A Proofs

We give proofs of convergence analyses. We first prove the Proposition 1.

Proof of Proposition 1. Since ϕ_k is $(L_g + \mu_k)$ -smooth function, we have

$$\phi_k(x) \le \phi_k(x_k) + \langle \nabla \phi_k(x_k), x - x_k \rangle + \frac{L_g + \mu_k}{2} ||x - x_k||_2^2.$$

By minimizing both sides of the above inequality,

$$\phi_k^* \le \phi_k(x_k) - \frac{1}{2(L_g + \mu_k)} \|\nabla \phi_k(x_k)\|_2^2.$$

Noting that $\phi_k(x_k) = f(x_k)$ and $\mathbb{E}_{v_h(x_k)}[\|\nabla \phi_k(x_k)\|_2^2 |\mathcal{F}_k] \ge \|\nabla f(x_k)\|_2^2$, we have

$$\mathbb{E}_{v_h(x_k)}[\phi_k^*|\mathcal{F}_k] \le f(x_k) - \frac{1}{2(L_g + \mu_k)} \|\nabla f(x_k)\|_2^2.$$

Using $\mathbb{E}[\phi_k(x_{k+1})|\mathcal{F}_k] \leq \phi_k^* + \delta$ and the above inequality, we have

$$\mathbb{E}[\phi_k(x_{k+1})|\mathcal{F}_k] \le \delta + f(x_k) - \frac{1}{2(L_g + \mu_k)} \|\nabla f(x_k)\|_2^2.$$

Thus, it follows that

$$\begin{split} \mathbb{E}[f(x_{k+1}) + \frac{\mu_k}{2} \| x_{k+1} - x_k \|_2^2 |\mathcal{F}_k] \\ &\leq \mathbb{E}[g(x_{k+1}) - (h(x_k) + \langle \nabla h(x_k), x_{k+1} - x_k \rangle) + \frac{\mu_k}{2} \| x_{k+1} - x_k \|_2^2 |\mathcal{F}_k] \\ &= \mathbb{E}[\phi_k(x_{k+1}) - \langle \nabla h(x_k) - v_h(x_k), x_{k+1} - x_k \rangle |\mathcal{F}_k] \\ &\leq \mathbb{E}[\phi_k(x_{k+1}) |\mathcal{F}_k] + \mathbb{E}[\frac{1}{\mu_k} \| \nabla h(x_k) - v_h(x_k) \|_2^2 + \frac{\mu_k}{4} \| x_{k+1} - x_k \|_2^2 |\mathcal{F}_k] \\ &\leq \delta + f(x_k) - \frac{1}{2(L_g + \mu_k)} \| \nabla f(x_k) \|_2^2 + \frac{\sigma_h^2}{\mu_k} + \frac{\mu_k}{4} \mathbb{E}[\| x_{k+1} - x_k \|_2^2 |\mathcal{F}_k], \end{split}$$

where for the first inequality we used convexity of h and for the second inequality we used Young's inequality. This finishes the proof of Proposition 1.

Next, let us prove Theorem 1.

Proof of Theorem 1. Summing up the inequality of Proposition 1 over indices k = 1, ..., M and taking the expectation, we have

$$\sum_{k=1}^{M} \frac{1}{2(L_g + \mu_k)} \mathbb{E}[\|\nabla f(x_k)\|_2^2] \le M\delta + \sum_{k=1}^{M} \frac{\sigma_h^2}{\mu_k} + \mathbb{E}[f(x_1) - f(x_{M+1})].$$

Since $\mu_k = O(L_g) \wedge (\mu_k = \Omega(L_g) \vee \sigma_h = 0)$ and $f(x_1) - f(x_{M+1}) \leq f(x_1) - f_*$,

$$\sum_{k=1}^{M} \mathbb{E}[\|\nabla f(x_k)\|_2^2] \le O(L_g M \delta + M \sigma_h^2 + L_g(f(x_1) - f_*)).$$

Noting that

$$\mathbb{E}[\|\nabla f(x_R)\|_2^2 |\mathcal{F}_M] = \frac{1}{M} \sum_{k=1}^M \|\nabla f(x_k)\|_2^2,$$

we can conclude the proof of Theorem as follows,

$$\mathbb{E}[\|\nabla f(x_R)\|_2^2] = \mathbb{E}\left[\mathbb{E}[\|\nabla f(x_R)\|_2^2 |\mathcal{F}_M]\right] = \frac{1}{M} \sum_{k=1}^M \mathbb{E}[\|\nabla f(x_k)\|_2^2]$$
$$\leq O\left(L_g \delta + \sigma_h^2 + \frac{L_g(f(x_1) - f_*)}{M}\right).$$

Below is the proof of Proposition 2.

Proof of Proposition 2. It follows that

$$\begin{split} \mathbb{E}[\|\nabla f(x_{k+1})\|_{2}^{2}|\mathcal{F}_{k}] \\ &= \mathbb{E}[\|\nabla \phi_{k}(x_{k+1}) - (\nabla h(x_{k}) - v_{h}(x_{k})) + \nabla h(x_{k}) - \nabla h(x_{k+1}) - \mu_{k}(x_{k+1} - x_{k})\|_{2}^{2}|\mathcal{F}_{k}] \\ &\leq 4\mathbb{E}[\|\nabla \phi_{k}(x_{k+1})\|_{2}^{2} + \|\nabla h(x_{k}) - v_{h}(x_{k})\|_{2}^{2} + \|\nabla h(x_{k}) - \nabla h(x_{k+1})\|_{2}^{2} + \mu_{k}^{2}\|x_{k+1} - x_{k}\|_{2}^{2}|\mathcal{F}_{k}] \\ &\leq 4\sigma_{h}^{2} + 4\mathbb{E}[\|\nabla \phi_{k}(x_{k+1})\|_{2}^{2} + (\mu_{k}^{2} + L_{h}^{2})\|x_{k+1} - x_{k}\|_{2}^{2}|\mathcal{F}_{k}], \end{split}$$

where for the first inequality we used $\|\sum_{j=1}^{d} \alpha_j\|_2^2 \le d \sum_{j=1}^{d} \|\alpha_j\|_2^2$ and for the second inequality we used Lipschitz smoothness of h. Since ϕ_k is $(L_g + \mu_k)$ -smooth,

$$\frac{1}{2(L_g + \mu_k)} \mathbb{E}[\|\nabla \phi_k(x_{k+1})\|_2^2 |\mathcal{F}_k] \le \mathbb{E}[\phi_k(x_{k+1}) - \phi_k^* |\mathcal{F}_k] \le \delta.$$

