Supplementary Material

A Illustration of Policies

(a) A policy of just playing item 3. This policy has depth 1 .

(b) A policy that plays item 2 first. If it is small, it plays item 1 whereas if it is large it plays item 3. After this, the final item is determined due to the fact that there are only 3 items in the problem. This policy has depth 2.

Figure 4: Examples of policies in the simple 3 item, 2 sizes stochastic knapsack problem. Each blue line represents choosing an item and the red lines represent the sizes of the previous items.

B Illustration of Bounds

Figure 5: Example of where just looking at the optimistic policy might fail: If we always play the optimistic policy then, since $U\left(V_{\Pi^{*}}^{+}\right) \geq U\left(V_{\Pi}^{+}\right)$, we will always play Π^{*} and so the confidence bounds on Π will not shrink. This means that $L\left(V_{\Pi^{*}}^{+}\right)$will never be (epsilon) greater than the best alternative upper bound so there will not be enough confidence to conclude we have found the best policy.

C Algorithms

In these algorithms Generate (i) samples a reward and item size pair from the generative model of item i, whereas $\operatorname{sample}(A, k)$ samples from a set A with replacement to get k samples. The notation $i(d)=\Pi(d, b)$ indicates that item $i(d)$ was chosen by policy Π at depth d when the remaining capacity was b.

```
Algorithm 3: EstimateValue( \(\Pi, m\) )
    Initialization: For all \(i \in I, \mathcal{S}_{i}=\mathcal{S}_{i}^{*}\)
    for \(j=1, \ldots, m\) do
        \(B_{0}=B\);
        for \(d=1, \ldots, d(\Pi)\) do
            \(i(d)=\Pi\left(d, B_{d-1}\right) ;\)
                if \(\mid \mathcal{S}_{i(d)}!\leq 0\) then \(\left.\left(r_{i(d)}, c_{i(d)}\right)=\operatorname{Generate}(i(d)), \mathcal{S}_{i}^{*}=\mathcal{S}_{i}^{*} \cup\left\{r_{i(d)}, c_{i(d)}\right)\right\}\);
                else \(\left(r_{i(d)}, c_{i(d)}\right)=\operatorname{sample}\left(\mathcal{S}_{i}, 1\right)\), and \(\mathcal{S}_{i}=\mathcal{S}_{i} \backslash\left\{\left(r_{i(d)}, c_{i(d)}\right)\right\}\);
            \(B_{d}=B_{d-1}-c_{i(d)}\);
            if \(B_{d}<0\) then \(r_{i(d)}=0 ;\)
        end
        \({\overline{V_{\Pi}}}^{(j)}=\sum_{d=1}^{d(\Pi)} r_{i(d)} ;\)
    end
    return \(\left({\overline{V_{\Pi}}}_{m}=\frac{1}{m} \sum_{j=1}^{m}{\overline{V_{\Pi}}}^{(j)}, \mathcal{S}^{*}\right)\)
```

```
Algorithm 4: SampleBudget( \(\Pi, \mathcal{S}\) )
    Initialization: \(B_{0}=B\) and for all \(i \in I, \mathcal{S}_{i}=\mathcal{S}_{i}^{*}\)
    for \(d=1, \ldots, d(\Pi)\) do
        \(i(d)=\Pi\left(d, B_{d-1}\right)\);
        if \(\left|\mathcal{S}_{i(d)}\right| \leq 0\) then \(\left.\left(r_{i(d)}, c_{i(d)}\right)=\operatorname{Generate}(i(d)), \mathcal{S}_{i}^{*}=\mathcal{S}_{i}^{*} \cup\left\{r_{i(d)}, c_{i(d)}\right)\right\}\);
            else \(\left(r_{i(d)}, c_{i(d)}\right)=\operatorname{sample}\left(\mathcal{S}_{i}, 1\right)\), and \(\mathcal{S}_{i}=\mathcal{S}_{i} \backslash\left\{\left(r_{i(d)}, c_{i(d)}\right)\right\}\);
        \(B_{d}=B_{d-1}-c_{i(d)} ;\)
    6 end
    \(7{\overline{\Psi\left(B_{\Pi}\right)}}^{(j)}=\Psi\left(\max \left\{B-\sum_{d=1}^{d(\Pi)} c_{i(d)}, 0\right\}\right) ;\)
    8 return \(\left({\overline{\Psi\left(B_{\Pi}\right)}}^{(j)}, \mathcal{S}^{*}\right)\)
```


D Proofs of Theoretical Results

For convenience we restate any results that appear in the main body of the paper before proving them.

