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Abstract

We consider the non-square matrix sensing
problem, under restricted isometry prop-
erty (RIP) assumptions. We focus on the
non-convex formulation, where any rank-r
matrix X ∈ Rm×n is represented as UV >,
where U ∈ Rm×r and V ∈ Rn×r. In this
paper, we complement recent findings on
the non-convex geometry of the analogous
PSD setting [5], and show that matrix fac-
torization does not introduce any spurious
local minima, under RIP.

1 Introduction and Problem
Formulation

Consider the following matrix sensing problem:

min
X∈Rm×n

f(X) := ‖A(X)− b‖22

subject to rank(X) ≤ r.
(1)

Here, b ∈ Rp denotes the set of observations and
A : Rm×n → Rp is the sensing linear map. The
motivation behind this task comes from several ap-
plications, where we are interested in inferring an
unknown matrix X? ∈ Rm×n from b. Common as-
sumptions are (i) p � m · n, (ii) b = A(X?) + w,
i.e., we have a linear measurement system, and (iii)
X? is rank-r, r � min{m,n}. Such problems ap-
pear in a variety of research fields and include image
processing [11, 44], data analytics [13, 11], quantum
computing [1, 19, 26], systems [32], and sensor local-
ization [23] problems.
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There are numerous approaches that solve (1), both
in its original non-convex form or through its con-
vex relaxation; see [28, 16] and references therein.
However, satisfying the rank constraint (or any nu-
clear norm constraints in the convex relaxation) per
iteration requires SVD computations, which could
be prohibitive in practice for large-scale settings.
To overcome this obstacle, recent approaches reside
on non-convex parametrization of the variable space
and encode the low-rankness directly into the ob-
jective [25, 22, 2, 43, 49, 14, 4, 48, 42, 50, 24, 35,
46, 37, 36, 47, 34, 29, 33]. In particular, we know
that a rank-r matrix X ∈ Rm×n can be written as
a product UV >, where U ∈ Rm×r and V ∈ Rn×r.
Such a re-parametrization technique has a long his-
tory [45, 15, 39], and was popularized by Burer and
Monteiro [8, 9] for solving semi-definite programs
(SDPs). Using this observation in (1), we obtain
the following non-convex, bilinear problem:

min
U∈Rm×r,V ∈Rn×r

f(UV >) := ‖A(UV >)− b‖22.

(2)
Now, (2) has a different form of non-convexity due to
the bilinearity of the variable space, which raises the
question whether we introduce spurious local min-
ima by doing this transformation.

Contributions: The goal of this paper is to an-
swer negatively to this question: We show that,
under standard regulatory assumptions on A, UV >

parametrization does not introduce any spurious lo-
cal minima. To do so, we non-trivially generalize
recent developments for the square, PSD case [5]
to the non-square case for X?. Our result requires
a different (but equivalent) problem re-formulation
and analysis, with the introduction of an appropri-
ate regularizer in the objective.

Related work. There are several papers that con-
sider similar questions, but for other objectives. [40]
characterizes the non-convex geometry of the com-
plete dictionary recovery problem, and proves that



all local minima are global; [6] considers the problem
of non-convex phase synchronization where the task
is modeled as a non-convex least-squares optimiza-
tion problem, and can be globally solved via a mod-
ified version of power method; [41] show that a non-
convex fourth-order polynomial objective for phase
retrieval has no local minimizers and all global min-
imizers are equivalent; [3, 7] show that the Burer-
Monteiro approach works on smooth semidefinite
programs, with applications in synchronization and
community detection; [17] consider the PCA prob-
lem under streaming settings and use martingale ar-
guments to prove that stochastic gradient descent on
the factors reaches to the global solution with non-
negligible probability; [20] introduces the notion of
strict saddle points and shows that noisy stochastic
gradient descent can escape saddle points for generic
objectives f ; [30] proves that gradient descent con-
verges to (local) minimizers almost surely, using ar-
guments drawn from dynamical systems theory.

More related to this paper are the works of [21] and
[5]: they show that matrix completion and sensing
have no spurious local minima, for the case where
X? is square and PSD. For both cases, extending
these arguments for the more realistic non-square
case is a non-trivial task.

1.1 Assumptions and Definitions

We first state the assumptions we make for the ma-
trix sensing setting. We consider the case where the
linear operator A satisfies the Restricted Isometry
Property, according to the following definition [12]:

Definition 1.1 (Restricted Isometry Property
(RIP)). A linear operator A : Rm×n → Rp satisfies
the restricted isometry property on rank-r matrices,
with parameter δr, if the following set of inequalities
hold for all rank-r matrices X:

(1− δr) · ‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr) · ‖X‖2F .

