in (13).

Sparse Shift Algorithm: Finds best k-sparse
shift intervention.

1: Set �
s

“ 1 for s “ 1, . . . , d

2: Perform binary search over � to find:

�

˚ – argmin
!
� • 0 s.t. �˚ :“ argmax

�PC�

J

�

p�q
has § k nonzero entries

)

3: Define I – supportp�˚
�

˚ q Ñ t1, . . . , du
where �˚

�

˚ :“ argmax
�PC�

J

�

˚ p�q

4: Return: �˚ P Rd – argmax
�PB

J

0

p�q
where B :“ C

�

ì 
� P Rd : �

s

“ 0 if s R I
(

Recall that in the case of personalized intervention,
we simply optimize over vectors T pxq P C

x

. Any per-
sonalized transformation can therefore be equivalently
expressed as a shift in terms of �

x

P Rd such that
T pxq “ x`�

x

. After substituting the individual gain
G

x

p�
x

q in place of the population gain G

n

p�q within
our definition of J

�

in (13), we can thus employ the
same algorithms to identify sparse/cost-sensitive per-
sonalized interventions. To find a covariate-fixing in-
tervention which sets k of the covariates to particular
fixed constants across all individuals from the popula-
tion, we instead employ a forward step-wise selection
algorithm (detailed in §S2.2), as the form of the opti-
mization is not amenable to `

1

-relaxation in this case.

5 Theoretical Results

Consider the following basic conditions: (A1) all
data lies in C :“ r0, 1sd, (A2) 0 † ↵ § 0.5. Through-
out this section, we assume (A1), (A2), and the con-
ditions laid out in §1 hold. For clarity, we rewrite
the true underlying relationship as f

˚, letting f now
denote arbitrary functions. Our results are with re-
spect to the true improvement of an intervention
G

˚
x

pT q :“ f

˚pT pxqq ´ f

˚pxq, G

˚
X

pT q :“ E
X

rG˚
x

pT qs
(note that G˚

x

, G

˚
X

are no longer random). Our theory
relies on Gaussian Process results derived by Srinivas
et al. (2010), van der Vaart & van Zanten (2011), and
we relegate proofs and technical definitions to §S6.
Theorem 1. Suppose we adopt a GP

`
0, kpx, x1q

˘
prior

and the following conditions hold:

(A3) noise variables "piq iid„ Np0,�2q (A4) there exist
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⇢ ° 0 such that the Hölder space C

⇢r0, 1sd has prob-
ability one under our prior (see van der Vaart & van
Zanten (2011)). (A5) f˚ and any f supported by the
prior are Lipschitz continuous over C with constant L
(A6) the density of our input covariates p

X

P ra, bs is
bounded above and below over domain C.
Then, for all x, T pxq P C:

ED
n

ˇ̌
ˇF´1

G

x

pT qp↵q´G

˚
x

pT q
ˇ̌
ˇ § C

↵

´
L` 1

a

¯
¨ 

f

˚pnq1{r2pd`1qs

where constant C depends on the prior and density p

X

and we define:

 
f

pnq :“
#“
 

´1

f

pnq
‰
2

if  ´1

f

pnq § n

´d{p4⇢`2dq

n ¨ r ´1

f

˚ pnqsp4⇢`4dq{d otherwise

 

´1

f

˚ pnq is the (generalized) inverse of  
f

˚ p✏q :“ �

f

˚ p✏q
✏

2

which depends on the concentration function �
f

˚ p✏q “
inf

hPH
k

:||h´f

˚||8†✏

||h||2
k

´log⇧
`
f : ||f ||8 † ✏

˘
. �

f

˚ mea-

sures how well the RKHS of our GP prior H
k

approx-
imates f˚ (see van der Vaart & van Zanten (2011) for
more details). The expectation ED

n

is over the dis-
tribution of the data tpXpiq

, Y

piqqun
i“1

. Importantly,
Theorem 1 does not assume anything about the true
relationship f

˚, and the bound depends on the dis-
tance between f

˚ and our prior. When f

˚ is a ⇢-
smooth function, a typical bound is given by  ´1

f

˚ pnq “
Opn´ mint⌫,⇢u{p2⌫`dqq if k is the Matérn kernel with
smoothness parameter ⌫. When k is the squared expo-
nential kernel and f

˚ is �-regular (in Sobolev sense),
 

´1

f

˚ pnq “ Opp1{ log nq�{2´d{4q (van der Vaart & van
Zanten 2011).

