
Supplement: Stochastic Difference of Convex Algorithm and its Application to Training Deep Boltzmann Machines

A Proofs

We give proofs of convergence analyses. We first prove the Proposition 1.

Proof of Proposition 1. Since φk is (Lg + µk)-smooth function, we have

φk(x) ≤ φk(xk) + 〈∇φk(xk), x− xk〉+
Lg + µk

2
‖x− xk‖

2
2.

By minimizing both sides of the above inequality,

φ∗

k ≤ φk(xk)−
1

2(Lg + µk)
‖∇φk(xk)‖

2
2.

Noting that φk(xk) = f(xk) and Evh(xk)[‖∇φk(xk)‖
2
2|Fk] ≥ ‖∇f(xk)‖

2
2, we have

Evh(xk)[φ
∗

k|Fk] ≤ f(xk)−
1

2(Lg + µk)
‖∇f(xk)‖

2
2.

Using E[φk(xk+1)|Fk] ≤ φ∗

k + δ and the above inequality, we have

E[φk(xk+1)|Fk] ≤ δ + f(xk)−
1

2(Lg + µk)
‖∇f(xk)‖

2
2.

Thus, it follows that

E[f(xk+1) +
µk

2
‖xk+1 − xk‖

2
2|Fk]

≤ E[g(xk+1)− (h(xk) + 〈∇h(xk), xk+1 − xk〉) +
µk

2
‖xk+1 − xk‖

2
2|Fk]

= E[φk(xk+1)− 〈∇h(xk)− vh(xk), xk+1 − xk〉|Fk]

≤ E[φk(xk+1)|Fk] + E[
1

µk

‖∇h(xk)− vh(xk)‖
2
2 +

µk

4
‖xk+1 − xk‖

2
2|Fk]

≤ δ + f(xk)−
1

2(Lg + µk)
‖∇f(xk)‖

2
2 +

σ2
h

µk

+
µk

4
E[‖xk+1 − xk‖

2
2|Fk],

where for the first inequality we used convexity of h and for the second inequality we used Young’s inequality. This

finishes the proof of Proposition 1.

Next, let us prove Theorem 1.

Proof of Theorem 1. Summing up the inequality of Proposition 1 over indices k = 1, . . . ,M and taking the expecta-

tion, we have

M
∑

k=1

1

2(Lg + µk)
E[‖∇f(xk)‖

2
2] ≤ Mδ +

M
∑

k=1

σ2
h

µk

+ E[f(x1)− f(xM+1)].

Since µk = O(Lg) ∧ (µk = Ω(Lg) ∨ σh = 0) and f(x1)− f(xM+1) ≤ f(x1)− f∗,

M
∑

k=1

E[‖∇f(xk)‖
2
2] ≤ O(LgMδ +Mσ2

h + Lg(f(x1)− f∗)).

Noting that

E[‖∇f(xR)‖
2
2|FM ] =

1

M

M
∑

k=1

‖∇f(xk)‖
2
2,

1
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we can conclude the proof of Theorem as follows,

E[‖∇f(xR)‖
2
2] = E

[

E[‖∇f(xR)‖
2
2|FM ]

]

=
1

M

M
∑

k=1

E[‖∇f(xk)‖
2
2]

≤ O

(

Lgδ + σ2
h +

Lg(f(x1)− f∗)

M

)

.

Below is the proof of Proposition 2.

Proof of Proposition 2. It follows that

E[‖∇f(xk+1)‖
2
2|Fk]

= E[‖∇φk(xk+1)− (∇h(xk)− vh(xk)) +∇h(xk)−∇h(xk+1)− µk(xk+1 − xk)‖
2
2|Fk]

≤ 4E[‖∇φk(xk+1)‖
2
2 + ‖∇h(xk)− vh(xk)‖

2
2 + ‖∇h(xk)−∇h(xk+1)‖

2
2 + µ2

k‖xk+1 − xk‖
2
2|Fk]

≤ 4σ2
h + 4E[‖∇φk(xk+1)‖

2
2 + (µ2

k + L2
h)‖xk+1 − xk‖

2
2|Fk],

where for the first inequality we used ‖
∑d

j=1 αj‖
2
2 ≤ d

∑d

j=1 ‖αj‖
2
2 and for the second inequality we used Lipschitz

smoothness of h. Since φk is (Lg + µk)-smooth,

1

2(Lg + µk)
E[‖∇φk(xk+1)‖

2
2|Fk] ≤ E[φk(xk+1)− φ∗

k|Fk] ≤ δ.