D. 1 Bounding the Value of a Policy

Lemma 7 (Lemma 1 in main text) Let (Ω, \mathcal{A}, P) be the probability space from Section , then for $m_{1}+m_{2}$ independent samples of policy Π, and $\delta_{1}, \delta_{2}>0$, with probability $1-\delta_{1}-\delta_{2}$,

$$
{\overline{V_{\Pi}} m_{1}}-c_{1} \leq V_{\Pi}^{+} \leq{\overline{V_{\Pi}}}_{m_{1}}+{\overline{\Psi\left(B_{\Pi}\right)}}_{m_{2}}+c_{1}+c_{2} .
$$

Where $c_{1}:=\sqrt{\frac{\Psi(B)^{2} \log \left(2 / \delta_{1}\right)}{2 m_{1}}}$ and $c_{2}:=\sqrt{\frac{\Psi(B)^{2} \log \left(1 / \delta_{2}\right)}{2 m_{2}}}$.
Proof: Consider the average value of policy Π over m_{1} many trials. By Hoeffding's Inequality, $P\left(\left|{\overline{V_{\Pi}}}_{m_{1}}-E\left[V_{\Pi}\right]\right|>c_{1}\right) \leq \delta_{1}$ and, similarly, $P\left({\overline{\Psi\left(B_{\Pi}\right)}}_{m_{2}}-E\left[\Psi\left(B_{\Pi}\right)\right] \mid>c_{2}\right) \leq \delta_{2}$. We are interested in the probability,

$$
\begin{aligned}
P\left(\left|{\overline{V_{\Pi}}}_{m_{1}}-V_{\Pi}^{+}\right|>t\right) & \leq P\left(\left|{\overline{V_{\Pi}}}_{m_{1}}-E\left[V_{\Pi}\right]\right|+\left|E\left[V_{\Pi}\right]-V_{\Pi}^{+}\right|>t\right) \\
& \leq P\left(\left|{\overline{V_{\Pi}}}_{m_{1}}-E\left[V_{\Pi}\right]\right|+E\left[\Psi\left(B_{\Pi}\right)\right]>t\right) .
\end{aligned}
$$

where the first line follows from the triangle inequality and the second from the definition of $\Psi\left(B_{\Pi}\right)$. From the Hoeffding bounds and defining $t={\left.\overline{\Psi(B} B_{\Pi}\right)}_{m_{2}}+c_{1}+c_{2}$, we consider $P\left(\left|{\overline{V_{\Pi}}}_{m_{1}}-E\left[V_{\Pi}\right]\right|+E\left[\Psi\left(B_{\Pi}\right)\right]>{\overline{\Psi\left(B_{\Pi}\right)}}_{m_{2}}+c_{1}+c_{2}\right)$. Define the events

$$
A_{1}=\left\{\left|{\overline{V_{\Pi}} m_{1}}-V_{\Pi}\right|+E\left[\Psi\left(B_{\Pi}\right)\right] \leq E\left[\Psi\left(B_{\Pi}\right)\right]+c_{1}\right\} \text { and } A_{2}=\left\{\left|\Psi\left(B_{\Pi}\right) m_{m_{2}}-E\left[\Psi\left(B_{\Pi}\right)\right]\right| \leq c_{2}\right\} .
$$

Then,

$$
\begin{aligned}
P\left(\left|\bar{V}_{\bar{\Pi}_{1}}-E\left[V_{\Pi}\right]\right|+E\left[\Psi\left(B_{\Pi}\right)\right]>{\overline{\Psi\left(B_{\Pi}\right)}}_{m_{2}}+c_{1}+c_{2}\right) & \leq P\left(\Omega \backslash\left(A_{1} \cap A_{2}\right)\right) \\
& \leq P\left(\Omega \backslash A_{1}\right)+P\left(\Omega \backslash A_{2}\right) \\
& \leq \delta_{1}+\delta_{2}
\end{aligned}
$$