Theorem 2. Under the assumptions of Theorem 1,
for any T such that PrpT pXq P Cq “ 1:

ED
n

ˇ̌
ˇF´1

G

n

pT qp↵q ´ G

˚
X

pT q
ˇ̌
ˇ

§ C

↵

”
L

c
d

n

`
´
L ` 1

a

¯
 

f

˚ pnq 1
2pd`1q

ı

Theorems 1 and 2 characterize the rate at which
our personalized/population-intervention objectives
are expected to converge to the true improvement (due
to contraction of the posterior as n grows). Since these
results hold for all T , this implies the maximizer of our
intervention-objectives will converge to the true opti-
mal transformation as n Ñ 8 (under a reasonable
prior). Complementing these results, Theorem 6 in
§S6 ensures that for any n: optimizing our personal-
ized intervention objective corresponds to improving a
lower bound on the true improvement with high prob-
ability, when ↵ is small and f

˚ belongs to the RKHS
of our prior. In this case, the optimal transformation
inferred by our approach only worsens the actual ex-
pected outcome with low probability.

6 Results

§S3 contains an analysis of our approach on sim-
ulated data from simple covariate-outcome relation-
ships. The average improvement produced by our cho-
sen interventions rapidly converges to the best possible
value with increasing n. In these experiments, sparse-
interventions consistently alter the correct feature sub-
set, and proposed transformations under our conserva-
tive ↵ “ 0.05 criterion are much more rarely harmful
than those suggested by optimizing the posterior mean
function (which ignores uncertainty).

6.1 Gene Perturbation

Next, we applied our method to search for population
interventions in observational yeast gene expression
data from Kemmeren et al. (2014). We evaluated the
e↵ects of proposed interventions (restricted to single
gene knockouts) over a set X of 10 transcription fac-
tors (n “ 161) with the goal of down-regulating each
of a set of 16 small molecule metabolism target genes,
Y . Results for all methods are compared to the actual
expression change of the target gene found experimen-
tally under individual knockouts of each transcription
factor in X. Compared to marginal linear regressions
and multivariate linear regression, our method’s un-
certainty prevents it from proposing harmful interven-
tions, and the interventions it proposes are optimal or
near optimal (Figure 2).

Insets (a) and (b) in Figure 2 show empirical marginal
distributions between target gene TSL1 and members
of X identified for knockout by our method (CIN5 )
and marginal regression (GAT2 ). From the linear per-
spective, these relationships are fairly indistinguish-
able, but only CIN5 displays a strong inhibitory e↵ect
in the knockout experiments. Inset (c) shows the em-
pirical marginal for a harmful intervention proposed
by multivariate regression for down-regulating GPH1,
where the overall correlation is significantly positive,
but the few lowest expression values (which influence
our GP intervention objective the most) do not pro-
vide strong evidence of a large knockdown e↵ect.

6.2 Writing Improvement

Finally, we apply our personalized intervention
methodology to the task of transforming a given news
article into one which will be more widely-shared on
social media. We use a dataset from Fernandes et al.
(2015) containing various features about individual
Mashable articles along with their subsequent popular-
ity in social networks (detailed description/results for
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Figure 2: Actual e↵ects of proposed interventions (sin-
gle gene knockout) over a set transcription factors on
down-regulation of each of a set of 16 small molecule
metabolism target genes.

this analysis in §S5). We train a GP regressor on 5,000
articles labeled with popularity-annotations and evalu-
ate sparse interventions on a held-out set of 300 articles
based on changes they induce in article benchmark pop-
ularity (defined in §S5). When ↵ “ 0.05, the average
benchmark popularity increase produced by our per-
sonalized intervention methodology is 0.59, whereas it
statistically significantly decreases to 0.55 if ↵ “ 0.5
is chosen. Thus, even given this large sample size, ig-
noring uncertainty appears detrimental for this appli-
cation, and ↵ “ 0.5 results in 4 articles whose bench-
mark popularity worsens post-intervention (compared
to only 2 for ↵ “ 0.05). Nonetheless, both methods
generally produce very beneficial improvements in this
analysis, as seen in Figure S3.