Thus, we conclude

E[‖∇f(xk+1)‖
2
2|Fk] ≤ 4σ2

h + 8(Lg + µk)δ + 4(µ2
k + L2

h)E[‖xk+1 − xk‖
2
2|Fk].

By combining Proposition 1 and 2, we prove Proposition 3.

Proof of Proposition 3. Noting that µk = O(Lh) ∧ µk = Ω(Lh), we have

E[‖∇f(xk+1)‖
2
2|Fk] ≤ O

(

(Lg + Lh) δ + σ2
h + L2

hE[‖xk+1 − xk‖
2
2|Fk]

)

≤ O
(

(Lg + Lh) δ + σ2
h + LhE[f(xk)− f(xk+1)|Fk]

)

,

where for the first and second inequality we used Proposition 1 and 2, respectively.

We give the proof of Theorem 2.

Proof of Theorem 2. Using Proposition 3 and Lh = O(Lg), it follows that

E[‖∇f(xk+1)‖
2
2|Fk] ≤ O

(

Lgδ + σ2
h + LhE[f(xk)− f(xk+1)|Fk]

)

.

This inequality resemble Proposition 1 up to the term E[‖xk+1 − xk‖
2
2|Fk], so that we can show the theorem in the

same manner as Theorem 1.

B The derivation of diagonal hessian approximation

To run AdaSPD with a diagonal hessian approximation for training BMs, we give diag(∇2
θh(Θ)), where h is the

concave part of the log-likelihood of BMs. We only consider a parameter Wij connecting a visible unit vi and a hidden

unit hj because for the other parameters it can be shown in the same manner.
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∇2
Wij

h(Θ) = ∇2
Wij

log
∑

h

exp(−E(v,h; Θ))

= ∇Wij

(∑

h
exp(−E(v,h; Θ))vihj

∑

h
exp(−E(v,h; Θ))

)

=

∑

h
exp(−E(v,h; Θ))(vihj)2
∑

h
exp(−E(v,h; Θ))

−

(∑

h
exp(−E(v,h; Θ))vihj

∑

h
exp(−E(v,h; Θ))

)2

=

∑

h
exp(−E(v,h; Θ))vihj

∑

h
exp(−E(v,h; Θ))

−

(∑

h
exp(−E(v,h; Θ))vihj

∑

h
exp(−E(v,h; Θ))

)2

= ∇Wij
log
∑

h

exp(−E(v,h; Θ))−

(

∇Wij
log
∑

h

exp(−E(v,h; Θ))

)2

= ∇Wij
h(Θ)− (∇Wij

h(Θ))2,

where we used (vihj)2 = vihj derived from the fact that vi and hj are binary units {0, 1}.

C Parameter settings for training RBMs and DBMs

In our experiments, we optimized L2-penalized log-likelihoods of RBMs and DBMs. Here, we give all parameter

settings used for AdaSPD. The damping parameter λ was fixed to 10−4. The scales of metrics were set to µ = 10−4

for diagonal hessian approximation and µ ∈ {10−5, 10−3, 10−1} for scalar matrix. The number of underlying solver

iterations T and the suffix averaging parameter α were set as follows: T = ⌈N/b⌉, αT = ⌈T/2⌉, where N is the

number of data points and b is a mini-batch size. The other parameters are listed in Table 1 for binarized MNIST

dataset and Table 2 for CalTech101 Silhouettes.

Table 1: Parameter settings for binarized MNIST

Model Minibatch-size b PCD-k Mean-field iter. L2-penalty η

RBM-15 32 1 - 0 10−1

RBM-25 32 3 - 0 10−1

RBM-500 128 10 - 5× 10−4 10−1

DBM-500-500-1000 128 10 10 3× 10−4 10−2

DBM-500-500-500-1000 128 10 10 5× 10−4 10−2

Table 2: Parameter settings for CalTech101 Silhouettes

Model Minibatch-size b PCD-k Mean-field iter. L2-penalty η

RBM-15 32 1 - 0 10−2

RBM-25 32 3 - 0 10−2

RBM-500 64 10 - 10−3 10−2
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