A Proofs

We give proofs of convergence analyses. We first prove the Proposition 1.
Proof of Proposition 1$]$ Since ϕ_{k} is $\left(L_{g}+\mu_{k}\right)$-smooth function, we have

$$
\phi_{k}(x) \leq \phi_{k}\left(x_{k}\right)+\left\langle\nabla \phi_{k}\left(x_{k}\right), x-x_{k}\right\rangle+\frac{L_{g}+\mu_{k}}{2}\left\|x-x_{k}\right\|_{2}^{2}
$$

By minimizing both sides of the above inequality,

$$
\phi_{k}^{*} \leq \phi_{k}\left(x_{k}\right)-\frac{1}{2\left(L_{g}+\mu_{k}\right)}\left\|\nabla \phi_{k}\left(x_{k}\right)\right\|_{2}^{2}
$$

Noting that $\phi_{k}\left(x_{k}\right)=f\left(x_{k}\right)$ and $\mathbb{E}_{v_{h}\left(x_{k}\right)}\left[\left\|\nabla \phi_{k}\left(x_{k}\right)\right\|_{2}^{2} \mid \mathcal{F}_{k}\right] \geq\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}$, we have

$$
\mathbb{E}_{v_{h}\left(x_{k}\right)}\left[\phi_{k}^{*} \mid \mathcal{F}_{k}\right] \leq f\left(x_{k}\right)-\frac{1}{2\left(L_{g}+\mu_{k}\right)}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

Using $\mathbb{E}\left[\phi_{k}\left(x_{k+1}\right) \mid \mathcal{F}_{k}\right] \leq \phi_{k}^{*}+\delta$ and the above inequality, we have

$$
\mathbb{E}\left[\phi_{k}\left(x_{k+1}\right) \mid \mathcal{F}_{k}\right] \leq \delta+f\left(x_{k}\right)-\frac{1}{2\left(L_{g}+\mu_{k}\right)}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

Thus, it follows that

$$
\begin{aligned}
\mathbb{E}[& \left.\left.f\left(x_{k+1}\right)+\frac{\mu_{k}}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \right\rvert\, \mathcal{F}_{k}\right] \\
& \leq \mathbb{E}\left[\left.g\left(x_{k+1}\right)-\left(h\left(x_{k}\right)+\left\langle\nabla h\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle\right)+\frac{\mu_{k}}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \right\rvert\, \mathcal{F}_{k}\right] \\
& =\mathbb{E}\left[\phi_{k}\left(x_{k+1}\right)-\left\langle\nabla h\left(x_{k}\right)-v_{h}\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle \mid \mathcal{F}_{k}\right] \\
& \leq \mathbb{E}\left[\phi_{k}\left(x_{k+1}\right) \mid \mathcal{F}_{k}\right]+\mathbb{E}\left[\left.\frac{1}{\mu_{k}}\left\|\nabla h\left(x_{k}\right)-v_{h}\left(x_{k}\right)\right\|_{2}^{2}+\frac{\mu_{k}}{4}\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \right\rvert\, \mathcal{F}_{k}\right] \\
& \leq \delta+f\left(x_{k}\right)-\frac{1}{2\left(L_{g}+\mu_{k}\right)}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{\sigma_{h}^{2}}{\mu_{k}}+\frac{\mu_{k}}{4} \mathbb{E}\left[\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \mid \mathcal{F}_{k}\right]
\end{aligned}
$$

where for the first inequality we used convexity of h and for the second inequality we used Young's inequality. This finishes the proof of Proposition 1.

Next, let us prove Theorem 1
Proof of Theorem [1] Summing up the inequality of Proposition 1 over indices $k=1, \ldots, M$ and taking the expectation, we have

$$
\sum_{k=1}^{M} \frac{1}{2\left(L_{g}+\mu_{k}\right)} \mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right] \leq M \delta+\sum_{k=1}^{M} \frac{\sigma_{h}^{2}}{\mu_{k}}+\mathbb{E}\left[f\left(x_{1}\right)-f\left(x_{M+1}\right)\right]
$$

Since $\mu_{k}=O\left(L_{g}\right) \wedge\left(\mu_{k}=\Omega\left(L_{g}\right) \vee \sigma_{h}=0\right)$ and $f\left(x_{1}\right)-f\left(x_{M+1}\right) \leq f\left(x_{1}\right)-f_{*}$,

$$
\sum_{k=1}^{M} \mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right] \leq O\left(L_{g} M \delta+M \sigma_{h}^{2}+L_{g}\left(f\left(x_{1}\right)-f_{*}\right)\right)
$$

