Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach

Dohuyng Park
Facebook

Anastasios Kyrillidis
UT Austin

Constantine Caramanis
UT Austin

Sujay Sanghavi
UT Austin

Abstract

We consider the non-square matrix sensing problem, under restricted isometry property (RIP) assumptions. We focus on the non-convex formulation, where any rank- r matrix $X \in \mathbb{R}^{m \times n}$ is represented as $U V^{\top}$, where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$. In this paper, we complement recent findings on the non-convex geometry of the analogous PSD setting [5], and show that matrix factorization does not introduce any spurious local minima, under RIP.

1 Introduction and Problem Formulation

Consider the following matrix sensing problem:

$$
\begin{array}{ll}
\min _{X \in \mathbb{R}^{m \times n}} & f(X):=\|\mathcal{A}(X)-b\|_{2}^{2} \tag{1}\\
\text { subject to } & \operatorname{rank}(X) \leq r
\end{array}
$$

Here, $b \in \mathbb{R}^{p}$ denotes the set of observations and $\mathcal{A}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}$ is the sensing linear map. The motivation behind this task comes from several applications, where we are interested in inferring an unknown matrix $X^{\star} \in \mathbb{R}^{m \times n}$ from b. Common assumptions are $(i) p \ll m \cdot n$, (ii) $b=\mathcal{A}\left(X^{\star}\right)+w$, i.e., we have a linear measurement system, and (iii) X^{\star} is rank- $r, r \ll \min \{m, n\}$. Such problems appear in a variety of research fields and include image processing $[11,44]$, data analytics $[13,11]$, quantum computing [$1,19,26]$, systems [32], and sensor localization [23] problems.

Appearing in Proceedings of the $20^{t h}$ International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA. JMLR: W\&CP volume 54. Copyright 2017 by the authors.

There are numerous approaches that solve (1), both in its original non-convex form or through its convex relaxation; see $[28,16]$ and references therein. However, satisfying the rank constraint (or any nuclear norm constraints in the convex relaxation) per iteration requires SVD computations, which could be prohibitive in practice for large-scale settings. To overcome this obstacle, recent approaches reside on non-convex parametrization of the variable space and encode the low-rankness directly into the objective $[25,22,2,43,49,14,4,48,42,50,24,35$, $46,37,36,47,34,29,33]$. In particular, we know that a rank- r matrix $X \in \mathbb{R}^{m \times n}$ can be written as a product $U V^{\top}$, where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$. Such a re-parametrization technique has a long history $[45,15,39]$, and was popularized by Burer and Monteiro [8, 9] for solving semi-definite programs (SDPs). Using this observation in (1), we obtain the following non-convex, bilinear problem:

$$
\begin{equation*}
\min _{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} f\left(U V^{\top}\right):=\left\|\mathcal{A}\left(U V^{\top}\right)-b\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

Now, (2) has a different form of non-convexity due to the bilinearity of the variable space, which raises the question whether we introduce spurious local minima by doing this transformation.

Contributions: The goal of this paper is to answer negatively to this question: We show that, under standard regulatory assumptions on $\mathcal{A}, U V^{\top}$ parametrization does not introduce any spurious local minima. To do so, we non-trivially generalize recent developments for the square, PSD case [5] to the non-square case for X^{\star}. Our result requires a different (but equivalent) problem re-formulation and analysis, with the introduction of an appropriate regularizer in the objective.

Related work. There are several papers that consider similar questions, but for other objectives. [40] characterizes the non-convex geometry of the complete dictionary recovery problem, and proves that
all local minima are global; [6] considers the problem of non-convex phase synchronization where the task is modeled as a non-convex least-squares optimization problem, and can be globally solved via a modified version of power method; [41] show that a nonconvex fourth-order polynomial objective for phase retrieval has no local minimizers and all global minimizers are equivalent; $[3,7]$ show that the BurerMonteiro approach works on smooth semidefinite programs, with applications in synchronization and community detection; [17] consider the PCA problem under streaming settings and use martingale arguments to prove that stochastic gradient descent on the factors reaches to the global solution with nonnegligible probability; [20] introduces the notion of strict saddle points and shows that noisy stochastic gradient descent can escape saddle points for generic objectives $f ;[30]$ proves that gradient descent converges to (local) minimizers almost surely, using arguments drawn from dynamical systems theory.

More related to this paper are the works of [21] and [5]: they show that matrix completion and sensing have no spurious local minima, for the case where X^{\star} is square and PSD. For both cases, extending these arguments for the more realistic non-square case is a non-trivial task.

1.1 Assumptions and Definitions

We first state the assumptions we make for the matrix sensing setting. We consider the case where the linear operator \mathcal{A} satisfies the Restricted Isometry Property, according to the following definition [12]:
Definition 1.1 (Restricted Isometry Property (RIP)). A linear operator $\mathcal{A}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}$ satisfies the restricted isometry property on rank-r matrices, with parameter δ_{r}, if the following set of inequalities hold for all rank-r matrices X :

$$
\left(1-\delta_{r}\right) \cdot\|X\|_{F}^{2} \leq\|\mathcal{A}(X)\|_{2}^{2} \leq\left(1+\delta_{r}\right) \cdot\|X\|_{F}^{2}
$$

Characteristic examples are Gaussian-based linear maps [18, 38], Pauli-based measurement operators, used in quantum state tomography applications [31], Fourier-based measurement operators, which lead to computational gains in practice due to their structure $[27,38]$, or even permuted and sub-sampled noiselet linear operators, used in image and video compressive sensing applications [44].
In this paper, we consider sensing mechanisms that can be expressed as:

$$
(\mathcal{A}(X))_{i}=\left\langle A_{i}, X\right\rangle, \quad \forall i=1, \ldots, p, \text { and } A_{i} \in \mathbb{R}^{m \times n} \cdot{ }_{2}
$$

E.g., for the case of a Gaussian map \mathcal{A}, A_{i} are independent, identically distributed (i.i.d.) Gaussian matrices; for the case of a Pauli map $\mathcal{A}, A_{i} \in \mathbb{R}^{n \times n}$ are i.i.d. and drawn uniformly at random from a set of scaled Pauli "observables" $\left(P_{1} \otimes P_{2} \otimes \cdots \otimes P_{d}\right) / \sqrt{n}$, where $n=2^{d}$ and P_{i} is a 2×2 Pauli observable matrix [31].