Characteristic examples are Gaussian-based linear
maps [18, 38], Pauli-based measurement operators,
used in quantum state tomography applications [31],
Fourier-based measurement operators, which lead to
computational gains in practice due to their struc-
ture [27, 38], or even permuted and sub-sampled
noiselet linear operators, used in image and video
compressive sensing applications [44].

In this paper, we consider sensing mechanisms that
can be expressed as:

(A(X))i = 〈Ai, X〉 , ∀i = 1, . . . , p, and Ai ∈ Rm×n.

E.g., for the case of a Gaussian map A, Ai are in-
dependent, identically distributed (i.i.d.) Gaussian
matrices; for the case of a Pauli map A, Ai ∈ Rn×n
are i.i.d. and drawn uniformly at random from a set
of scaled Pauli “observables” (P1⊗P2⊗· · ·⊗Pd)/

√
n,

where n = 2d and Pi is a 2× 2 Pauli observable ma-
trix [31].

A useful property derived from the RIP definition is
the following [10]:

Proposition 1.2 (Useful property due to RIP). For
a linear operator A : Rm×n → Rp that satisfies the
restricted isometry property on rank-r matrices, the
following inequality holds for any two rank-r matri-
ces X, Y ∈ Rm×n:∣∣∣∣∣
p∑
i=1

〈Ai, X〉 · 〈Ai, Y 〉 − 〈X,Y 〉

∣∣∣∣∣ ≤ δ2r · ‖X‖F · ‖Y ‖F .
An important issue in optimizing f over the factored
space is the existence of non-unique possible factor-
izations for a given X. Since we are interested in
obtaining a low-rank solution in the original space,
we need a notion of distance to the low-rank solu-
tion X? over the factors. Among infinitely many
possible decompositions of X?, we focus on the set
of “equally-footed” factorizations [43]:

X ?r =
{

(U?, V ?) : U?V ?
>

= X?,

σi(U
?) = σi(V

?) = σi(X
?)1/2,∀i ∈ [r]

}
. (3)

Given a pair (U, V ), we define the distance to X? as:

Dist (U, V ;X?) = min
(U?,V ?)∈X?

r

∥∥∥∥[UV
]
−
[
U?

V ?

]∥∥∥∥
F

.

1.2 Problem Re-formulation

Before we delve into the main results, we need to
further reformulate the objective (2) for our anal-
ysis. First, we use a well-known transformation to
reduce (2) to a semidefinite optimization. Let us
define auxiliary variables

W =

[
U
V

]
∈ R(m+n)×r, W̃ =

[
U
−V

]
∈ R(m+n)×r.

Based on the auxiliary variables, we define the
linear map B : R(m+n)×(m+n) → Rp such
that (B(WW>))i = 〈Bi,WW>〉, and Bi ∈
R(m+n)×(m+n). To make a connection between the
variable spaces (U, V ) and W , A and B are related
via matrices Ai and Bi as follows:

Bi =
1

2
·
[

0 Ai
A>i 0

]
.
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This further implies that:

(B(WW>))i =
1

2
· 〈Bi,WW>〉

=
1

2
·
〈[

0 Ai
A>i 0

]
,

[
UU> UV >

V U> V V >

]〉
=
〈
Ai, UV

>〉 .
Given the above, we re-define f : R(m+n)×r → R
such that

f(W ) := ‖B(WW>)− b‖22. (4)

It is important to note that B operates on (m+n)×
(m + n) matrices, while we assume RIP on A and
m × n matrices. Making no other assumptions for
B, we cannot directly apply [5] on (4), but a rather
different analysis is required.

In addition to this redefinition, we also introduce a
regularizer g : R(m+n)×r → R such that

g(W ) := λ
∥∥∥W̃>W∥∥∥2

F
= λ

∥∥U>U − V >V ∥∥2
F
.

This regularizer was first introduced in [43] to prove
convergence of its algorithm for non-square matrix
sensing, and it is also used in this paper to analyze
local minima of the problem. After setting λ = 1

4 ,
(2) can be equivalently written as:

minimize
W∈R(m+n)×r

‖B(WW>)− b‖22 +
1

4
·
∥∥∥W̃>W∥∥∥2

F
.