Hence,

$$
P\left(\bar{V}_{m_{1}}-V_{\Pi}^{+}>c_{1}\right) \leq P\left(\bar{V}_{m_{1}}-V_{\Pi}>c_{1}\right) \leq \delta_{1}<\delta_{1}+\delta_{2}
$$

which gives the left hand side of the result. For the right hand side,

$$
\begin{aligned}
P\left(\bar{V}_{m_{1}}-V_{\Pi}^{+}<\right. & \left.-{\overline{\Psi\left(B_{\Pi}\right)}}_{m_{2}}-c_{1}-c_{2}\right) \\
& \leq P\left(\bar{V}_{\Pi m_{1}}-E\left[V_{\Pi}\right]-E\left[\Psi\left(B_{\Pi}\right)\right]<-{\overline{\Psi\left(B_{\Pi}\right)}}_{m_{2}}-c_{1}-c_{2}\right) \\
& \leq \delta_{1}+\delta_{2} .
\end{aligned}
$$

Lemma 8 Let $\left\{Z_{m}\right\}_{m=1}^{\infty}$ be a martingale with Z_{m} defined on the filtration $\mathcal{F}_{m}, E\left[Z_{m}\right]=0$ and $\left|Z_{m}-Z_{m-1}\right| \leq d$ for all m where $Z_{0}=0$. Then,

$$
P\left(\exists m \leq n ; \frac{Z_{m}}{m} \geq 2 d^{2} \sqrt{\frac{2}{m} \log \left(\frac{n}{m} \frac{4}{\delta}\right)}\right) \leq \delta
$$

Proof: The proof is similar to that of Lemma B. 1 in Perchet, Rigollet, Chassang, and Snowberg (2016) and will make use of the following standard results:

Theorem 9 Doob's maximal inequality: Let Z be a non-negative submartingale. Then for $c>0$,

$$
P\left(\sup _{k \leq n} Z_{k} \geq c\right) \leq \frac{E\left[Z_{n}\right]}{c}
$$

Proof: See, for example, Williams (1991), Theorem 14.6, page 137.
Lemma 10 Let Z_{n} be a martingale such that $\left|Z_{i}-Z_{i-1}\right| \leq d_{i}$ for all i with probability 1 . Then, for $\lambda>0$,

$$
E\left[e^{\lambda Z_{n}}\right] \leq e^{\frac{\lambda^{2} D^{2}}{2}}
$$

where $D^{2}=\sum_{i=1}^{n} d_{i}^{2}$.
Proof: See the proof of the Azuma-Hoeffding inequality in Azuma (1967).
Then, for the proof of Lemma 8, we first notice that since $\left\{Z_{m}\right\}_{m=1}^{\infty}$ is a martingale, by Jensen's inequality for conditional expectations, it follows that for any $\lambda>0$,

$$
E\left[e^{\lambda Z_{m}} \mid \mathcal{F}_{m-1}\right] \geq e^{\lambda E\left[Z_{m} \mid \mathcal{F}_{m-1}\right]}=e^{\lambda Z_{m-1}}
$$

Hence, for any $\lambda>0,\left\{e^{\lambda Z_{m}}\right\}_{m=1}^{\infty}$ is a positive sub-martingale so we can apply Doob's maximal inequality (Theorem 9) to get

$$
P\left(\sup _{m \leq n} Z_{m} \geq c\right)=P\left(\sup _{m \leq n} e^{\lambda Z_{m}} \geq e^{\lambda c}\right) \leq \frac{E\left[e^{\lambda Z_{n}}\right]}{e^{\lambda c}}
$$

Then, by Lemma 10 , since $\left|Z_{i}-Z_{i-1}\right| \leq d$ for all i, it follows that

$$
\begin{equation*}
P\left(\sup _{m \leq n} Z_{m} \geq c\right) \leq \frac{E\left[e^{\lambda Z_{n}}\right]}{e^{\lambda c}} \leq \frac{e^{\lambda^{2} D^{2} / 2}}{e^{\lambda c}}=\exp \left\{\frac{\lambda^{2} D^{2}}{2}-\lambda c\right\} \tag{5}
\end{equation*}
$$

Minimizing the right hand side with respect to λ gives $\hat{\lambda}=\frac{c}{D^{2}}$ and substituting this back into (5) gives,

$$
P\left(\sup _{m \leq n} Z_{m} \geq c\right) \leq \exp \left\{-\frac{c^{2}}{2 D^{2}}\right\}
$$

Then, since we are considering the case where $d_{i}=d$ for all $i, D^{2}=n d^{2}$ and so,

$$
P\left(\sup _{m \leq n} Z_{m} \geq c\right) \leq \exp \left\{-\frac{c^{2}}{2 n d^{2}}\right\}
$$