A useful property derived from the RIP definition is the following [10]:
Proposition 1.2 (Useful property due to RIP). For a linear operator $\mathcal{A}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}$ that satisfies the restricted isometry property on rank-r matrices, the following inequality holds for any two rank-r matrices $X, Y \in \mathbb{R}^{m \times n}$:

$$
\left|\sum_{i=1}^{p}\left\langle A_{i}, X\right\rangle \cdot\left\langle A_{i}, Y\right\rangle-\langle X, Y\rangle\right| \leq \delta_{2 r} \cdot\|X\|_{F} \cdot\|Y\|_{F}
$$

An important issue in optimizing f over the factored space is the existence of non-unique possible factorizations for a given X. Since we are interested in obtaining a low-rank solution in the original space, we need a notion of distance to the low-rank solution X^{\star} over the factors. Among infinitely many possible decompositions of X^{\star}, we focus on the set of "equally-footed" factorizations [43]:

$$
\begin{align*}
& \mathcal{X}_{r}^{\star}=\left\{\left(U^{\star}, V^{\star}\right): U^{\star} V^{\star \top}=X^{\star},\right. \\
&\left.\sigma_{i}\left(U^{\star}\right)=\sigma_{i}\left(V^{\star}\right)=\sigma_{i}\left(X^{\star}\right)^{1 / 2}, \forall i \in[r]\right\} . \tag{3}
\end{align*}
$$

Given a pair (U, V), we define the distance to X^{\star} as:

$$
\operatorname{DIST}\left(U, V ; X^{\star}\right)=\min _{\left(U^{\star}, V^{\star}\right) \in \mathcal{X}_{r}^{\star}}\left\|\left[\begin{array}{l}
U \\
V
\end{array}\right]-\left[\begin{array}{l}
U^{\star} \\
V^{\star}
\end{array}\right]\right\|_{F} .
$$

1.2 Problem Re-formulation

Before we delve into the main results, we need to further reformulate the objective (2) for our analysis. First, we use a well-known transformation to reduce (2) to a semidefinite optimization. Let us define auxiliary variables

$$
W=\left[\begin{array}{l}
U \\
V
\end{array}\right] \in \mathbb{R}^{(m+n) \times r}, \quad \tilde{W}=\left[\begin{array}{c}
U \\
-V
\end{array}\right] \in \mathbb{R}^{(m+n) \times r} .
$$

Based on the auxiliary variables, we define the linear $\operatorname{map} \mathcal{B}: \mathbb{R}^{(m+n) \times(m+n)} \rightarrow \mathbb{R}^{p}$ such that $\left(\mathcal{B}\left(W W^{\top}\right)\right)_{i}=\left\langle B_{i}, W W^{\top}\right\rangle$, and $B_{i} \in$ $\mathbb{R}^{(m+n) \times(m+n)}$. To make a connection between the variable spaces (U, V) and W, \mathcal{A} and \mathcal{B} are related via matrices A_{i} and B_{i} as follows:

$$
B_{i}=\frac{1}{2} \cdot\left[\begin{array}{cc}
0 & A_{i} \\
A_{i}^{\top} & 0
\end{array}\right]
$$

This further implies that:

$$
\begin{aligned}
\left(\mathcal{B}\left(W W^{\top}\right)\right)_{i} & =\frac{1}{2} \cdot\left\langle B_{i}, W W^{\top}\right\rangle \\
& =\frac{1}{2} \cdot\left\langle\left[\begin{array}{cc}
0 & A_{i} \\
A_{i}^{\top} & 0
\end{array}\right],\left[\begin{array}{cc}
U U^{\top} & U V^{\top} \\
V U^{\top} & V V^{\top}
\end{array}\right]\right\rangle \\
& =\left\langle A_{i}, U V^{\top}\right\rangle
\end{aligned}
$$

Given the above, we re-define $f: \mathbb{R}^{(m+n) \times r} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f(W):=\left\|\mathcal{B}\left(W W^{\top}\right)-b\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

It is important to note that \mathcal{B} operates on $(m+n) \times$ ($m+n$) matrices, while we assume RIP on \mathcal{A} and $m \times n$ matrices. Making no other assumptions for \mathcal{B}, we cannot directly apply [5] on (4), but a rather different analysis is required.

In addition to this redefinition, we also introduce a regularizer $g: \mathbb{R}^{(m+n) \times r} \rightarrow \mathbb{R}$ such that

$$
g(W):=\lambda\left\|\tilde{W}^{\top} W\right\|_{F}^{2}=\lambda\left\|U^{\top} U-V^{\top} V\right\|_{F}^{2}
$$

This regularizer was first introduced in [43] to prove convergence of its algorithm for non-square matrix sensing, and it is also used in this paper to analyze local minima of the problem. After setting $\lambda=\frac{1}{4}$, (2) can be equivalently written as:

$$
\begin{equation*}
\operatorname{minimize}_{W \in \mathbb{R}^{(m+n) \times r}}\left\|\mathcal{B}\left(W W^{\top}\right)-b\right\|_{2}^{2}+\frac{1}{4} \cdot\left\|\tilde{W}^{\top} W\right\|_{F}^{2} . \tag{5}
\end{equation*}
$$

By equivalent, we note that the addition of g in the objective does not change the problem, since for any rank- r matrix X there is a pair of factors (U, V) such that $g(W)=0$. It merely reduces the set of optimal points from all possible factorizations of X^{\star} to balanced factorizations of X^{\star} in $\mathcal{X}_{r}^{\star} . U^{\star}$ and V^{\star} have the same set of singular values, which are the square roots of the singular values of X^{\star}. A key property of the balanced factorizations is the following.
Proposition 1.3. For any factorization of the form (3), it holds that

$$
\tilde{W}^{\star \top} W^{\star}=U^{\star \top} U^{\star}-V^{\star \top} V^{\star}=0
$$

Proof. By "balanced factorizations" of $X^{\star}=$ $U^{\star} V^{\star}{ }^{\top}$, we mean that factors U^{\star} and V^{\star} satisfy

$$
\begin{equation*}
U^{\star}=A \Sigma^{1 / 2} R, \quad V^{\star}=B \Sigma^{1 / 2} R \tag{6}
\end{equation*}
$$

where $X^{\star}=A \Sigma B^{\top}$ is the SVD , and $R \in \mathbb{R}^{r \times r}$ is an orthonormal matrix. Apply this to $\tilde{W}^{\star \top} W^{\star}$ to get the result.

Therefore, we have $g\left(W^{\star}\right)=0$, and $\left(U^{\star}, V^{\star}\right)$ is an optimal point of (5).

2 Main Results

This section describes our main results on the function landscape of the non-square matrix sensing problem. The following theorem bounds the distance of any local minima to the global minimum, by the function value at the global minimum.

Theorem 2.1. Suppose W^{\star} is any target matrix of the optimization problem (5), under the balanced singular values assumption for U^{\star} and V^{\star}. If W is a critical point satisfying the first- and the secondorder optimality conditions, i.e., $\nabla(f+g)(W)=0$ and $\nabla^{2}(f+g)(W) \succeq 0$, then we have

$$
\begin{align*}
& \frac{1-5 \delta_{2 r}-544 \delta_{4 r}^{2}-1088 \delta_{2 r} \delta_{4 r}^{2}}{8\left(40+68 \delta_{2 r}\right)\left(1+\delta_{2 r}\right)}\left\|W W^{\top}-W^{\star} W^{\star} \top\right\|_{F}^{2} \\
& \leq\left\|\mathcal{A}\left(U^{\star} V^{\star}\right)-b\right\|^{2} \tag{7}
\end{align*}
$$