(5)
By equivalent, we note that the addition of g in the
objective does not change the problem, since for any
rank-r matrix X there is a pair of factors (U, V ) such
that g(W ) = 0. It merely reduces the set of optimal
points from all possible factorizations of X? to bal-
anced factorizations of X? in X ?r . U? and V ? have
the same set of singular values, which are the square
roots of the singular values of X?. A key property
of the balanced factorizations is the following.

Proposition 1.3. For any factorization of the form
(3), it holds that

W̃ ?>W ? = U?>U? − V ?>V ? = 0

Proof. By “balanced factorizations” of X? =
U?V ?>, we mean that factors U? and V ? satisfy

U? = AΣ1/2R, V ? = BΣ1/2R (6)

where X? = AΣB> is the SVD, and R ∈ Rr×r is an
orthonormal matrix. Apply this to W̃ ?>W ? to get
the result.

Therefore, we have g(W ?) = 0, and (U?, V ?) is an
optimal point of (5).

2 Main Results

This section describes our main results on the func-
tion landscape of the non-square matrix sensing
problem. The following theorem bounds the dis-
tance of any local minima to the global minimum,
by the function value at the global minimum.

Theorem 2.1. Suppose W ? is any target matrix
of the optimization problem (5), under the balanced
singular values assumption for U? and V ?. If W is
a critical point satisfying the first- and the second-
order optimality conditions, i.e., ∇(f + g)(W ) = 0
and ∇2(f + g)(W ) � 0, then we have

1−5δ2r−544δ24r−1088δ2rδ
2
4r

8(40+68δ2r)(1+δ2r)

∥∥WW> −W ?W ?>∥∥2
F

≤
∥∥∥A(U?V ?>)− b

∥∥∥2 . (7)

Observe that for this bound to make sense, the term
1−5δ2r−544δ24r−1088δ2rδ

2
4r

8(40+68δ2r)(1+δ2r)
needs to be positive. We

provide some intuition of this result next. Combined
with Lemma 5.14 in [43], we can also obtain the dis-
tance between (U, V ) and (U?, V ?).

Corollary 2.2. For W =

[
U
V

]
and given the as-

sumptions of Theorem 2.1, we have

σr(X
?) · 1−5δ2r−544δ

2
4r−1088δ2rδ

2
4r

10(40+68δ2r)(1+δ2r)
·Dist (U, V ;X?)

2

≤
∥∥∥A(U?V ?>)− b

∥∥∥2 . (8)

Implications of these results are described next,
where we consider specific settings.

Remark 1 (Noiseless matrix sensing). Suppose that

W ? =

[
U?

V ?

]
is the underlying unknown true matrix,

i.e., X? = U?V ?> is rank-r and b = A(U?V ?>). We
assume the noiseless setting, w = 0. If 0 ≤ δ2r ≤
δ4r . 0.0363, then

1−5δ2r−544δ24r−1088δ2rδ
2
4r

10(40+68δ2r)(1+δ2r)
> 0 in

Corollary 2.2. Since the RHS of (8) is zero, this
further implies that Dist (U, V ;X?) = 0, i.e., any
critical point W that satisfies first- and second-order
optimality conditions is global minimum.

Remark 2 (Noisy matrix sensing). Suppose that
W ? is the underlying true matrix, such that X? =
U?V ?> and is rank-r, and b = A(U?V ?>) + w, for
some noise term w. If 0 ≤ δ2r ≤ δ4r < 0.02, then
it follows from (7) that for any local minima W the
distance to U?V ?> is bounded by

1

500

∥∥WW> −W ?W ?>∥∥
F
≤ ‖w‖ .
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Remark 3 (High-rank matrix sensing). Suppose
that X? is of arbitrary rank and let X?

r denote its
best rank-r approximation. Let b = A(X?) + w
where w is some noise and let (U?, V ?) be a bal-
anced factorization of X?

r . If 0 ≤ δ2r ≤ δ4r < 0.005,
then it follows from (8) that for any local minima
(U, V ) the distance to (U?, V ?) is bounded by

Dist (U, V ;X?) ≤ 1250
3σr(X?) · ‖A(X? −X?

r ) + w‖ .

In plain words, the above remarks state that, given
sensing mechanism A with small RIP constants,
any critical point of the non-square matrix sensing
objective—with low rank optimum and no noise—is
a global minimum. As we describe in Section 3, due
to this fact, gradient descent over the factors can
converge, with high probability, to (or very close to)
the global minimum.

