Supplementary Material

This supplementary material consists of two sections. The first section provides basic for-
mulae for the MAP estimates under the mixture of Gaussians model; and the second section
provides moment calculations for the Laplace and Gaussian mechanisms.

1 MAP estimates under the MoG models

For the maximum a posteriori estimate, we impose the Dirichlet prior on 7w ~ Dir(a) and
Normal-inverse-Wishart prior on p(u, ) = NIW(O0, ko, 19, Sp), where the MAP estimates
are
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In this paper we set hyperparameters to conventional values, e.g. a = [2,2,--- 2],k =

1L,yy=d+ 2,5, = diag(0.1,- - - 0.1), rather than optimizing them, cf. [1].

2 )\-th Moment Calculations

2.1 Laplace Mechanism

Univariate Laplace mechanism. Suppose we use the univariate Laplace mechanism where
the sensitivity is 1 and we add Laplace noise with parameter 1. Then the privacy loss r.v. is:
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This leads to the moment generating function:
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Multivariate Laplace Mechanism with bounded L, sensitivity Suppose we use the d-variate
Laplace mechanism where the L;-sensitivity is equal to A; in this case, we add Laplace noise
with parameter A/e to each coordinate of the vector. Then the privacy loss random variable
may be written as follows:
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which is the same as:
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Here 1 is the difference between f(D) and f(D’) and has the property that |u[; < A. Let
e = ¢/A. For a given y, this leads to the moment generating function:
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What we need is an upper bound on the functional E[e*?] for any A over all p for which
luli < A. For positive A\, we note that the function E[e??] is convex in |u|;, and therefore the
maximum value occurs when 1 = Ae; where ¢; is some coordinate vector. This maximum
value is:
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2.2 Multivariate Gaussian Mechanism

Suppose we use the d-variate Gaussian Mechanism where the L,-sensitivity is 1 and we add
multivariate spherical Gaussian noise N(0,0?1,;). Then, the privacy loss random variable can
be written as follows:
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where A is any d x 1 vector with unit norm. This in turn leads to the moment generating
function:
CKMO\) _ E[e/\Z] _ e()\+>\2)/202.
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