Observe that for this bound to make sense, the term $\frac{1-5 \delta_{2 r}-544 \delta_{4 r}^{2}-1088 \delta_{2 r} \delta_{4 r}^{2}}{8\left(40+68 \delta_{2 r}\right)\left(1+\delta_{2 r}\right)}$ needs to be positive. We provide some intuition of this result next. Combined with Lemma 5.14 in [43], we can also obtain the distance between (U, V) and $\left(U^{\star}, V^{\star}\right)$.
Corollary 2.2. For $W=\left[\begin{array}{l}U \\ V\end{array}\right]$ and given the assumptions of Theorem 2.1, we have

$$
\begin{gather*}
\sigma_{r}\left(X^{\star}\right) \cdot \frac{1-5 \delta_{2 r}-544 \delta_{4 r}^{2}-1088 \delta_{2 r} \delta_{4 r}^{2}}{10\left(40+68 \delta_{2 r}\right)\left(1+\delta_{2 r}\right)} \cdot \operatorname{DisT}\left(U, V ; X^{\star}\right)^{2} \\
\quad \leq\left\|\mathcal{A}\left(U^{\star} V^{\star \top}\right)-b\right\|^{2} \tag{8}
\end{gather*}
$$

Implications of these results are described next, where we consider specific settings.
Remark 1 (Noiseless matrix sensing). Suppose that $W^{\star}=\left[\begin{array}{l}U^{\star} \\ V^{\star}\end{array}\right]$ is the underlying unknown true matrix, i.e., $X^{\star}=U^{\star} V^{\star}{ }^{\top}$ is rank- r and $b=\mathcal{A}\left(U^{\star} V^{\star}{ }^{\top}\right)$. We assume the noiseless setting, $w=0$. If $0 \leq \delta_{2 r} \leq$ $\delta_{4 r} \lesssim 0.0363$, then $\frac{1-5 \delta_{2 r}-544 \delta_{4 r}^{2}-1088 \delta_{2 r} \delta_{4 r}^{2}}{10\left(40+68 \delta_{2 r}\right)\left(1+\delta_{2 r}\right)}>0$ in Corollary 2.2. Since the RHS of (8) is zero, this further implies that $\operatorname{Dist}\left(U, V ; X^{\star}\right)=0$, i.e., any critical point W that satisfies first- and second-order optimality conditions is global minimum.
Remark 2 (Noisy matrix sensing). Suppose that W^{\star} is the underlying true matrix, such that $X^{\star}=$ $U^{\star} V^{\star}{ }^{\top}$ and is rank- r, and $b=\mathcal{A}\left(U^{\star} V^{\star \top}\right)+w$, for some noise term w. If $0 \leq \delta_{2 r} \leq \delta_{4 r}<0.02$, then it follows from (7) that for any local minima W the distance to $U^{\star} V^{\star \top}$ is bounded by

$$
\frac{1}{500}\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F} \leq\|w\|
$$

Remark 3 (High-rank matrix sensing). Suppose that X^{\star} is of arbitrary rank and let X_{r}^{\star} denote its best rank- r approximation. Let $b=\mathcal{A}\left(X^{\star}\right)+w$ where w is some noise and let $\left(U^{\star}, V^{\star}\right)$ be a balanced factorization of X_{r}^{\star}. If $0 \leq \delta_{2 r} \leq \delta_{4 r}<0.005$, then it follows from (8) that for any local minima (U, V) the distance to $\left(U^{\star}, V^{\star}\right)$ is bounded by

$$
\operatorname{DisT}\left(U, V ; X^{\star}\right) \leq \frac{1250}{3 \sigma_{r}\left(X^{\star}\right)} \cdot\left\|\mathcal{A}\left(X^{\star}-X_{r}^{\star}\right)+w\right\|
$$

In plain words, the above remarks state that, given sensing mechanism \mathcal{A} with small RIP constants, any critical point of the non-square matrix sensing objective - with low rank optimum and no noise - is a global minimum. As we describe in Section 3, due to this fact, gradient descent over the factors can converge, with high probability, to (or very close to) the global minimum.

3 What About Saddle Points?

Our discussion so far concentrates on whether $U V^{\top}$ parametrization introduces spurious local minima. Our main results show that any point (U, V) that satisfies both first- and second-order optimality conditions ${ }^{1}$ should be (or lie close to) the global optimum. However, we have not discussed what happens with saddle points, i.e., points (U, V) where the Hessian matrix contains both positive and negative eigenvalues. ${ }^{2}$ This is important for practical reasons: first-order methods rely on gradient information and, thus, can easily get stuck to saddle points that may be far away from the global optimum.
[20] studied conditions that guarantee that stochastic gradient descent-randomly initializedconverges to a local minimum; i.e., we can avoid getting stuck to non-degenerate saddle points. These conditions include $f+g$ being bounded and smooth, having Lipschitz Hessian, being locally strongly convex, and satisfying the strict saddle property, according to the following definition.
Definition 3.1. [20] A twice differentiable function $f+g$ is strict saddle, if all its stationary points, that are not local minima, satisfy $\lambda_{\min }\left(\nabla^{2}(f+g)(\cdot)\right)<0$.
[30] relax some of these conditions and prove the following theorem (for standard gradient descent).

[^0]Theorem 3.2 ([30] - Informal). If the objective is twice differentiable and satisfies the strict saddle property, then gradient descent, randomly initialized and with sufficiently small step size, converges to a local minimum almost surely.

In this section, based on the analysis in [5], we show that $f+g$ satisfy the strict saddle property, which implies that gradient descent can avoid saddle points and converge to the global minimum, with high probability.
Theorem 3.3. Consider noiseless measurements $b=\mathcal{A}\left(X^{\star}\right)$, with \mathcal{A} satisfying RIP with constant $\delta_{4 r} \leq \frac{1}{100}$. Assume that $\operatorname{rank}\left(X^{\star}\right)=r$. Let (U, V) be a pair of factors that satisfies the first order optimality condition $\nabla f(W)=0$, for $W=\left[\begin{array}{l}U \\ V\end{array}\right]$, and $U V^{\top} \neq X^{\star}$. Then,

$$
\lambda_{\min }\left(\nabla^{2}(f+g)(W)\right) \leq-\frac{1}{7} \cdot \sigma_{r}\left(X^{\star}\right)
$$

Proof. Let $Z \in \mathbb{R}^{(m+n) \times r}$. Then, by (10), the proof of Theorem 2.1 and the fact that $b=\mathcal{A}\left(X^{\star}\right)$ (noiseless), $\nabla^{2}(f+g)(W)$ satisfies the following:

$$
\begin{align*}
& \operatorname{vec}(Z)^{\top} \cdot \nabla^{2}(f+g)(W) \cdot \operatorname{vec}(Z) \\
& \stackrel{(13),(12)}{\leq} \frac{1+2 \delta_{2 r}}{2} \sum_{j=1}^{r}\left\|W e_{j} e_{j}^{\top}\left(W-W^{\star} R\right)\right\|_{F}^{2} \\
& -\frac{3-8 \delta_{2 r}}{16} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F}^{2} \\
& \stackrel{(14),(15)}{\leq}\left(\frac{1+2 \delta_{2 r}}{16} \cdot\left(1+34 \cdot 16 \delta_{4 r}^{2}\right)-\frac{3-8 \delta_{2 r}}{16}\right) \\
& \cdot\left\|W W^{\top}-W^{\star} W^{\star} \top\right\|_{F}^{2} \\
& \leq \frac{-1+5 \delta_{4 r}+272 \delta_{4 r}^{2}+544 \delta_{4 r}^{3}}{8} \cdot\left\|W W^{\top}-W^{\star} W^{\star} \top\right\|_{F}^{2} \\
& \leq-\frac{1}{10} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F} \tag{9}
\end{align*}
$$