3 What About Saddle Points?

Our discussion so far concentrates on whether UV >

parametrization introduces spurious local minima.
Our main results show that any point (U, V ) that
satisfies both first- and second-order optimality con-
ditions1 should be (or lie close to) the global op-
timum. However, we have not discussed what hap-
pens with saddle points, i.e., points (U, V ) where the
Hessian matrix contains both positive and negative
eigenvalues.2 This is important for practical rea-
sons: first-order methods rely on gradient informa-
tion and, thus, can easily get stuck to saddle points
that may be far away from the global optimum.

[20] studied conditions that guarantee that
stochastic gradient descent—randomly initialized—
converges to a local minimum; i.e., we can avoid
getting stuck to non-degenerate saddle points.
These conditions include f + g being bounded and
smooth, having Lipschitz Hessian, being locally
strongly convex, and satisfying the strict saddle
property, according to the following definition.

Definition 3.1. [20] A twice differentiable function
f+g is strict saddle, if all its stationary points, that
are not local minima, satisfy λmin(∇2(f+g)(·)) < 0.

[30] relax some of these conditions and prove the
following theorem (for standard gradient descent).

1Note here that the second-order optimality condition
includes positive semi-definite second-order information;
i.e., Theorem 2.1 also handles saddle points due to the
semi-definiteness of the Hessian at these points.

2Here, we do not consider the harder case where sad-
dle points have Hessian with positive, negative and zero
eigenvalues.

Theorem 3.2 ([30] - Informal). If the objective
is twice differentiable and satisfies the strict saddle
property, then gradient descent, randomly initialized
and with sufficiently small step size, converges to a
local minimum almost surely.

In this section, based on the analysis in [5], we
show that f + g satisfy the strict saddle property,
which implies that gradient descent can avoid sad-
dle points and converge to the global minimum, with
high probability.

Theorem 3.3. Consider noiseless measurements
b = A(X?), with A satisfying RIP with constant
δ4r ≤ 1

100 . Assume that rank(X?) = r. Let (U, V )
be a pair of factors that satisfies the first order op-

timality condition ∇f(W ) = 0, for W =

[
U
V

]
, and

UV > 6= X?. Then,

λmin

(
∇2(f + g)(W )

)
≤ −1

7
· σr(X?).

Proof. Let Z ∈ R(m+n)×r. Then, by (10), the proof
of Theorem 2.1 and the fact that b = A(X?) (noise-
less), ∇2(f + g)(W ) satisfies the following:

vec(Z)> · ∇2(f + g)(W ) · vec(Z)

(13),(12)

≤ 1 + 2δ2r
2

r∑
j=1

∥∥∥Weje
>
j (W −W ?R)

∥∥∥2
F

− 3− 8δ2r
16

·
∥∥∥WW> −W ?W ?>

∥∥∥2
F

(14),(15)

≤
(
1+2δ2r

16
· (1 + 34 · 16δ24r)− 3−8δ2r

16

)
·
∥∥∥WW> −W ?W ?>

∥∥∥2
F

≤ −1+5δ4r+272δ24r+544δ34r
8

·
∥∥∥WW> −W ?W ?>

∥∥∥2
F

≤ − 1
10
·
∥∥∥WW> −W ?W ?>

∥∥∥
F

(9)

where the last inequality is due to the requirement
δ4r ≤ 1

100 . For the LHS of (9), we can lower bound
as follows:

vec(Z)> · ∇2(f + g)(W ) · vec(Z)

≥ ‖Z‖2F · λmin

(
∇2(f + g)(W )

)
= ‖W −W ?R‖2F · λmin

(
∇2(f + g)(W )

)
where the last equality is by setting Z = W −W ?R.
Combining this expression with (9), we obtain:

λmin

(
∇2(f + g)(W )

)
≤ −

1/10

‖W −W ?R‖2F
·
∥∥∥WW> −W ?W ?>

∥∥∥
F

(a)

≤ −
1/10

‖W −W ?R‖2F
· 2(
√

2− 1) · σr(X?) · ‖W −W ?R‖2F

≤ −1

7
· σr(X?),
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where (a) is due to Lemma 5.4, [43]. This completes
the proof.

4 Proof of Main Results

We first describe the first- and second-order opti-
mality conditions for f + g objective with W vari-
able. Then, we provide a detailed proof of the main
results: by carefully analyzing the conditions, we
study how a local optimum is related to the global
optimum.