Noting that

$$
\mathbb{E}\left[\left\|\nabla f\left(x_{R}\right)\right\|_{2}^{2} \mid \mathcal{F}_{M}\right]=\frac{1}{M} \sum_{k=1}^{M}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

we can conclude the proof of Theorem as follows,

$$
\begin{aligned}
\mathbb{E}\left[\left\|\nabla f\left(x_{R}\right)\right\|_{2}^{2}\right] & =\mathbb{E}\left[\mathbb{E}\left[\left\|\nabla f\left(x_{R}\right)\right\|_{2}^{2} \mid \mathcal{F}_{M}\right]\right]=\frac{1}{M} \sum_{k=1}^{M} \mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right] \\
& \leq O\left(L_{g} \delta+\sigma_{h}^{2}+\frac{L_{g}\left(f\left(x_{1}\right)-f_{*}\right)}{M}\right)
\end{aligned}
$$

Below is the proof of Proposition 2.

Proof of Proposition 2 It follows that

$$
\begin{aligned}
\mathbb{E}[\| & \left.\nabla f\left(x_{k+1}\right) \|_{2}^{2} \mid \mathcal{F}_{k}\right] \\
& =\mathbb{E}\left[\left\|\nabla \phi_{k}\left(x_{k+1}\right)-\left(\nabla h\left(x_{k}\right)-v_{h}\left(x_{k}\right)\right)+\nabla h\left(x_{k}\right)-\nabla h\left(x_{k+1}\right)-\mu_{k}\left(x_{k+1}-x_{k}\right)\right\|_{2}^{2} \mid \mathcal{F}_{k}\right] \\
& \leq 4 \mathbb{E}\left[\left\|\nabla \phi_{k}\left(x_{k+1}\right)\right\|_{2}^{2}+\left\|\nabla h\left(x_{k}\right)-v_{h}\left(x_{k}\right)\right\|_{2}^{2}+\left\|\nabla h\left(x_{k}\right)-\nabla h\left(x_{k+1}\right)\right\|_{2}^{2}+\mu_{k}^{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \mid \mathcal{F}_{k}\right] \\
& \leq 4 \sigma_{h}^{2}+4 \mathbb{E}\left[\left\|\nabla \phi_{k}\left(x_{k+1}\right)\right\|_{2}^{2}+\left(\mu_{k}^{2}+L_{h}^{2}\right)\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \mid \mathcal{F}_{k}\right]
\end{aligned}
$$

where for the first inequality we used $\left\|\sum_{j=1}^{d} \alpha_{j}\right\|_{2}^{2} \leq d \sum_{j=1}^{d}\left\|\alpha_{j}\right\|_{2}^{2}$ and for the second inequality we used Lipschitz smoothness of h. Since ϕ_{k} is $\left(L_{g}+\mu_{k}\right)$-smooth,

$$
\frac{1}{2\left(L_{g}+\mu_{k}\right)} \mathbb{E}\left[\left\|\nabla \phi_{k}\left(x_{k+1}\right)\right\|_{2}^{2} \mid \mathcal{F}_{k}\right] \leq \mathbb{E}\left[\phi_{k}\left(x_{k+1}\right)-\phi_{k}^{*} \mid \mathcal{F}_{k}\right] \leq \delta
$$

Thus, we conclude

$$
\mathbb{E}\left[\left\|\nabla f\left(x_{k+1}\right)\right\|_{2}^{2} \mid \mathcal{F}_{k}\right] \leq 4 \sigma_{h}^{2}+8\left(L_{g}+\mu_{k}\right) \delta+4\left(\mu_{k}^{2}+L_{h}^{2}\right) \mathbb{E}\left[\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \mid \mathcal{F}_{k}\right]
$$