Further, if we are interested in $P\left(\sup _{k \leq m \leq n} Z_{m} \geq c\right)$, we can redefine the indices to get

$$
\begin{equation*}
P\left(\sup _{k \leq m \leq n} Z_{m} \geq c\right)=P\left(\sup _{m^{\prime} \leq n-k+1} Z_{m} \geq c\right) \leq \exp \left\{-\frac{c^{2}}{2(n-k+1) d^{2}}\right\} \tag{6}
\end{equation*}
$$

We then define $\varepsilon_{m}=2 d \sqrt{\frac{1}{m} \log \left(\frac{n}{m} \frac{8}{\delta}\right)}$ and use a peeling argument similar to that in Lemma B. 1 of Perchet et al. (2016) to get

$$
\begin{aligned}
& P\left(\exists m \leq n ; \frac{Z_{m}}{m} \geq \varepsilon_{m}\right) \leq \sum_{t=0}^{\left\lfloor\log _{2}(n)\right\rfloor+1} P\left(\bigcup_{m=2^{t}}^{2^{t+1}-1}\left\{\frac{Z_{m}}{m} \geq \varepsilon_{m}\right\}\right) \\
& \leq \sum_{t=0}^{\left\lfloor\log _{2}(n)\right\rfloor+1} P\left(\bigcup_{m=2^{t}}^{2^{t+1}-1}\left\{\frac{Z_{m}}{m} \geq \varepsilon_{2^{t+1}}\right\}\right) \quad\left(\text { since } \varepsilon_{m} \text { decreasing in } m\right) \\
& \leq \sum_{t=0}^{\left\lfloor\log _{2}(n)\right\rfloor+1} P\left(\bigcup_{m=2^{t}}^{2^{t+1}-1}\left\{Z_{m} \geq 2^{t} \varepsilon_{2^{t+1}}\right\}\right) \quad\left(\text { as } m \geq 2^{t}\right) \\
& \leq \sum_{t=0}^{\left\lfloor\log _{2}(n)\right\rfloor+1} \exp \left\{-\frac{\left(2^{t} \varepsilon_{2^{t+1}}\right)^{2}}{2^{t+1} d^{2}}\right\} \\
& \leq \sum_{t=0}^{\left\lfloor\log _{2}(n)\right\rfloor+1} \frac{2^{t+1} \delta}{8 n} \\
& \leq \frac{2^{\log _{2}(n)+3} \delta}{8 n}=\delta . \\
& \text { (from 6) }
\end{aligned}
$$

Proposition 11 (Proposition2 2 in main text) The Algorithm BoundValueShare (Algorithm 2) returns confidence bounds,
$L\left(V_{\Pi}^{+}\right)=\bar{V}_{\Pi_{m}}-\sqrt{\frac{\Psi(B)^{2} \log \left(2 / \delta_{1}\right)}{2 m_{1}}} \quad U\left(V_{\Pi}^{+}\right)=\bar{V}_{\Pi m_{1}}+{\overline{\Psi\left(B_{\Pi}\right)}}_{m_{2}}+\sqrt{\frac{\Psi(B)^{2} \log \left(2 / \delta_{1}\right)}{2 m_{1}}}+2 \Psi(B) \sqrt{\frac{1}{m_{2}} \log \left(\frac{8 n}{\delta_{2} m_{2}}\right)}$
which hold with probability $1-\delta_{1}-\delta_{2}$.
Proof: We begin by noting that our samples of item size are dependent since in each iteration we construct a bound based on past samples and we use this bound to decide if we need to continue sampling or if we can stop. To model this dependence let us introduce a stopping time τ such that $\tau(\omega)=n$ if our algorithm exits the loop at time n. Consider the sequence

$$
{\overline{\Psi\left(B_{\Pi}\right)}}_{1 \wedge \tau},{\overline{\Psi\left(B_{\Pi}\right)}}_{2 \wedge \tau}, \ldots
$$

and define for $m \geq 1$

$$
M_{m}=(m \wedge \tau)\left({\overline{\Psi\left(B_{\Pi}\right)}}_{m \wedge \tau}-E\left[\Psi\left(B_{\Pi}\right)\right]\right) \quad \text { with } \quad M_{0}=0
$$

Furthermore, define the filtration $\mathcal{F}_{m}=\sigma\left(B_{\Pi, 1}, \ldots, B_{\Pi, m}\right)$ then for $m \geq 1$

$$
E\left[M_{m} \mid \mathcal{F}_{m-1}\right]=E\left[M_{m} \mid \mathcal{F}_{m-1}, \tau \leq m-1\right]+E\left[M_{m} \mid \mathcal{F}_{m-1}, \tau>m-1\right]
$$