4.1 Gradient and Hessian of f and g

The gradients of f and g w.r.t. W are given by:

∇f(W ) =

p∑
i=1

(
〈
Bi,WW>

〉
− bi) ·Bi ·W

∇g(W ) =
1

4
W̃W̃>W

(
≡ 1

4
·
[
U
−V

]
· (U>U − V >V )

)
Regarding Hessian information, we are interested in
the positive semi-definiteness of ∇2(f + g); for this
case, it is easier to write the second-order Hessian
information with respect to to some matrix direction
Z ∈ R(m+n)×r, as follows:

vec(Z)> · ∇2f(W ) · vec(Z)

=
〈

lim
t→0

[
∇f(W+tZ)−∇f(W )

t

]
, Z
〉

=

p∑
i=1

〈Bi, ZW> +WZ>〉 ·
〈
Bi, ZW

>〉
+

p∑
i=1

(〈
Bi,WW>

〉
− bi

)
· 〈Bi, ZZ>〉

and

vec(Z)> · ∇2g(W ) · vec(Z)

=
〈

lim
t→0

[
∇g(W+tZ)−∇g(W )

t

]
, Z
〉

=
1

4

〈
Z̃W̃>, ZW>

〉
+

1

4

〈
W̃ Z̃>, ZW>

〉
+

1

4

〈
W̃W̃>, ZZ>

〉
.

4.2 Optimality conditions

Given the expressions above, we now describe first-
and second-order optimality conditions on the com-
posite objective f + g.

First-order optimality condition. By the first-
order optimality condition of a pair (U, V ) such that

W =

[
U
V

]
, we have ∇(f + g) (W ) = 0. This further

implies:

∇(f + g) (W ) = 0 ⇒
p∑
i=1

(〈
Bi,WW>

〉
− bi

)
·Bi ·W +

1

4
W̃W̃>W = 0

(11)

Second-order optimality condition. For a
point W that satisfies the second-order optimality
condition ∇2(f + g)(W ) � 0, (10) holds for any
Z ∈ R(m+n)×r.

4.3 Proof of Theorem 2.1

Suppose that W is a critical point satisfying the
optimality conditions (11) and (10). As in [5],
we sum up the above condition for Z1 , (W −
W ?R)e1e

>
1 , . . . , Zr , (W − W ?R)ere

>
r . For sim-

plicity, we first assume Z = W −W ?R.

Bounding terms (A), (C) and (D) in (10).
The following bounds work for any Z.

(A) =

p∑
i=1

〈
Bi, ZW

>
〉2

+

p∑
i=1

〈
Bi, ZW

>
〉
·
〈
Bi,WZ>

〉
(a)
= 2 ·

p∑
i=1

〈
Bi, ZW

>
〉2

=
1

2

p∑
i=1

(〈
Ai, ZUV

>
〉

+
〈
Ai, UZ

>
V

〉)2
(b)

≤ 1 + δ2r
2

∥∥∥ZUV >∥∥∥2
F

+
1 + δ2r

2

∥∥∥UZ>V ∥∥∥2
F

+
〈
ZUV

>, UZ>V

〉
+ δ2r ·

∥∥∥ZUV >∥∥∥
F
·
∥∥∥UZ>V ∥∥∥

F

(c)

≤ 1 + 2δ2r
2

∥∥∥ZUV >∥∥∥2
F

+
1 + 2δ2r

2

∥∥∥UZ>V ∥∥∥2
F︸ ︷︷ ︸

(A1)

+
〈
ZUV

>, UZ>V

〉
︸ ︷︷ ︸

(A2)

where (a) follows from that every Bi is symmetric,
(b) follows from Proposition 1.2, and (c) follows from
the AM-GM inequality. We also have

(C) =
〈
Z̃W̃>, ZW>

〉
=
∥∥∥ZUU>∥∥∥2

F

+
∥∥∥ZV V >∥∥∥2

F

−
∥∥∥ZUV >∥∥∥2

F
−
∥∥∥ZV U>∥∥∥2

F
,

(A1) +
1

4
(C) ≤ 1 + 4δ2r

4

∥∥∥ZW>∥∥∥2
F
,
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vec(Z)> · ∇2(f + g)(W ) · vec(Z) ≥ 0
p∑
i=1

〈Bi, ZW> +WZ>〉 ·
〈
Bi, ZW

>
〉

︸ ︷︷ ︸
(A)

+

p∑
i=1

(〈
Bi,WW>

〉
− bi

)
·
〈
Bi, ZZ

>
〉

︸ ︷︷ ︸
(B)

+
1

4

〈
Z̃W̃>, ZW>

〉
︸ ︷︷ ︸

(C)

+
1

4

〈
W̃ Z̃>, ZW>

〉
︸ ︷︷ ︸

(D)