where the last inequality is due to the requirement $\delta_{4 r} \leq \frac{1}{100}$. For the LHS of (9), we can lower bound as follows:

$$
\begin{aligned}
\operatorname{vec}(Z)^{\top} & \cdot \nabla^{2}(f+g)(W) \cdot \operatorname{vec}(Z) \\
& \geq\|Z\|_{F}^{2} \cdot \lambda_{\min }\left(\nabla^{2}(f+g)(W)\right) \\
& =\left\|W-W^{\star} R\right\|_{F}^{2} \cdot \lambda_{\min }\left(\nabla^{2}(f+g)(W)\right)
\end{aligned}
$$

where the last equality is by setting $Z=W-W^{\star} R$. Combining this expression with (9), we obtain:

$$
\begin{aligned}
& \lambda_{\min }\left(\nabla^{2}(f+g)(W)\right) \\
& \leq-\frac{1 / 10}{\left\|W-W^{\star} R\right\|_{F}^{2}} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F} \\
& \stackrel{(a)}{\leq}-\frac{1 / 10}{\left\|W-W^{\star} R\right\|_{F}^{2}} \cdot 2(\sqrt{2}-1) \cdot \sigma_{r}\left(X^{\star}\right) \cdot\left\|W-W^{\star} R\right\|_{F}^{2} \\
& \leq-\frac{1}{7} \cdot \sigma_{r}\left(X^{\star}\right)
\end{aligned}
$$

where (a) is due to Lemma 5.4, [43]. This completes the proof.

4 Proof of Main Results

We first describe the first- and second-order optimality conditions for $f+g$ objective with W variable. Then, we provide a detailed proof of the main results: by carefully analyzing the conditions, we study how a local optimum is related to the global optimum.

4.1 Gradient and Hessian of f and g

The gradients of f and g w.r.t. W are given by:
$\nabla f(W)=\sum_{i=1}^{p}\left(\left\langle B_{i}, W W^{\top}\right\rangle-b_{i}\right) \cdot B_{i} \cdot W$
$\nabla g(W)=\frac{1}{4} \tilde{W} \tilde{W}^{\top} W \quad\left(\equiv \frac{1}{4} \cdot\left[\begin{array}{c}U \\ -V\end{array}\right] \cdot\left(U^{\top} U-V^{\top} V\right)\right)$
Regarding Hessian information, we are interested in the positive semi-definiteness of $\nabla^{2}(f+g)$; for this case, it is easier to write the second-order Hessian information with respect to to some matrix direction $Z \in \mathbb{R}^{(m+n) \times r}$, as follows:

$$
\begin{aligned}
\operatorname{vec}(Z)^{\top} \cdot & \nabla^{2} f(W) \cdot \operatorname{vec}(Z) \\
= & \left\langle\lim _{t \rightarrow 0}\left[\frac{\nabla f(W+t Z)-\nabla f(W)}{t}\right], Z\right\rangle \\
= & \sum_{i=1}^{p}\left\langle B_{i}, Z W^{\top}+W Z^{\top}\right\rangle \cdot\left\langle B_{i}, Z W^{\top}\right\rangle \\
& \quad+\sum_{i=1}^{p}\left(\left\langle B_{i}, W W^{\top}\right\rangle-b_{i}\right) \cdot\left\langle B_{i}, Z Z^{\top}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{vec}(Z)^{\top} \cdot & \nabla^{2} g(W) \cdot \operatorname{vec}(Z) \\
= & \left\langle\lim _{t \rightarrow 0}\left[\frac{\nabla g(W+t Z)-\nabla g(W)}{t}\right], Z\right\rangle \\
= & \frac{1}{4}\left\langle\tilde{Z} \tilde{W}^{\top}, Z W^{\top}\right\rangle+\frac{1}{4}\left\langle\tilde{W} \tilde{Z}^{\top}, Z W^{\top}\right\rangle \\
& \quad+\frac{1}{4}\left\langle\tilde{W} \tilde{W}^{\top}, Z Z^{\top}\right\rangle
\end{aligned}
$$

4.2 Optimality conditions

Given the expressions above, we now describe firstand second-order optimality conditions on the composite objective $f+g$.

First-order optimality condition. By the firstorder optimality condition of a pair (U, V) such that
$W=\left[\begin{array}{l}U \\ V\end{array}\right]$, we have $\nabla(f+g)(W)=0$. This further implies:

$$
\begin{align*}
\nabla(f+g)(W)=0 & \Rightarrow \\
\sum_{i=1}^{p}\left(\left\langle B_{i}, W W^{\top}\right\rangle-b_{i}\right) \cdot B_{i} \cdot W+\frac{1}{4} \tilde{W} \tilde{W}^{\top} W & =0 \tag{11}
\end{align*}
$$

Second-order optimality condition. For a point W that satisfies the second-order optimality condition $\nabla^{2}(f+g)(W) \succeq 0$, (10) holds for any $Z \in \mathbb{R}^{(m+n) \times r}$.

4.3 Proof of Theorem 2.1

Suppose that W is a critical point satisfying the optimality conditions (11) and (10). As in [5], we sum up the above condition for $Z_{1} \triangleq(W-$ $\left.W^{\star} R\right) e_{1} e_{1}^{\top}, \ldots, Z_{r} \triangleq\left(W-W^{\star} R\right) e_{r} e_{r}^{\top}$. For simplicity, we first assume $Z=W-W^{\star} R$.

Bounding terms (A), (C) and (D) in (10). The following bounds work for any Z.

$$
\begin{aligned}
&(A)= \sum_{i=1}^{p}\left\langle B_{i}, Z W^{\top}\right\rangle^{2}+\sum_{i=1}^{p}\left\langle B_{i}, Z W^{\top}\right\rangle \cdot\left\langle B_{i}, W Z^{\top}\right\rangle \\
& \stackrel{(a)}{=} 2 \cdot \sum_{i=1}^{p}\left\langle B_{i}, Z W^{\top}\right\rangle^{2} \\
&= \frac{1}{2} \sum_{i=1}^{p}\left(\left\langle A_{i}, Z_{U} V^{\top}\right\rangle+\left\langle A_{i}, U Z_{V}^{\top}\right\rangle\right)^{2} \\
& \stackrel{(b)}{\leq} \frac{1+\delta_{2 r}}{2}\left\|Z_{U} V^{\top}\right\|_{F}^{2}+\frac{1+\delta_{2 r}}{2}\left\|U Z_{V}^{\top}\right\|_{F}^{2} \\
&\left.+Z_{U} V^{\top}, U Z_{V}^{\top}\right\rangle+\delta_{2 r} \cdot\left\|Z_{U} V^{\top}\right\|_{F} \cdot\left\|U Z_{V}^{\top}\right\|_{F} \\
& \stackrel{(c)}{\leq} \frac{1+2 \delta_{2 r}}{2}\left\|Z_{U} V^{\top}\right\|_{F}^{2}+\frac{1+2 \delta_{2 r}}{2}\left\|U Z_{V}^{\top}\right\|_{F}^{2} \\
&+\underbrace{\left\langle Z_{U} V^{\top}, U Z_{V}^{\top}\right\rangle}_{(A 1)}
\end{aligned}
$$

where (a) follows from that every B_{i} is symmetric, (b) follows from Proposition 1.2, and (c) follows from the AM-GM inequality. We also have