Thus, we conclude

$$\mathbb{E}[\|\nabla f(x_{k+1})\|_2^2 |\mathcal{F}_k] \le 4\sigma_h^2 + 8(L_g + \mu_k)\delta + 4(\mu_k^2 + L_h^2)\mathbb{E}[\|x_{k+1} - x_k\|_2^2 |\mathcal{F}_k].$$

By combining Proposition 1 and 2, we prove Proposition 3.

Proof of Proposition 3. Noting that $\mu_k = O(L_h) \wedge \mu_k = \Omega(L_h)$, we have

$$\mathbb{E}[\|\nabla f(x_{k+1})\|_2^2 |\mathcal{F}_k] \leq O\left(\left(L_g + L_h\right)\delta + \sigma_h^2 + L_h^2 \mathbb{E}[\|x_{k+1} - x_k\|_2^2 |\mathcal{F}_k]\right)$$

$$\leq O\left(\left(L_g + L_h\right)\delta + \sigma_h^2 + L_h \mathbb{E}[f(x_k) - f(x_{k+1})|\mathcal{F}_k]\right),$$

where for the first and second inequality we used Proposition 1 and 2, respectively.

We give the proof of Theorem 2.

Proof of Theorem 2. Using Proposition 3 and $L_h = O(L_g)$, it follows that

$$\mathbb{E}[\|\nabla f(x_{k+1})\|_2^2 |\mathcal{F}_k] \le O\left(L_g \delta + \sigma_h^2 + L_h \mathbb{E}[f(x_k) - f(x_{k+1})|\mathcal{F}_k]\right).$$

This inequality resemble Proposition 1 up to the term $\mathbb{E}[||x_{k+1} - x_k||_2^2 |\mathcal{F}_k]$, so that we can show the theorem in the same manner as Theorem 1.

B The derivation of diagonal hessian approximation

To run AdaSPD with a diagonal hessian approximation for training BMs, we give $\operatorname{diag}(\nabla_{\theta}^2 h(\Theta))$, where h is the concave part of the log-likelihood of BMs. We only consider a parameter W_{ij} connecting a visible unit v^i and a hidden unit h^j because for the other parameters it can be shown in the same manner.

$$\begin{split} \nabla_{W_{ij}}^{2}h(\Theta) &= \nabla_{W_{ij}}^{2}\log\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))\\ &= \nabla_{W_{ij}}\left(\frac{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))v^{i}h^{j}}{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))}\right)\\ &= \frac{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))(v^{i}h^{j})^{2}}{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))} - \left(\frac{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))v^{i}h^{j}}{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))}\right)^{2}\\ &= \frac{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))v^{i}h^{j}}{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))} - \left(\frac{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))v^{i}h^{j}}{\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))}\right)^{2}\\ &= \nabla_{W_{ij}}\log\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta)) - \left(\nabla_{W_{ij}}\log\sum_{\mathbf{h}}\exp(-E(\mathbf{v},\mathbf{h};\Theta))\right)^{2}\\ &= \nabla_{W_{ij}}h(\Theta) - (\nabla_{W_{ij}}h(\Theta))^{2}, \end{split}$$

where we used $(v^i h^j)^2 = v^i h^j$ derived from the fact that v^i and h^j are binary units $\{0, 1\}$.

C Parameter settings for training RBMs and DBMs

In our experiments, we optimized L_2 -penalized log-likelihoods of RBMs and DBMs. Here, we give all parameter settings used for AdaSPD. The damping parameter λ was fixed to 10^{-4} . The scales of metrics were set to $\mu = 10^{-4}$ for diagonal hessian approximation and $\mu \in \{10^{-5}, 10^{-3}, 10^{-1}\}$ for scalar matrix. The number of underlying solver iterations T and the suffix averaging parameter α were set as follows: $T = \lceil N/b \rceil, \alpha T = \lceil T/2 \rceil$, where N is the number of data points and b is a mini-batch size. The other parameters are listed in Table 1 for binarized MNIST dataset and Table 2 for CalTech101 Silhouettes.

Table 1: Parameter settings for binarized MNIST

									
Model	Minibatch-size b	PCD-k	Mean-field iter.	L_2 -penalty	η				
RBM-15	32	1	-	0	10^{-1}				
RBM-25	32	3	-	0	10^{-1}				
RBM-500	128	10	-	$5 imes 10^{-4}$	10^{-1}				
DBM-500-500-1000	128	10	10	$3 imes 10^{-4}$	10^{-2}				
DBM-500-500-500-1000	128	10	10	5×10^{-4}	10^{-2}				

Table 2: Parameter settings for CalTech101 Silhouettes

		6			
Model	Minibatch-size b	PCD-k	Mean-field iter.	L_2 -penalty	η
RBM-15	32	1	-	0	10^{-2}
RBM-25	32	3	-	0	10^{-2}
RBM-500	64	10	-	10^{-3}	10^{-2}