+
1

4

〈
W̃W̃>, ZZ>

〉
︸ ︷︷ ︸

(E)

≥ 0, ∀Z =

[
ZU
ZV

]
∈ R(m+n)×r. (10)

(D) =
〈
W̃ Z̃>, ZW>

〉
=
〈
UZ>U , ZUU

>
〉

+
〈
V Z>V , ZV V

>
〉
−
〈
UZ>V , ZUV

>
〉

−
〈
V Z>U , ZV U

>
〉
,

(A2) +
1

4
(D) =

1

4

〈
WZ>, ZW>

〉
,

(A) +
1

4
(C) +

1

4
(D) ≤ 1

8

∥∥∥WZ> + ZW>
∥∥∥2
F

+ δ2r

∥∥∥ZW>∥∥∥2
F
.

Bounding terms (B) and (E). We have

(B) =

p∑
i=1

(〈
Bi,WW>

〉
− yi

)
·
〈
Bi, ZZ

>
〉

(a)
= −

p∑
i=1

(〈
Bi,WW>

〉
− yi

)
·
〈
Bi,WW> −W ?W ?>

〉
− 1

2

〈
W̃W̃>, (W −W ?R)W>

〉
= −

p∑
i=1

〈
Bi,WW>

〉2

− 1

2

〈
W̃W̃>, (W −W ?R)W>

〉
−

p∑
i=1

(〈
Bi,W

?W ?>
〉
− yi

)
·
〈
Bi,WW> −W ?W ?>

〉
(b)

≤ − (1− δ2r)
∥∥∥UV > − U?V ?>∥∥∥2

F︸ ︷︷ ︸
(B1)

−1

4
·
〈
W̃W̃>, 2ZW>

〉
︸ ︷︷ ︸

(B2)

−
p∑
i=1

(〈
Bi,W

?W ?>
〉
− yi

)
·
〈
Bi,WW> −W ?W ?>

〉
︸ ︷︷ ︸

(B3)

where at (a) we add the first-order optimality equa-
tion

〈
p∑
i=1

(〈
Bi,WW>

〉
− yi

)
·Bi ·W, 2W − 2W ?R

〉

= −1

2

〈
W̃W̃>W,W −W ?R

〉
,

and (b) follows from Proposition 1.2. Then we have

(B2)− (E)

=
〈
W̃W̃>, 2ZW> − ZZ>

〉
(a)
=
〈
W̃W̃>, 2WW> −W ?RW> −WR>W ?>

− (W −W ?R)(W −W ?R)>
〉

=
〈
W̃W̃>,WW> −W ?W ?>

〉
(b)
=
〈
W̃W̃>,WW> −W ?W ?>

〉
+
〈
W̃ ?W̃ ?>,W ?W ?>

〉
(c)

≥
〈
W̃W̃>,WW> −W ?W ?>

〉
+
〈
W̃ ?W̃ ?>,W ?W ?>

〉
−
〈
W̃ ?W̃ ?>,WW>

〉
=
〈
W̃W̃> − W̃ ?W̃ ?>,WW> −W ?W ?>

〉
where (a) follows from that W̃W̃> is symmetric,

(b) follows from Proposition 1.3, (c) follows from
that the inner product of two PSD matrices is non-
negative. We then have,

(B1) +
1

4
(B2)− 1

4
(E)

≥ (1− δ2r)
∥∥∥UV > − U?V ?>∥∥∥2

F

+
1

4

〈
W̃W̃> − W̃ ?W̃ ?>,WW> −W ?W ?>

〉
=

(
1− δ2r −

1

2

)∥∥∥UV > − U?V ?>∥∥∥2
F

+
1

4

∥∥∥UU> − U?U?>∥∥∥2
F

+
1

4

∥∥∥V V > − V ?V ?>∥∥∥2
F

≥ 1− 2δ2r
4

·
∥∥∥WW> −W ?W ?>

∥∥∥2
F

For (B3), we have

− (B3)

=

p∑
i=1

(〈
Bi,W

?W ?>
〉
− bi

)
·
〈
Bi,WW> −W ?W ?>

〉
(a)

≤
∥∥∥A(U?V ?

>
)− b

∥∥∥ ·( p∑
i=1

〈
Bi,WW> −W ?W ?>

〉2
) 1

2

(b)

≤
√

1 + δ2r ·
∥∥∥A(U?V ?

