Supplement: Stochastic Difference of Convex Algorithm and its Application to Training Deep Boltzmann Machines

A Proofs

We give proofs of convergence analyses. We first prove the Proposition [I1

Proof of Proposition[ll  Since ¢y, is (L, + pu;)-smooth function, we have

Ou(x) < 0n(ox) + (Vou(on), x — o) + 2503

By minimizing both sides of the above inequality,
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Noting that ¢y (1) = f(x) and Ey, (o) [| Vi () 31 7] = 1VF () 3. we have
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Using E[¢r (zx41)|Fr] < @) + 0 and the above inequality, we have
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Thus, it follows that
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where for the first inequality we used convexity of i and for the second inequality we used Young’s inequality. This
finishes the proof of Proposition[Il O

Next, let us prove Theorem Il

Proof of Theorem[ll Summing up the inequality of Proposition[dlover indices k = 1, ..., M and taking the expecta-
tion, we have
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Since pux = O(Lg) A\ (/J,k = Q(Lg) Vop = 0) and f(CEl) - f($M+1) < f(xl) — fe

M
Y BV (@r)3] < O(LgM6 + Maj, + L(f(21) = f))-
k=1

Noting that

E(IVf (zr)31Fm] = 57 Z V£ @),
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we can conclude the proof of Theorem as follows,

E[|Vf(zr)l3] = E [E[|Vf(zr)|3Fum]] = %ZEHIW(WIIS]
k=1
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Below is the proof of Proposition
Proof of Proposition It follows that

E[IV f (@r11)lI5]Fx]
= E[|[Vor(zri1) — (Vh(zr) — vn(zr)) + VA(zr) = Vh(zrir) — pr(@ei — 2x) |31 F5)
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where for the first inequality we used || 2?21 ajll3 <d Z;l:l |l ||3 and for the second inequality we used Lipschitz
smoothness of h. Since ¢y, is (Lg + p1)-smooth,
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Thus, we conclude

E[|Vf(wrs1)I31Fk] < 40h + 8(Lg + )8 + 4 + Li)E[[wrs1 — |3 F].
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By combining Proposition[Iland 2l we prove Proposition
Proof of Proposition[3] Noting that p, = O(Lp) A p, = Q(Lp,), we have
E[IVf(ze+)[31Fk] < O ((Lg + Ln) 8 + of; + LiE[| 241 — |31 F])
<O ((Lg+ Ln) 8 + ojp + LiE[f (x1) — f(xr11)|Fx])
where for the first and second inequality we used Proposition [[land 2] respectively. O

We give the proof of Theorem 21
Proof of Theorem[2l  Using PropositionBland Lj, = O(L,), it follows that
E[||V f(zer)l31Fk] < O (Lgd + oy + LaE[f (z1) — f(@rr1)|Fa]) -

This inequality resemble Proposition [Tl up to the term E[||x)41 — #x||3|Fx], so that we can show the theorem in the
same manner as Theorem [T} O

B The derivation of diagonal hessian approximation

To run AdaSPD with a diagonal hessian approximation for training BMs, we give diag(V3h(©)), where h is the
concave part of the log-likelihood of BMs. We only consider a parameter W;; connecting a visible unit v* and a hidden
unit A7 because for the other parameters it can be shown in the same manner.
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V%/V,Uh(@) = V%Vu logZexp(—E(V,h; 0))
h
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o h
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where we used (v'h?)? = v'h? derived from the fact that v* and h/ are binary units {0, 1}.

C Parameter settings for training RBMs and DBMs

In our experiments, we optimized Lo-penalized log-likelihoods of RBMs and DBMs. Here, we give all parameter
settings used for AdaSPD. The damping parameter A was fixed to 10~%. The scales of metrics were set to y = 10~*
for diagonal hessian approximation and 1 € {107°,1073,107!} for scalar matrix. The number of underlying solver
iterations T and the suffix averaging parameter o were set as follows: T = [N/b],aT = [T/2], where N is the
number of data points and b is a mini-batch size. The other parameters are listed in Table [I] for binarized MNIST
dataset and Table 2| for CalTech101 Silhouettes.

Table 1: Parameter settings for binarized MNIST

Model Minibatch-size b PCD-k Mean-field iter.  Lo-penalty n
RBM-15 32 1 - 0 101
RBM-25 32 3 - 0 10t
RBM-500 128 10 - 5x107* 107!

DBM-500-500-1000 128 10 10 3x107% 1072
DBM-500-500-500-1000 128 10 10 5x 1074 1072

Table 2: Parameter settings for CalTech101 Silhouettes
Model Minibatch-size b PCD-k Mean-field iter.  Ly-penalty n

RBM-15 32 1 - 0 1072
RBM-25 32 3 - 0 1072
RBM-500 64 10 - 1073 1072
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