
Supplementary Material

This supplementary material consists of two sections. The first section provides basic for-
mulae for the MAP estimates under the mixture of Gaussians model; and the second section
provides moment calculations for the Laplace and Gaussian mechanisms.

1 MAP estimates under the MoG models

For the maximum a posteriori estimate, we impose the Dirichlet prior on π ∼ Dir(α) and
Normal-inverse-Wishart prior on p(µk,Σk) = NIW(0, κ0, ν0, S0), where the MAP estimates
are
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In this paper we set hyperparameters to conventional values, e.g. α = [2, 2, · · · , 2], κ0 =
1, ν0 = d+ 2, S0 = diag(0.1, · · · 0.1), rather than optimizing them, cf. [1].

2 λ-th Moment Calculations

2.1 Laplace Mechanism

Univariate Laplace mechanism. Suppose we use the univariate Laplace mechanism where
the sensitivity is 1 and we add Laplace noise with parameter 1

ε
. Then the privacy loss r.v. is:
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This leads to the moment generating function:
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Multivariate Laplace Mechanism with boundedL1 sensitivity Suppose we use the d-variate
Laplace mechanism where the L1-sensitivity is equal to ∆; in this case, we add Laplace noise
with parameter ∆/ε to each coordinate of the vector. Then the privacy loss random variable
may be written as follows:
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which is the same as:
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Here µ is the difference between f(D) and f(D′) and has the property that |µ|1 ≤ ∆. Let
ε = ε/∆. For a given µ, this leads to the moment generating function:
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What we need is an upper bound on the functional E[eλZ ] for any λ over all µ for which
|µ|1 ≤ ∆. For positive λ, we note that the function E[eλZ ] is convex in |µ|j , and therefore the
maximum value occurs when µ = ∆ej where ej is some coordinate vector. This maximum
value is:
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2.2 Multivariate Gaussian Mechanism

Suppose we use the d-variate Gaussian Mechanism where the L2-sensitivity is 1 and we add
multivariate spherical Gaussian noise N(0, σ2Id). Then, the privacy loss random variable can
be written as follows:
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where ∆ is any d × 1 vector with unit norm. This in turn leads to the moment generating
function:

αM(λ) = E[eλZ ] = e(λ+λ2)/2σ2

.
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