Now

$$
E\left[M_{m} \mid \mathcal{F}_{m-1}, \tau \leq m-1\right]=E\left[M_{m-1} \mid \tau \leq m-1\right]
$$

and due to independence of the samples $B_{\Pi, 1}, \ldots, B_{\Pi, m}$

$$
\begin{aligned}
& E\left[M_{m} \mid \mathcal{F}_{m-1}, \tau>m-1\right] \\
& =E\left[m\left(\overline{\Psi\left(B_{\Pi}\right)}{ }_{m}-E\left[\Psi\left(B_{\Pi}\right)\right]\right) \mid \mathcal{F}_{m-1}, \tau>m-1\right] \\
& =E\left[\sum_{j=1}^{m-1} \Psi\left(B_{\Pi, j}\right)+\Psi\left(B_{\Pi, m}\right)-m E\left[\Psi\left(B_{\Pi}\right)\right] \mid \mathcal{F}_{m-1}, \tau>m-1\right] \\
& =(m-1) E\left[{\left.\left.\overline{\Psi\left(B_{\Pi}\right.}\right)_{m-1}-E\left[\Psi\left(B_{\Pi}\right)\right] \mid \mathcal{F}_{m-1}, \tau>m-1\right]} \quad \begin{array}{l}
\quad+E\left[\Psi\left(B_{\Pi, m}\right)-E\left[\Psi\left(B_{\Pi}\right)\right] \mid \mathcal{F}_{m-1}, \tau>m-1\right]
\end{array}\right. \\
& =E\left[M_{m-1} \mid \tau>m-1\right]+E\left[\Psi\left(B_{\Pi, m}\right)\right]-E\left[\Psi\left(B_{\Pi}\right)\right]=E\left[M_{m-1} \mid \tau>m-1\right]
\end{aligned}
$$

Hence, $E\left[M_{m} \mid \mathcal{F}_{m-1}\right]=M_{m-1}$ and M_{m} is a martingale with increments $\left|M_{m}-M_{m-1}\right| \leq\left|\Psi\left(B_{\Pi, m}\right)-E\left[\Psi\left(B_{\Pi}\right)\right]\right| \leq$ $\Psi(B)$. We could apply the Azuma-Hoeffding inequality to gain guarantees for individual m-values. Alternatively, we can use Lemma 8 to get,

$$
P\left(\sup _{m \leq n} \frac{M_{m}}{m} \geq 2 \Psi(B) \sqrt{\frac{1}{m} \log \left(\frac{8 n}{\delta m}\right)}\right) \leq \delta_{2} .
$$

Combining this with the argument in Lemma 1 gives

$$
{\overline{V_{\Pi}} m_{1}}^{-c_{1} \leq V_{\Pi}^{+} \leq{\overline{V_{\Pi}}}_{m_{1}}+{\overline{\Psi\left(B_{\Pi}\right)}}_{m_{2}}+c_{1}+c_{2}, ~ . ~}
$$

where $c_{1}:=\sqrt{\frac{\Psi(B)^{2} \log \left(2 / \delta_{1}\right)}{2 m_{1}}}$ and $c_{2}:=2 \Psi(B) \sqrt{\frac{1}{m_{2}} \log \left(\frac{8 n}{\delta_{2} m_{2}}\right)}$ and these bounds hold with probability $1-\delta_{1}-\delta_{2}$.

Lemma 12 With probability $1-\delta_{0,1}-\delta_{0,2}$, the bounds generated by BoundValueShare with parameters $\delta_{1, d}=$ $\frac{\delta_{0,1}}{d^{*}} N_{d}^{-1}$ and $\delta_{2, d}=\frac{\delta_{0,2}}{d^{*}} N_{d}^{-1}$ hold for all policies Π of depth $d=d(\Pi) \leq d^{*}$ simultaneously.