As an example of the personalization of proposed in-
terventions, our method (↵ “ 0.05) generally proposes
di↵erent sparse interventions for articles in the Busi-
ness category vs. the Entertainment category. On
average, the sparse transformation for business arti-
cles uniquely advocates decreasing global sentiment
polarity and increasing word count (which are not
commonly altered in the personalized interventions
found for entertainment articles), whereas interven-
tions to decrease title subjectivity are uniquely preva-
lent throughout the entertainment category. These
findings appear intuitive (eg. critical business articles
likely receive more discussion, and titles of popular en-
tertainment articles often contain startling statements
written non-subjectively as fact). Interestingly, the
model also tends to advise shorter titles for business
articles, but increasing the length for entertainment
articles. Articles across all categories are universally
encouraged to include more references to other articles
and keywords that were historically popular.

7 Misspecified Interventions

Our methodology heavily relies on the assumption that
the outcome-determining covariate values rx produced

through intervention exactly match the desired covari-
ate transformation T pxq. When transformations are
only allowed to alter at most k † d covariates, this
requires that we can intervene to alter only this sub-
set without a↵ecting the values of other covariates. If
T specifies a sparse change a↵ecting only a subset of
the covariates I Ä t1, . . . , du, our methods assume the
post-treatment value of any non-intervened-upon co-
variate remains at its initial value (ie. rx

s

“ x

s

@s R I).
In some domains, the covariate-transformation in-
duced via sparse external intervention can only be
roughly controlled (eg. our gene perturbation exam-
ple when the profiled genes belong to a common regu-
latory network). Let TI�z

denote a covariate-fixing
transformation which sets a subset of covariates in
I Ä t1, . . . , du to constant values zI P R|I| across
all individuals in the population. In this section, we
consider an alternative assumption under which the
intervention applied in hopes of achieving TI�z

prop-
agates downstream to a↵ect other covariates outside
I (so there may exist s R I: rx

s

‰ x

s

), which we
formalize as the do-operation in the causal calculus of
Pearl (2000). Here, we suppose the underlying popula-
tion of X,Y follows a structural equation model (SEM)
(Pearl 2000). The outcome Y is restricted to be a
sink node of the causal DAG, so we can still write
Y “ f

˚p r
Xq ` " and maintain the other conditions

from §1. Rather than exhibiting covariate-distribution
TI�z

pXq with Y “ f

˚pTI�z

pXqq ` " (as presumed
in our methods), the post-treatment population which
arises from an intervention seeking to enact transfor-
mation TI�z

is now assumed to follow the distribution
specified by ppX,Y | dopXI “ zIqq. Note that the do-
operation here is only applied to some nodes in the
DAG (variables in subset I) as discussed by Peters
et al. (2014), but its e↵ects can alter the distributions
of non-intervened-upon covariates outside of I which
lie downstream in the DAG.

Theorem 3. For some I Ñ t1, . . . , du, suppose the
condition: (A7) papY q Ñ I

î
descpIqC holds.

Then, for any covariate-fixing transformation TI�z

:
E
X

“
f

˚pTI�z

pxqq ´ f

˚pxq
‰

and

Erx„dopXI“zIq
“
f

˚prxq
‰

´ E
X

“
f

˚pxq
‰
are equal.

Here, papY q denotes the variables which are parents
of outcome Y in the underlying causal DAG, and
descpIqC is the set of variables which are not de-
scendants of variables in subset I. For the next re-
sult, we define: I˚ :“ argmin

!
|I 1| s.t. D TI1�z

P
argmax

TI�z

:|I|§k

E
X

“
f

˚pTI�z

pxqq ´ f

˚pxq
‰)

as the inter-

vention set corresponding to the optimal k-sparse
covariate-fixing transformation (where in the case of
ties, the set of smallest cardinality is chosen), if trans-
formations were exactly realized by our interventions
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(which is not necessarily the case in this section).