>
)− b

∥∥∥ · ∥∥∥WW> −W ?W ?>
∥∥∥
F6



where (a) follows from the Cauchy-Schwarz inequal-
ity, and (b) follows from Proposition 1.2. We get

(B) +
1

4
(E)

≤ −1− 2δ2r
4

·
∥∥∥WW> −W ?W ?>

∥∥∥2
F

+
√

1 + δ2r ·
∥∥∥A(U?V ?

>
)− b

∥∥∥ · ∥∥∥WW> −W ?W ?>
∥∥∥
F

≤ −3− 8δ2r
16

·
∥∥∥WW> −W ?W ?>

∥∥∥2
F

+ 16(1 + δ2r) ·
∥∥∥A(U?V ?

>
)− b

∥∥∥2 (12)

where the last inequality follows from the AM-GM
inequality.

Summing up the inequalities for Z1, . . . , Zr.
Now we apply Zj = Zeje

>
j . Since ZZ> =∑r

j=1 ZjZ
>
j in (10), the analysis does not change

for (B) and (E). For (A), (C), and (D), we obtain

(A) +
1

4
(C) +

1

4
(D)

≤
r∑
j=1

{
1

8

∥∥WZ>j + ZjW
>∥∥2

F
+ δ2r

∥∥ZjW>∥∥2F}
We have

r∑
j=1

∥∥∥WZ>j + ZjW
>
∥∥∥2
F

= 2 ·
r∑
j=1

∥∥∥Weje
>
j Z
>
∥∥∥2
F

+ 2 ·
r∑
i=1

〈
Weje

>
j Z
>, Zeje

>
j W

>
〉

= 2 ·
r∑
j=1

∥∥∥Weje
>
j Z
>
∥∥∥2
F

+ 2 ·
r∑
i=1

(e>j Z
>Wej)

2

≤ 2 ·
r∑
j=1

∥∥∥Weje
>
j Z
>
∥∥∥2
F

+ 2 ·
r∑
i=1

‖Zej‖2 · ‖Wej‖2

= 4 ·
r∑
j=1

∥∥∥Weje
>
j Z
>
∥∥∥2
F

where the inequality follows from the Cauchy-
Schwarz inequality. Applying this bound, we get

(A) +
1

4
(C) +

1

4
(D)

≤ 1 + 2δ2r
2

r∑
j=1

∥∥Weje
>
j (W −W ?R)

∥∥2
F
.

(13)

Next, we re-state [5, Lemma 4.4]:

Lemma 4.1. Let W and W ? be two matrices, and
Q is an orthonormal matrix that spans the column
space of W . Then, there exists an orthonormal ma-
trix R such that, for any stationary point W of g(W )

that satisfies first and second order condition, the
following holds:

r∑
j=1

‖Weje
>
j (W −W ?R)‖2F

≤ 1
8 · ‖WW> −W ?W ?>‖2F
+ 34

8 · ‖(WW> −W ?W ?>)QQ>‖2F (14)

And we have the following variant of [5, Lemma 4.2].

Lemma 4.2. For any pair of points (U, V ) that
satisfies the first-order optimality condition, and A
be a linear operator satisfying the RIP condition with
parameter δ4r, the following inequality holds:

1

4
·
∥∥∥(WW> −W ?W ?>)QQ>

∥∥∥
F

≤ δ4r ·
∥∥∥WW> −W ?W ?>

∥∥∥
F

+

√
1 + δ2r

2
·
∥∥∥A(U?V ?>)− b

∥∥∥ (15)

Applying the above two lemmas, we can get

(A) +
1

4
(C) +

1

4
(D)

≤ (1+2δ2r)·(1+1088δ24r)

16

∥∥∥WW> −W ?W ?>
∥∥∥2
F

+ 34(1 + 2δ2r)(1 + δ2r)
∥∥∥A(U?V ?

>
)− b

∥∥∥2 .
(16)

Final inequality. Plugging (16) and (12) to (10),
we get

1−5δ2r−544δ24r−1088δ2rδ
2
4r

8(40+68δ2r)(1+δ2r)

∥∥WW> −W ?W ?>∥∥2
F

≤
∥∥∥A(U?V ?>)− b

∥∥∥2 ,
which completes the proof.