Proof: The probability that all bounds hold simultaneously is $P\left(\bigcap_{\Pi \in \mathcal{P}}\left\{L\left(V_{\Pi}^{+}\right) \leq V_{\Pi} \leq U\left(V_{\Pi}^{+}\right)\right\}\right)$where \mathcal{P} is the set of all policies. From Proposition 2, for any policy Π of depth $d=d(\Pi), P\left(L\left(V_{\Pi}^{+}\right) \leq V_{\Pi} \leq U\left(V_{\Pi}^{+}\right)\right) \geq$ $1-\delta_{d, 1}-\delta_{d, 2}$. Then,

$$
\begin{aligned}
P\left(\bigcap_{\Pi \in \mathcal{P}}\left\{L\left(V_{\Pi}^{+}\right) \leq V_{\Pi} \leq U\left(V_{\Pi}^{+}\right)\right\}\right) & =1-P\left(\bigcup_{\Pi \in \mathcal{P}}\left\{L\left(V_{\Pi}^{+}\right) \leq V_{\Pi} \leq U\left(V_{\Pi}^{+}\right)\right\}^{c}\right) \\
& \geq 1-\sum_{\Pi \in \mathcal{P}} P\left(\left\{L\left(V_{\Pi}^{+}\right) \leq V_{\Pi} \leq U\left(V_{\Pi}^{+}\right)\right\}^{c}\right) \\
& \geq 1-\sum_{\Pi \in \mathcal{P}}\left(\delta_{d(\Pi), 1}+\delta_{d(\Pi), 2}\right) \\
& =1-\sum_{d=1}^{d^{*}} N_{d}\left(\delta_{d, 1}+\delta_{d, 2}\right) \\
& \geq 1-\sum_{d=1}^{d^{*}} N_{d}\left(\frac{\delta_{0,1}}{d^{*}} N_{d}^{-1}+\frac{\delta_{0,2}}{d^{*}} N_{d\left(\Pi_{t}\right)}^{-1}\right) \\
& =1-\sum_{d=1}^{d^{*}} \frac{1}{d^{*}}\left(\delta_{0,1}+\delta_{0,2}\right)=1-\delta_{0,1}-\delta_{0,2}
\end{aligned}
$$

D. 2 Theoretical Results for Optimistic Stochastic Knapsacks (OpStoK)

Proposition 13 (Proposition 4 in main text) With probability at least ($1-\delta_{0,1}-\delta_{0,2}$), the algorithm OpStoK returns a policy with value at least $v^{*}-\epsilon$.

Proof: The proof follows from the following lemma.

Lemma 14 For every round of the algorithm and incomplete policy Π, let $D(\Pi)$ be the set of all descendants of П. Define the event $A=\bigcap_{\Pi^{\prime} \in D(\Pi)}\left\{V_{\Pi^{\prime}} \in\left[L\left(V_{\Pi}^{+}\right), U\left(V_{\Pi}^{+}\right)\right]\right\}$. Then $P(A) \geq 1-\delta_{0,1}-\delta_{0,2}$.

Proof: When BoundValueShare is called for a policy Π with $d(\Pi)=d$, it is done so with parameters $\delta_{d, 1}=$ $\frac{\delta_{0,1}}{d^{*}} N_{d}^{-1}$ and $\delta_{d, 2}=\frac{\delta_{0,2}}{d^{*}} N_{d}^{-1}$, where $\delta_{d, 1}$ and $\delta_{d, 2}$ are used to control the accuracy of the estimated value of V_{Π} and $E \Psi\left(B_{\Pi}\right)$ respectively. It follows from Proposition 2 , that for any active policy Π, the probability that the interval $\left[\bar{V}_{\Pi} m_{1}-c_{1}, \bar{V}_{\Pi m_{1}}+\overline{\Psi(B \Pi)}_{m_{2}}+c_{1}+c_{2}\right]$ generated by BoundValueShare does not contain V_{Π}^{+}is less than $\delta_{d, 1}+\delta_{d, 2}$. Furthermore, from standard Hoeffding bounds, the probability that V_{Π} is outside the interval $\left[V_{\Pi}-c_{1}, V_{\Pi}+c_{1}\right]$ is less than $\delta_{d, 1}$. Since any descendant policy Π^{\prime} of Π consists of adding at least one item to the knapsack and item rewards are all ≥ 0, it follows that $V_{\Pi} \leq V_{\Pi^{\prime}} \leq V_{\Pi}^{+}$. Hence, the probability of the value of a descendant policy being outside the interval $\left[L\left(V_{\Pi}^{+}\right), U\left(V_{\Pi}^{+}\right)\right]$is less than $\delta_{d, 1}+\delta_{d, 2}$. By the same argument as in Lemma 12 it can be shown that $P(A)>1-\sum_{d=1}^{d^{*}}\left(\delta_{d, 1}+\delta_{d, 2}\right) N_{d}=1-\delta_{0,1}-\delta_{0,2}$.
The result of the proposition follows by noting that the true optimal policy $\Pi^{O P T}$ will be a descendant of Π_{i} for some $i \in I$. Let Π^{*} be the policy outputted by the algorithm. By the stopping criterion, $L\left(V_{\Pi^{*}}^{+}\right)+\epsilon \geq$ $\max _{\Pi \in \operatorname{Active} \backslash\left\{\Pi^{*}\right\}} \geq U\left(V_{\Pi}^{+}\right)$for any $\Pi \in$ Active. From the expansion rule of OpStoK, it follows that either $\Pi^{O P T} \in$ Active or there exists some ancestor policy Π^{\prime} of $\Pi^{O P T}$ in Active. In the first case, $V_{\Pi \text { OPT }}=v^{*} \leq$ $U\left(V_{\Pi O P T}^{+}\right)$whereas in the latter $V_{\Pi O P T}=v^{*} \leq U\left(V_{\Pi^{\prime}}^{+}\right)$with high probability from Lemma 14 . In either case, it follows that $L\left(V_{\Pi^{*}}^{+}\right)+\epsilon \geq v^{*}$ and so $V_{\Pi^{*}}+\epsilon \geq v^{*}$.