Theorem 4. Suppose the underlying DAG satisfies:
(A8) No variable in papY q is a descendant of other par-
ents, ie. E j P papY q s.t. j P descppapY qztjuq. Then,
I˚ satisfies (A7).

In the absence of extremely strong interactions be-
tween variables in papY q, the equality of Theorem 3
will also hold for I˚ if |papY q| § k. For settings where
sparse interventions elicit unintentional do-e↵ects and
the causal DAG meets condition (A8), Theorems 3
and 4 imply that, under complete certainty about f˚,
the (minimum cardinality) maximizer of our covariate-
fixing intervention objective corresponds to an trans-
formation that produces an equally good outcome
change when the corresponding intervention is actu-
ally realized as a do-operation in the underlying popu-
lation. Combined with Theorem 2, our results ensure
that, even in this misspecified setting, the empirical
maximizer of our sparse covariate-fixing intervention
objective (7) produces (in expectation as n Ñ 8) ben-
eficial interventions for populations whose underlying
causal relationships satisfy certain conditions.

Next, we empirically investigate how e↵ective our
methods are in this misspecified SEM setting, where a
proposed sparse population transformation is actually
realized as a do-operation and can therefore uninten-
tionally a↵ect other covariates in the post-intervention
population. We generate data from an underlying lin-
ear non-Gaussian SEM, and where Y is a sink node in
the corresponding causal DAG (see §S3.1 for details).
Our approach to identify a beneficial sparse popula-
tion intervention is compared with inferring the com-
plete SEM using the LinGAM estimator of Shimizu
et al. (2006) and subsequently identifying the optimal
single-node do-operation in the inferred SEM. Note
that LinGAM is explicitly designed for this setting,
while both our method and the relied-upon Gaussian
Process model are severely misspecified.

Figures 3A and 3B demonstrate that the inferred best
single-variable shift population intervention (under
constraints on the magnitude of the shift) matches the
performance the interventions suggested by LinGAM
(except for in rare cases with tiny sample size)
when the proposed interventions are evaluated as do-
operations in the true underlying SEM. Thus, we be-
lieve a supervised learning approach like ours is prefer-
able in practical applications where interpreting the
underlying causal structure is not as important as pro-
ducing good outcomes (especially for higher dimen-
sional data where estimation of the causal structure
becomes di�cult (Peters et al. 2014)).

The assumption of sparse interventions realized as a
do-operation (as defined by Peters et al. (2014)) may
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Figure 3: The average (solid) and 0.05th quantile
(dashed) expected outcome change produced by our
method (red) vs LinGAM (blue) over 100 datasets
drawn from two underlying SEMs chosen by Shimizu
et al. (2006). The black dashed line indicates the best
possible improvement in each case.

also be an inappropriate in many domains, particularly
if o↵-target e↵ects of interventions are explicitly miti-
gated via external controls. To appreciate the intricate
nature of assumptions regarding non-intervened-upon
variables, consider our example of modeling text doc-
uments represented using two features: polarity and
word count. A desired transformation to increase the
text’s polarity can be accomplished by inserting ad-
ditional positive adjectives, but such an intervention
also increases articles’ word count. Alternatively, po-
larity may be identically increased by replacing words
with more positive alternatives, an external interven-
tion which would not a↵ect the word count (and thus
follows the assumptions of our framework).

8 Discussion

This work introduces methods for directly learning
beneficial interventions from purely observational data
without treatments. While this objective is, strictly
speaking, only possible under stringent assumptions,
our approach performs well in both intentionally-
misspecified and complex real-world settings. As su-
pervised learning algorithms grow ever more popular,
we expect intervention-decisions in many domains will
increasingly rely on predictive models. Our conser-
vative definition of the optimal intervention provides
a principled approach to handle the inherent uncer-
tainty in these settings due to finite data. Able to
employ any Bayesian regressor, our ideas are widely
applicable, considering practical types of interventions
that can either be personalized or enacted uniformly
over a population.
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