$$
\begin{aligned}
(C) & =\left\langle\tilde{Z} \tilde{W}^{\top}, Z W^{\top}\right\rangle=\left\|Z_{U} U^{\top}\right\|_{F}^{2} \\
& +\left\|Z_{V} V^{\top}\right\|_{F}^{2} \\
& -\left\|Z_{U} V^{\top}\right\|_{F}^{2}-\left\|Z_{V} U^{\top}\right\|_{F}^{2}, \\
(A 1)+\frac{1}{4}(C) & \leq \frac{1+4 \delta_{2 r}}{4}\left\|Z W^{\top}\right\|_{F}^{2},
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{vec}(Z)^{\top} \cdot \nabla^{2}(f+g)(W) \cdot \operatorname{vec}(Z) \geq 0 \\
& \quad \underbrace{\sum_{i=1}^{p}\left\langle B_{i}, Z W^{\top}+W Z^{\top}\right\rangle \cdot\left\langle B_{i}, Z W^{\top}\right\rangle}_{(A)}+\underbrace{\sum_{i=1}^{p}\left(\left\langle B_{i}, W W^{\top}\right\rangle-b_{i}\right) \cdot\left\langle B_{i}, Z Z^{\top}\right\rangle}_{(B)} \\
& \quad+\frac{1}{4} \underbrace{\left\langle\tilde{Z} \tilde{W}^{\top}, Z W^{\top}\right\rangle}_{(C)}+\frac{1}{4} \underbrace{\left\langle\tilde{W} \tilde{Z}^{\top}, Z W^{\top}\right\rangle}_{(D)}+\frac{1}{4} \underbrace{\left\langle\tilde{W} \tilde{W}^{\top}, Z Z^{\top}\right\rangle}_{(E)} \geq 0, \forall Z=\left[\begin{array}{l}
Z_{U} \\
Z_{V}
\end{array}\right] \in \mathbb{R}^{(m+n) \times r} . \tag{10}
\end{align*}
$$

$$
\begin{aligned}
(D) & =\left\langle\tilde{W} \tilde{Z}^{\top}, Z W^{\top}\right\rangle=\left\langle U Z_{U}^{\top}, Z_{U} U^{\top}\right\rangle \\
& +\left\langle V Z_{V}^{\top}, Z_{V} V^{\top}\right\rangle-\left\langle U Z_{V}^{\top}, Z_{U} V^{\top}\right\rangle \\
& -\left\langle V Z_{U}^{\top}, Z_{V} U^{\top}\right\rangle \\
(A 2)+\frac{1}{4}(D) & =\frac{1}{4}\left\langle W Z^{\top}, Z W^{\top}\right\rangle \\
(A)+\frac{1}{4}(C)+\frac{1}{4}(D) & \leq \frac{1}{8}\left\|W Z^{\top}+Z W^{\top}\right\|_{F}^{2} \\
& +\delta_{2 r}\left\|Z W^{\top}\right\|_{F}^{2}
\end{aligned}
$$

and (b) follows from Proposition 1.2. Then we have

$$
(B 2)-(E)
$$

$$
=\left\langle\tilde{W} \tilde{W}^{\top}, 2 Z W^{\top}-Z Z^{\top}\right\rangle
$$

$$
\stackrel{(a)}{=}\left\langle\tilde{W} \tilde{W}^{\top}, 2 W W^{\top}-W^{\star} R W^{\top}-W R^{\top} W^{\star \top}\right.
$$

$$
\left.-\left(W-W^{\star} R\right)\left(W-W^{\star} R\right)^{\top}\right\rangle
$$

$$
=\left\langle\tilde{W} \tilde{W}^{\top}, W W^{\top}-W^{\star} W^{\star \top}\right\rangle
$$

$$
\stackrel{(b)}{=}\left\langle\tilde{W} \tilde{W}^{\top}, W W^{\top}-W^{\star} W^{\star \top}\right\rangle+\left\langle\tilde{W}^{\star} \tilde{W}^{\star^{\top}}, W^{\star} W^{\star^{\top}}\right\rangle
$$

$$
\stackrel{(c)}{\geq}\left\langle\tilde{W} \tilde{W}^{\top}, W W^{\top}-W^{\star} W^{\star \top}\right\rangle+\left\langle\tilde{W}^{\star} \tilde{W}^{\star \top}, W^{\star} W^{\star \top}\right\rangle
$$

Bounding terms (B) and (E). We have

$$
-\left\langle\tilde{W}^{\star} \tilde{W}^{\star \top}, W W^{\top}\right\rangle
$$

For (B3), we have
$-(B 3)$
where at (a) we add the first-order optimality equation

$$
=\sum_{i=1}^{p}\left(\left\langle B_{i}, W^{\star} W^{\star \top}\right\rangle-b_{i}\right) \cdot\left\langle B_{i}, W W^{\top}-W^{\star} W^{\star^{\top}}\right\rangle
$$

$$
\begin{aligned}
& \left\langle\sum_{i=1}^{p}\left(\left\langle B_{i}, W W^{\top}\right\rangle-y_{i}\right) \cdot B_{i} \cdot W, 2 W-2 W^{\star} R\right\rangle \\
& =-\frac{1}{2}\left\langle\tilde{W} \tilde{W}^{\top} W, W-W^{\star} R\right\rangle
\end{aligned}
$$

$$
\stackrel{(a)}{\leq}\left\|\mathcal{A}\left(U^{\star} V^{\star \top}\right)-b\right\| \cdot\left(\sum_{i=1}^{p}\left\langle B_{i}, W W^{\top}-W^{\star} W^{\star \top}\right\rangle^{2}\right)^{\frac{1}{2}}
$$

$$
\begin{aligned}
& (B)=\sum_{i=1}^{p}\left(\left\langle B_{i}, W W^{\top}\right\rangle-y_{i}\right) \cdot\left\langle B_{i}, Z Z^{\top}\right\rangle \\
& \stackrel{(a)}{=}-\sum_{i=1}^{p}\left(\left\langle B_{i}, W W^{\top}\right\rangle-y_{i}\right) \cdot\left\langle B_{i}, W W^{\top}-W^{\star} W^{\star \top}\right\rangle \\
& -\frac{1}{2}\left\langle\tilde{W} \tilde{W}^{\top},\left(W-W^{\star} R\right) W^{\top}\right\rangle \\
& =-\sum_{i=1}^{p}\left\langle B_{i}, W W^{\top}\right\rangle^{2}-\frac{1}{2}\left\langle\tilde{W} \tilde{W}^{\top},\left(W-W^{\star} R\right) W^{\top}\right\rangle \\
& -\sum_{i=1}^{p}\left(\left\langle B_{i}, W^{\star} W^{\star \top}\right\rangle-y_{i}\right) \cdot\left\langle B_{i}, W W^{\top}-W^{\star} W^{\star \top}\right\rangle \\
& \text { where (a) follows from that } \tilde{W} \tilde{W}^{\top} \text { is symmetric, } \\
& \text { (b) follows from Proposition 1.3, (c) follows from } \\
& \text { that the inner product of two PSD matrices is non- } \\
& \text { negative. We then have, } \\
& (B 1)+\frac{1}{4}(B 2)-\frac{1}{4}(E) \\
& \geq\left(1-\delta_{2 r}\right)\left\|U V^{\top}-U^{\star} V^{\star \top}\right\|_{F}^{2} \\
& +\frac{1}{4}\left\langle\tilde{W} \tilde{W}^{\top}-\tilde{W}^{\star} \tilde{W}^{\star \top}, W W^{\top}-W^{\star} W^{\star \top}\right\rangle \\
& =\left(1-\delta_{2 r}-\frac{1}{2}\right)\left\|U V^{\top}-U^{\star} V^{\star \top}\right\|_{F}^{2} \\
& \stackrel{(b)}{\leq}-\underbrace{\left(1-\delta_{2 r}\right)\left\|U V^{\top}-U^{\star} V^{\star \top}\right\|_{F}^{2}}_{(B 1)}-\frac{1}{4} \cdot \underbrace{\left\langle\tilde{W} \tilde{W}^{\top}, 2 Z W^{\top}\right\rangle}_{(B 2)} \\
& +\frac{1}{4}\left\|U U^{\top}-U^{\star} U^{\star \top}\right\|_{F}^{2}+\frac{1}{4}\left\|V V^{\top}-V^{\star} V^{\star \top}\right\|_{F}^{2} \\
& \geq \frac{1-2 \delta_{2 r}}{4} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F}^{2}
\end{aligned}
$$