Lemma 15 If Π is a complete policy then, $U\left(V_{\Pi}^{+}\right)-L\left(V_{\Pi}^{+}\right) \leq \epsilon$, otherwise $U\left(V_{\Pi}^{+}\right)-L\left(V_{\Pi}^{+}\right) \leq 6 E \Psi\left(B_{\Pi}\right)-\frac{3}{4} \epsilon$.
Proof: By the bounds in Proposition 2, $U\left(V_{\Pi}^{+}\right)-L\left(V_{\Pi}^{+}\right) \leq \overline{\Psi\left(B_{\Pi}\right)} m_{m_{2}}+c_{2}+2 c_{1}=U\left(\Psi\left(B_{\Pi}\right)\right)+2 c_{1}$. For a complete policy, $U\left(\Psi\left(B_{\Pi}\right)\right) \leq \frac{\epsilon}{2}$ and according to BoundValueShare, m_{1} is chosen such that $2 c_{1} \leq \frac{\epsilon}{2}$ which implies $U\left(V_{\Pi}^{+}\right)-L\left(V_{\Pi}^{+}\right) \leq \epsilon$.
If Π is not complete, by the sampling strategy in BoundValueShare, we continue sampling the remaining budget until $L\left(\Psi\left(B_{\Pi}\right)\right) \geq \frac{\epsilon}{4}$. In this setting, the maximal width of the confidence interval of $E \Psi\left(B_{\Pi}\right)$ will satisfy

$$
\begin{equation*}
2 c_{2} \leq E \Psi\left(B_{\Pi}\right)-\frac{\epsilon}{4} . \tag{7}
\end{equation*}
$$

Hence,

$$
\begin{align*}
U\left(V_{\Pi}^{+}\right)-L\left(V_{\Pi}^{+}\right) & \leq U\left(\Psi\left(B_{\Pi}\right)\right)+2 c_{1} \\
& \leq 3 U\left(\Psi\left(B_{\Pi}\right)\right) \tag{8}\\
& \leq 3\left(E \Psi\left(B_{\Pi}\right)+2 c_{2}\right) \\
& \leq 3\left(E \Psi\left(B_{\Pi}\right)+E \Psi\left(B_{\Pi}\right)-\frac{\epsilon}{4}\right) \tag{9}\\
& \leq 6 E \Psi\left(B_{\Pi}\right)-\frac{3}{4} \epsilon .
\end{align*}
$$

Where (8) follows since, when $L\left(\Psi\left(B_{\Pi}\right)\right) \geq \frac{\epsilon}{4}$, we sample the value of policy Π until $c_{1} \leq U\left(\Psi\left(B_{\Pi}\right)\right)$, and (9) by substituting in (7).

Lemma 16 (Lemma 3 in main text) Assume that $L\left(V_{\Pi}^{+}\right) \leq V_{\Pi} \leq U\left(V_{\Pi}^{+}\right)$holds simultaneously for all policies $\Pi \in$ Active with $U\left(\vec{V}_{\Pi}^{+}\right)$and $L\left(V_{\Pi}^{+}\right)$as defined in Proposition 2 . Then, $\Pi_{t} \in \mathcal{Q}^{\epsilon}$ for every policy selected by OpStoK at every time point t, except for possibly the last one.