By combining Proposition 1 and 2, we prove Proposition 3
Proof of Proposition 3] Noting that $\mu_{k}=O\left(L_{h}\right) \wedge \mu_{k}=\Omega\left(L_{h}\right)$, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\nabla f\left(x_{k+1}\right)\right\|_{2}^{2} \mid \mathcal{F}_{k}\right] & \leq O\left(\left(L_{g}+L_{h}\right) \delta+\sigma_{h}^{2}+L_{h}^{2} \mathbb{E}\left[\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \mid \mathcal{F}_{k}\right]\right) \\
& \leq O\left(\left(L_{g}+L_{h}\right) \delta+\sigma_{h}^{2}+L_{h} \mathbb{E}\left[f\left(x_{k}\right)-f\left(x_{k+1}\right) \mid \mathcal{F}_{k}\right]\right),
\end{aligned}
$$

where for the first and second inequality we used Proposition 1 and 2, respectively.
We give the proof of Theorem 2
Proof of Theorem [2] Using Proposition 3] and $L_{h}=O\left(L_{g}\right)$, it follows that

$$
\mathbb{E}\left[\left\|\nabla f\left(x_{k+1}\right)\right\|_{2}^{2} \mid \mathcal{F}_{k}\right] \leq O\left(L_{g} \delta+\sigma_{h}^{2}+L_{h} \mathbb{E}\left[f\left(x_{k}\right)-f\left(x_{k+1}\right) \mid \mathcal{F}_{k}\right]\right)
$$

This inequality resemble Proposition 1 up to the term $\mathbb{E}\left[\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \mid \mathcal{F}_{k}\right]$, so that we can show the theorem in the same manner as Theorem 1

B The derivation of diagonal hessian approximation

To run AdaSPD with a diagonal hessian approximation for training BMs, we give $\operatorname{diag}\left(\nabla_{\theta}^{2} h(\Theta)\right)$, where h is the concave part of the log-likelihood of BMs. We only consider a parameter $W_{i j}$ connecting a visible unit v^{i} and a hidden unit h^{j} because for the other parameters it can be shown in the same manner.

$$
\begin{aligned}
\nabla_{W_{i j}}^{2} h(\Theta) & =\nabla_{W_{i j}}^{2} \log \sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta)) \\
& =\nabla_{W_{i j}}\left(\frac{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta)) v^{i} h^{j}}{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta))}\right) \\
& =\frac{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta))\left(v^{i} h^{j}\right)^{2}}{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta))}-\left(\frac{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta)) v^{i} h^{j}}{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta))}\right)^{2} \\
& =\frac{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta)) v^{i} h^{j}}{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta))}-\left(\frac{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta)) v^{i} h^{j}}{\sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta))}\right)^{2} \\
& =\nabla_{W_{i j}} \log \sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta))-\left(\nabla_{W_{i j}} \log \sum_{\mathbf{h}} \exp (-E(\mathbf{v}, \mathbf{h} ; \Theta))\right)^{2} \\
& =\nabla_{W_{i j}} h(\Theta)-\left(\nabla_{W_{i j}} h(\Theta)\right)^{2},
\end{aligned}
$$

where we used $\left(v^{i} h^{j}\right)^{2}=v^{i} h^{j}$ derived from the fact that v^{i} and h^{j} are binary units $\{0,1\}$.

C Parameter settings for training RBMs and DBMs

In our experiments, we optimized L_{2}-penalized log-likelihoods of RBMs and DBMs. Here, we give all parameter settings used for AdaSPD. The damping parameter λ was fixed to 10^{-4}. The scales of metrics were set to $\mu=10^{-4}$ for diagonal hessian approximation and $\mu \in\left\{10^{-5}, 10^{-3}, 10^{-1}\right\}$ for scalar matrix. The number of underlying solver iterations T and the suffix averaging parameter α were set as follows: $T=\lceil N / b\rceil, \alpha T=\lceil T / 2\rceil$, where N is the number of data points and b is a mini-batch size. The other parameters are listed in Table 1 for binarized MNIST dataset and Table 2 for CalTech101 Silhouettes.

Table 1: Parameter settings for binarized MNIST

Model	Minibatch-size b	PCD-k	Mean-field iter.	L_{2}-penalty	η
RBM-15	32	1	-	0	10^{-1}
RBM-25	32	3	-	0	10^{-1}
RBM-500	128	10	-	5×10^{-4}	10^{-1}
DBM-500-500-1000	128	10	10	3×10^{-4}	10^{-2}
DBM-500-500-500-1000	128	10	10	5×10^{-4}	10^{-2}

Table 2: Parameter settings for CalTech101 Silhouettes

Model	Minibatch-size b	PCD-k	Mean-field iter.	L_{2}-penalty	η
RBM-15	32	1	-	0	10^{-2}
RBM-25	32	3	-	0	10^{-2}
RBM-500	64	10	-	10^{-3}	10^{-2}