where (a) follows from the Cauchy-Schwarz inequality, and (b) follows from Proposition 1.2. We get

$$
\begin{align*}
&(B)+\frac{1}{4}(E) \\
& \leq-\frac{1-2 \delta_{2 r}}{4} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F}^{2} \\
&+\sqrt{1+\delta_{2 r}} \cdot\left\|\mathcal{A}\left(U^{\star} V^{\star \top}\right)-b\right\| \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F} \\
& \leq-\frac{3-8 \delta_{2 r}}{16} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F}^{2} \\
&+16\left(1+\delta_{2 r}\right) \cdot\left\|\mathcal{A}\left(U^{\star} V^{\star \top}\right)-b\right\|^{2} \tag{12}
\end{align*}
$$

where the last inequality follows from the AM-GM inequality.

Summing up the inequalities for Z_{1}, \ldots, Z_{r}. Now we apply $Z_{j}=Z e_{j} e_{j}^{\top}$. Since $Z Z^{\top}=$ $\sum_{j=1}^{r} Z_{j} Z_{j}^{\top}$ in (10), the analysis does not change for (B) and (E). For (A), (C), and (D), we obtain

$$
\begin{aligned}
(A) & +\frac{1}{4}(C)+\frac{1}{4}(D) \\
& \leq \sum_{j=1}^{r}\left\{\frac{1}{8}\left\|W Z_{j}^{\top}+Z_{j} W^{\top}\right\|_{F}^{2}+\delta_{2 r}\left\|Z_{j} W^{\top}\right\|_{F}^{2}\right\}
\end{aligned}
$$

We have
$\sum_{j=1}^{r}\left\|W Z_{j}^{\top}+Z_{j} W^{\top}\right\|_{F}^{2}$
$=2 \cdot \sum_{j=1}^{r}\left\|W e_{j} e_{j}^{\top} Z^{\top}\right\|_{F}^{2}+2 \cdot \sum_{i=1}^{r}\left\langle W e_{j} e_{j}^{\top} Z^{\top}, Z e_{j} e_{j}^{\top} W^{\top}\right\rangle$
$=2 \cdot \sum_{j=1}^{r}\left\|W e_{j} e_{j}^{\top} Z^{\top}\right\|_{F}^{2}+2 \cdot \sum_{i=1}^{r}\left(e_{j}^{\top} Z^{\top} W e_{j}\right)^{2}$
$\leq 2 \cdot \sum_{j=1}^{r}\left\|W e_{j} e_{j}^{\top} Z^{\top}\right\|_{F}^{2}+2 \cdot \sum_{i=1}^{r}\left\|Z e_{j}\right\|^{2} \cdot\left\|W e_{j}\right\|^{2}$
$=4 \cdot \sum_{j=1}^{r}\left\|W e_{j} e_{j}^{\top} Z^{\top}\right\|_{F}^{2}$
where the inequality follows from the CauchySchwarz inequality. Applying this bound, we get

$$
\begin{align*}
(A)+ & \frac{1}{4}(C)+\frac{1}{4}(D) \\
& \leq \frac{1+2 \delta_{2 r}}{2} \sum_{j=1}^{r}\left\|W e_{j} e_{j}^{\top}\left(W-W^{\star} R\right)\right\|_{F}^{2} \tag{13}
\end{align*}
$$

Next, we re-state [5, Lemma 4.4]:
Lemma 4.1. Let W and W^{\star} be two matrices, and Q is an orthonormal matrix that spans the column space of W. Then, there exists an orthonormal matrix R such that, for any stationary point W of $g(W)$
that satisfies first and second order condition, the following holds:

$$
\begin{align*}
\sum_{j=1}^{r} \| & W e_{j} e_{j}^{\top}\left(W-W^{\star} R\right) \|_{F}^{2} \\
\leq & \frac{1}{8} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F}^{2} \\
& \quad+\frac{34}{8} \cdot\left\|\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\|_{F}^{2} \tag{14}
\end{align*}
$$

And we have the following variant of [5, Lemma 4.2].
Lemma 4.2. For any pair of points (U, V) that satisfies the first-order optimality condition, and \mathcal{A} be a linear operator satisfying the RIP condition with parameter $\delta_{4 r}$, the following inequality holds:

$$
\begin{align*}
& \frac{1}{4} \cdot\left\|\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\|_{F} \\
& \leq \delta_{4 r} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F} \\
& \quad+\sqrt{\frac{1+\delta_{2 r}}{2}} \cdot\left\|\mathcal{A}\left(U^{\star} V^{\star \top}\right)-b\right\| \tag{15}
\end{align*}
$$

Applying the above two lemmas, we can get

$$
\begin{align*}
(A)+ & \frac{1}{4}(C)+\frac{1}{4}(D) \\
\leq & \frac{\left(1+2 \delta_{2 r}\right) \cdot\left(1+1088 \delta_{4 r}^{2}\right)}{16}\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F}^{2} \\
& +34\left(1+2 \delta_{2 r}\right)\left(1+\delta_{2 r}\right)\left\|\mathcal{A}\left(U^{\star} V^{\star \top}\right)-b\right\|^{2} . \tag{16}
\end{align*}
$$

Final inequality. Plugging (16) and (12) to (10), we get

$$
\begin{aligned}
& \frac{1-5 \delta_{2 r}-544 \delta_{4 r}^{2}-1088 \delta_{2 r} \delta_{4 r}^{2}}{8\left(40+68 \delta_{2 r}\right)\left(1+\delta_{2 r}\right)}\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F}^{2} \\
& \quad \leq\left\|\mathcal{A}\left(U^{\star} V^{\star}\right)-b\right\|^{\top}
\end{aligned}
$$

which completes the proof.