5 Appendix: Proof of Lemma 4.2

The first-order optimality condition can be written
as

0 = 〈∇(f + g)(W ), Z〉

=

p∑
i=1

(〈
Bi,WW>

〉
− bi

)
· 〈BiW,Z〉+

1

4

〈
W̃W̃>W,Z

〉
=

p∑
i=1

〈
Bi,WW> −W ?W ?>

〉〈
Bi, ZW

>
〉

+

p∑
i=1

(〈
Bi,W

?W ?>
〉
− bi

)
·
〈
Bi, ZW

>
〉

+
1

4

〈
W̃W̃>, ZW>

〉
7



=
1

2
·
p∑
i=1

〈
Ai, UV

> − U?V ?>
〉〈

Ai, ZUV
> + UZ>V

〉
+

1

2
·
p∑
i=1

(〈
Ai, U

?V ?
>
〉
− bi

)
·
〈
Ai, ZUV

> + UZ>V

〉
+

1

4

〈
W̃W̃>, ZW>

〉
,

∀Z =

[
ZU
ZV

]
∈ R(m+n)×r. Applying Proposition 1.2

and the Cauchy-Schwarz inequality to the condition,
we obtain

1

2

〈
UV > − U?V ?>, ZUV > + UZ>V

〉
︸ ︷︷ ︸

(A)

+
1

4

〈
W̃W̃>, ZW>

〉
︸ ︷︷ ︸

(B)

≤ δ4r
∥∥∥UV > − U?V ?>∥∥∥

F

∥∥∥ZUV > + UZ>V

∥∥∥
F︸ ︷︷ ︸

(C)

+

√
1 + δ2r

2

∥∥∥A(U?V ?
>

)− b
∥∥∥∥∥∥ZUV > + UZ>V

∥∥∥
F︸ ︷︷ ︸

(D)

(17)

Let Z = (WW>−W ?W ?>)QR−1> where W = QR
is the QR decomposition. Then we obtain

ZW> = (WW> −W ?W ?>)QQ>.

We have

2(A) = 2

〈[
0 UV > − U?V ?>

V U> − V ?U?> 0

]
, ZW>

〉
=
〈

(WW> − W̃W̃>)− (W ?W ?> − W̃ ?W̃ ?>),

(WW> −W ?W ?>)QQ>
〉

and

(B) =
〈
W̃W̃>, (WW> −W ?W ?>)QQ>

〉
(a)
=
〈
W̃W̃>, (WW> −W ?W ?>)QQ>

〉
+
〈
W̃ ?W̃ ?>,W ?W ?>QQ>

〉
(b)

≥
〈
W̃W̃>, (WW> −W ?W ?>)QQ>

〉
−
〈
W̃ ?W̃ ?>, (WW> −W ?W ?>)QQ>

〉
=
〈
W̃W̃> − W̃ ?W̃ ?>, (WW> −W ?W ?>)QQ>

〉
where (a) follows from Proposition 1.3, and (b) fol-

lows from that the inner product of two PSD matri-
ces is non-negative. Then we obtain

2(A) + (B)

≥
〈
WW> −W ?W ?>, (WW> −W ?W ?>)QQ>

〉
=
∥∥∥(WW> −W ?W ?>)Q

∥∥∥2
F

=
∥∥∥(WW> −W ?W ?>)QQ>

∥∥∥2
F

For (C), we have

(C) =
∥∥∥UV > − U?V ?>∥∥∥

F
·
∥∥ZUV > + UZ>V

∥∥
F

≤ 1√
2
·
∥∥∥WW> −W ?W ?>

∥∥∥
F

·
√

2 ‖ZUV >‖2F + 2
∥∥UZ>V ∥∥2F

≤
∥∥∥WW> −W ?W ?>

∥∥∥
F
·
√
‖ZW>‖2F

=
∥∥∥WW> −W ?W ?>

∥∥∥
F

·
∥∥∥(WW −W ?W ?>)QQ>

∥∥∥
F

Plugging the above bounds into (17), we get

1

4

∥∥∥(WW> −W ?W ?>)QQ>
∥∥∥2
F
≤

δ4r

∥∥∥WW> −W ?W ?>
∥∥∥
F

∥∥∥(WW> −W ?W ?>)QQ>
∥∥∥
F

+
√

1+δ2r
2

∥∥∥A(U?V ?
>

)− b
∥∥∥ ∥∥∥(WW> −W ?W ?>)QQ>

∥∥∥
F

In either case of
∥∥∥(WW> −W ?W ?>)QQ>

∥∥∥
F

being

zero or positive, we can obtain

1

4
·
∥∥∥(WW> −W ?W ?>)QQ>

∥∥∥
F

≤ δ4r ·
∥∥∥WW> −W ?W ?>

∥∥∥
F

+
√

1+δ2r
2
·
∥∥∥A(U?V ?

>
)− b

∥∥∥
This completes the proof.
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