5 Appendix: Proof of Lemma 4.2

The first-order optimality condition can be written as

$$
\begin{aligned}
0= & \langle\nabla(f+g)(W), Z\rangle \\
= & \sum_{i=1}^{p}\left(\left\langle B_{i}, W W^{\top}\right\rangle-b_{i}\right) \cdot\left\langle B_{i} W, Z\right\rangle+\frac{1}{4}\left\langle\tilde{W} \tilde{W}^{\top} W, Z\right\rangle \\
= & \sum_{i=1}^{p}\left\langle B_{i}, W W^{\top}-W^{\star} W^{\star \top}\right\rangle\left\langle B_{i}, Z W^{\top}\right\rangle \\
& +\sum_{i=1}^{p}\left(\left\langle B_{i}, W^{\star} W^{\star}\right\rangle-b_{i}\right) \cdot\left\langle B_{i}, Z W^{\top}\right\rangle \\
& +\frac{1}{4}\left\langle\tilde{W} \tilde{W}^{\top}, Z W^{\top}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2} \cdot \sum_{i=1}^{p}\left\langle A_{i}, U V^{\top}-U^{\star} V^{\star \top}\right\rangle\left\langle A_{i}, Z_{U} V^{\top}+U Z_{V}^{\top}\right\rangle \\
& +\frac{1}{2} \cdot \sum_{i=1}^{p}\left(\left\langle A_{i}, U^{\star} V^{\star \top}\right\rangle-b_{i}\right) \cdot\left\langle A_{i}, Z_{U} V^{\top}+U Z_{V}^{\top}\right\rangle \\
& +\frac{1}{4}\left\langle\tilde{W} \tilde{W}^{\top}, Z W^{\top}\right\rangle \\
\forall Z= & {\left[\begin{array}{l}
Z_{U} \\
Z_{V}
\end{array}\right] \in \mathbb{R}^{(m+n) \times r} . \text { Applying Proposition } 1.2 }
\end{aligned}
$$ and the Cauchy-Schwarz inequality to the condition, we obtain

$$
\begin{align*}
& \frac{1}{2} \underbrace{\left\langle U V^{\top}-U^{\star} V^{\star \top}, Z_{U} V^{\top}+U Z_{V}^{\top}\right\rangle}_{(A)}+\frac{1}{4} \underbrace{\left\langle\tilde{W} \tilde{W}^{\top}, Z W^{\top}\right\rangle}_{(B)} \\
& \leq \delta_{4 r} \underbrace{\left\|U V^{\top}-U^{\star} V^{\star \top}\right\|_{F}\left\|Z_{U} V^{\top}+U Z_{V}^{\top}\right\|_{F}}_{(C)} \\
& \quad+\frac{\sqrt{1+\delta_{2 r}}}{2} \underbrace{\left\|\mathcal{A}\left(U^{\star} V^{\star \top}\right)-b\right\|\left\|Z_{U} V^{\top}+U Z_{V}^{\top}\right\|_{F}}_{(D)} \tag{17}
\end{align*}
$$

Let $Z=\left(W W^{\top}-W^{\star} W^{\star}{ }^{\top}\right) Q R^{-1 \top}$ where $W=Q R$ is the QR decomposition. Then we obtain

$$
Z W^{\top}=\left(W W^{\top}-W^{\star} W^{\star^{\top}}\right) Q Q^{\top}
$$

We have

$$
\begin{aligned}
2(A)= & 2\left\langle\left[\begin{array}{cc}
0 & U V^{\top}-U^{\star} V^{\star} \top \\
V U^{\top}-V^{\star} U^{\star} & 0
\end{array}\right], Z W^{\top}\right\rangle \\
= & \left\langle\left(W W^{\top}-\tilde{W} \tilde{W}^{\top}\right)-\left(W^{\star} W^{\star \top}-\tilde{W}^{\star} \tilde{W}^{\star \top}\right)\right. \\
& \left.\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
&(B)=\left\langle\tilde{W} \tilde{W}^{\top},\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\rangle \\
& \stackrel{(a)}{=}\left\langle\tilde{W} \tilde{W}^{\top},\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\rangle \\
&+\left\langle\tilde{W}^{\star} \tilde{W}^{\star \top}, W^{\star} W^{\star \top} Q Q^{\top}\right\rangle \\
& \stackrel{(b)}{\geq}\left\langle\tilde{W} \tilde{W}^{\top},\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\rangle \\
&-\left\langle\tilde{W}^{\star} \tilde{W}^{\star \top},\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\rangle \\
&=\left\langle\tilde{W} \tilde{W}^{\top}-\tilde{W}^{\star} \tilde{W}^{\star \top},\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\rangle
\end{aligned}
$$

where (a) follows from Proposition 1.3, and (b) follows from that the inner product of two PSD matrices is non-negative. Then we obtain

$$
\begin{aligned}
2(A) & +(B) \\
& \geq\left\langle W W^{\top}-W^{\star} W^{\star \top},\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\rangle \\
& =\left\|\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q\right\|_{F}^{2} \\
& =\left\|\left(W W^{\top}-W^{\star} W^{\star^{\top}}\right) Q Q^{\top}\right\|_{F}^{2}
\end{aligned}
$$

For (C), we have

$$
\begin{aligned}
&(C)=\left\|U V^{\top}-U^{\star} V^{\star \top}\right\|_{F} \cdot\left\|Z_{U} V^{\top}+U Z_{V}^{\top}\right\|_{F} \\
& \leq \frac{1}{\sqrt{2}} \cdot\left\|W W^{\top}-W^{\star} W^{\star}\right\|_{F} \\
& \cdot \sqrt{2\left\|Z_{U} V^{\top}\right\|_{F}^{2}+2\left\|U Z_{V}^{\top}\right\|_{F}^{2}} \\
& \leq\left\|W W^{\top}-W^{\star} W^{\star}\right\|_{F} \cdot \sqrt{\left\|Z W^{\top}\right\|_{F}^{2}} \\
&=\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F} \\
& \cdot\left\|\left(W W-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\|_{F}
\end{aligned}
$$

Plugging the above bounds into (17), we get

$$
\begin{aligned}
& \frac{1}{4}\left\|\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\|_{F}^{2} \leq \\
& \delta_{4 r}\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F}\left\|\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\|_{F} \\
& +\sqrt{\frac{1+\delta_{2 r}}{2}}\left\|\mathcal{A}\left(U^{\star} V^{\star \top}\right)-b\right\|\left\|\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\|_{F}
\end{aligned}
$$

In either case of $\left\|\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\|_{F}$ being zero or positive, we can obtain

$$
\begin{aligned}
& \frac{1}{4} \cdot\left\|\left(W W^{\top}-W^{\star} W^{\star \top}\right) Q Q^{\top}\right\|_{F} \\
& \leq \delta_{4 r} \cdot\left\|W W^{\top}-W^{\star} W^{\star \top}\right\|_{F} \\
& \quad+\sqrt{\frac{1+\delta_{2 r}}{2}} \cdot\left\|\mathcal{A}\left(U^{\star} V^{\star^{\top}}\right)-b\right\|
\end{aligned}
$$

This completes the proof.

References

[1] S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 463, pages 3089-3114. The Royal Society, 2007.
[2] A. Anandkumar and R. Ge. Efficient approaches for escaping higher order saddle points in non-convex optimization. arXiv preprint arXiv:1602.05908, 2016.
[3] A. Bandeira, N. Boumal, and V. Voroninski. On the low-rank approach for semidefinite programs arising in synchronization and community detection. arXiv preprint arXiv:1602.04426, 2016.
[4] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi. Dropping convexity for faster semi-definite optimization. arXiv preprint arXiv:1509.03917, 2015.
[5] S. Bhojanapalli, B. Neyshabur, and N. Srebro. Global optimality of local search for low rank matrix recovery. arXiv preprint arXiv:1605.07221, 2016.
[6] N. Boumal. Nonconvex phase synchronization. arXiv preprint arXiv:1601.06114, 2016.
[7] N. Boumal, V. Voroninski, and A. Bandeira. The non-convex Burer-Monteiro approach works on smooth semidefinite programs. arXiv preprint arXiv:1606.04970, 2016.
[8] S. Burer and R. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329-357, 2003.
[9] S. Burer and R. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical Programming, 103(3):427444, 2005.
[10] E. Candes. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(9):589592, 2008.
[11] E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the $A C M$ (JACM), 58(3):11, 2011.
[12] E. Candes and Y. Plan. Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. Information Theory, IEEE Transactions on, 57(4):2342-2359, 2011.
[13] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Willsky. Sparse and low-rank matrix decompositions. In Communication, Control, and Computing, 2009. Allerton 2009. 47 th Annual Allerton Conference on, pages 962-967. IEEE, 2009.
[14] Y. Chen and M. Wainwright. Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.
[15] A. Christoffersson. The one component model with incomplete data. Uppsala., 1970.
[16] M. Davenport and J. Romberg. An overview of low-rank matrix recovery from incomplete observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608-622, 2016.
[17] C. De Sa, K. Olukotun, and C. Re. Global convergence of stochastic gradient descent for some non-convex matrix problems. arXiv preprint arXiv:1411.1134, 2014.
[18] M. Fazel, E. Candes, B. Recht, and P. Parrilo. Compressed sensing and robust recovery of low rank matrices. In Signals, Systems and Computers, $200842 n d$ Asilomar Conference on, pages 1043-1047. IEEE, 2008.
[19] S. Flammia, D. Gross, Y.-K. Liu, and J. Eisert. Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators. New Journal of Physics, 14(9):095022, 2012.
[20] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points-online stochastic gradient for tensor decomposition. In Proceedings of The 28th Conference on Learning Theory, pages 797-842, 2015.
[21] R. Ge, J. Lee, and T. Ma. Matrix completion has no spurious local minimum. arXiv preprint arXiv:1605.07272, 2016.
[22] P. Jain, C. Jin, S. Kakade, and P. Netrapalli. Computing matrix squareroot via non convex local search. arXiv preprint arXiv:1507.05854, 2015.
[23] A. Javanmard and A. Montanari. Localization from incomplete noisy distance measurements. Foundations of Computational Mathematics, 13(3):297-345, 2013.
[24] C. Jin, S. Kakade, and P. Netrapalli. Provable efficient online matrix completion via nonconvex stochastic gradient descent. arXiv preprint arXiv:1605.08370, 2016.
[25] M. Journée, F. Bach, P-A Absil, and R. Sepulchre. Low-rank optimization on the cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327-2351, 2010.
[26] A. Kalev, R. Kosut, and I. Deutsch. Quantum tomography protocols with positivity are compressed sensing protocols. Nature partner journals (npj) Quantum Information, 1:15018, 2015.
[27] F. Krahmer and R. Ward. New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property. SIAM Journal on Mathematical Analysis, 43(3):1269-1281, 2011.
[28] A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Journal of mathematical imaging and vision, 48(2):235265, 2014.
[29] L. Le and M. White. Global optimization of factor models using alternating minimization. arXiv preprint arXiv:1604.04942, 2016.
[30] J. Lee, M. Simchowitz, M. Jordan, and B. Recht. Gradient descent converges to minimizers. In Proceedings of The 29th Conference on Learning Theory, 2016.
[31] Y.-K. Liu. Universal low-rank matrix recovery from Pauli measurements. In Advances in Neural Information Processing Systems, pages 1638-1646, 2011.
[32] Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with application to system identification. SIAM Journal on Matrix Analysis and Applications, 31(3):1235-1256, 2009.
[33] F. Mirzazadeh, Y. Guo, and D. Schuurmans. Convex co-embedding. In AAAI, pages 19891996, 2014.
[34] F. Mirzazadeh, M. White, A. György, and D. Schuurmans. Scalable metric learning for co-embedding. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 625-642. Springer, 2015.
[35] D. Park, A. Kyrillidis, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Provable non-convex projected gradient descent for a class of constrained matrix optimization problems. arXiv preprint arXiv:1606.01316, 2016.
[36] D. Park, A. Kyrillidis, C. Caramanis, and S. Sanghavi. Finding low-rank solutions to convex smooth problems via the Burer-Monteiro approach. In 54th Annual Allerton Conference on Communication, Control, and Computing, 2016.
[37] D. Park, A. Kyrillidis, C. Caramanis, and S. Sanghavi. Finding low-rank solutions to matrix problems, efficiently and provably. arXiv preprint arXiv:1606.03168, 2016.
[38] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471-501, 2010.
[39] A. Ruhe. Numerical computation of principal components when several observations are missing. Univ., 1974.
[40] J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere I: Overview and the geometric picture. arXiv preprint arXiv:1511.03607, 2015.
[41] J. Sun, Q. Qu, and J. Wright. A geometric analysis of phase retrieval. arXiv preprint arXiv:1602.06664, 2016.
[42] R Sun and Z.-Q. Luo. Guaranteed matrix completion via nonconvex factorization. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, pages 270289, 2015.
[43] S. Tu, R. Boczar, M. Soltanolkotabi, and B. Recht. Low-rank solutions of linear matrix equations via Procrustes flow. arXiv preprint arXiv:1507.03566v2, 2016.
[44] A. Waters, A. Sankaranarayanan, and R. Baraniuk. SpaRCS: Recovering low-rank and sparse matrices from compressive measurements. In Advances in neural information processing systems, pages 1089-1097, 2011.
[45] H. Wold and E. Lyttkens. Nonlinear iterative partial least squares (NIPALS) estimation procedures. Bulletin of the International Statistical Institute, 43(1), 1969.
[46] Xinyang Yi, Dohyung Park, Yudong Chen, and Constantine Caramanis. Fast algorithms for robust PCA via gradient descent. arXiv preprint arXiv:1605.07784, 2016.
[47] X. Zhang, D. Schuurmans, and Y. Yu. Accelerated training for matrix-norm regularization: A boosting approach. In Advances in Neural Information Processing Systems, pages 29062914, 2012.
[48] T. Zhao, Z. Wang, and H. Liu. A nonconvex optimization framework for low rank matrix estimation. In Advances in Neural Information Processing Systems 28, pages 559-567. 2015.
[49] Q. Zheng and J. Lafferty. A convergent gradient descent algorithm for rank minimization and semidefinite programming from random linear measurements. In Advances in Neural Information Processing Systems, pages 109-117, 2015.
[50] Q. Zheng and J. Lafferty. Convergence analysis for rectangular matrix completion using burer-monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051, 2016.

[^0]: ${ }^{1}$ Note here that the second-order optimality condition includes positive semi-definite second-order information; i.e., Theorem 2.1 also handles saddle points due to the semi-definiteness of the Hessian at these points.
 ${ }^{2}$ Here, we do not consider the harder case where saddle points have Hessian with positive, negative and zero eigenvalues.