Proof: Since, when we expand a policy, we replace it in Active by all its child policies, at any time point $t \geq 1$ there will be one ancestor of Π^{*} in the active set, denote this policy by Π_{t}^{*}. If $\Pi_{t}=\Pi_{t}^{*}$, then by Lemma 14 $V_{\Pi^{*}} \in\left[L\left(V_{\Pi_{t}}^{+}\right), U\left(V_{\Pi_{t}}^{+}\right)\right]$. Hence,

$$
V_{\Pi}+6 E \Psi\left(B_{\Pi}\right)+\frac{3}{4} \epsilon \geq U\left(V_{\Pi}^{+}\right) \geq v^{*} \geq v^{*}-6 E \Psi\left(B_{\Pi}\right)-\frac{3}{4} \epsilon+\epsilon
$$

Where the last inequality will hold for any incomplete policy (since for an incomplete policy $L\left(B_{\Pi}\right) \geq \frac{\epsilon}{4}$) and so, $\Pi_{t} \in \mathcal{Q}^{\epsilon}$. For $\Pi_{t}=\Pi^{*}$, since $\frac{6}{4} \epsilon \geq \epsilon, \Pi_{t} \in \mathcal{Q}^{\epsilon}$.
Assume $\Pi_{t} \neq \Pi_{t}^{*}$. If Π_{t} is a complete policy, $U\left(V_{\Pi_{t}}^{+}\right)-L\left(V_{\Pi_{t}}^{+}\right) \leq \epsilon$. For a complete policy Π to be selected, it must have the largest $U\left(V_{\Pi}^{+}\right)$, since most alternative policies will have larger $U\left(\Psi\left(B_{\Pi}\right)\right)$. Hence $\Pi_{t}^{(1)}=\Pi_{t}$ and

$$
L\left(V_{\Pi_{t}^{(1)}}^{+}\right)+\epsilon \geq U\left(V_{\Pi_{t}^{(1)}}^{+}\right) \geq \max _{\Pi \in \operatorname{ACTIVE~} \backslash\left\{\Pi_{t}^{(1)}\right\}} U\left(V_{\Pi}^{+}\right),
$$

so the algorithm stops.
Assume $\Pi_{t}=\Pi_{t}^{(1)} \neq \Pi_{t}^{*}$ is an incomplete policy. By Lemma 15 , for an incomplete policy,

$$
\begin{equation*}
U\left(V_{\Pi}^{+}\right)-L\left(V_{\Pi}^{+}\right) \leq 3 U\left(\Psi\left(B_{\Pi}\right)\right) \leq 6 E \Psi\left(B_{\Pi}\right)-\frac{3}{4} \epsilon \tag{10}
\end{equation*}
$$

Then, if the termination criteria is not met,

$$
\begin{aligned}
V_{\Pi_{t}} \geq L\left(V_{\Pi_{t}}^{+}\right) \Longrightarrow V_{\Pi_{t}}+6 E \Psi\left(B_{\Pi}\right)-\frac{3}{4} \epsilon-\epsilon & \geq L\left(V_{\Pi_{t}}^{+}\right)+6 E \Psi\left(B_{\Pi}\right)-\frac{3}{4} \epsilon-\epsilon \\
& \geq U\left(V_{\Pi_{t}}^{+}\right)-\epsilon \\
& \geq \max _{\Pi \in \mathrm{ACTIVE} \backslash\left\{\Pi_{t}\right\}} U\left(V_{\Pi}^{+}\right)-\epsilon \\
& \geq L\left(V_{\Pi_{t}}^{+}\right) \\
& \geq U\left(V_{\Pi_{t}}^{+}\right)-6 E \Psi\left(B_{\Pi}\right)+\frac{3}{4} \epsilon \\
& \geq U\left(V_{\Pi_{t}^{*}}^{+}\right)-6 E \Psi\left(B_{\Pi}\right)+\frac{3}{4} \epsilon \\
& \geq v^{*}-6 E \Psi\left(B_{\Pi}\right)+\frac{3}{4} \epsilon
\end{aligned}
$$

which follows since $\Pi_{t}^{(1)}$ is chosen to be the policy with largest upper bound. Therefore, $\Pi_{t} \in \mathcal{Q}^{\epsilon}$.
By the stopping criteria of OpStoK, if the algorithm does not stop and select $\Pi_{t}^{(1)}$ as the optimal policy, then $\Pi_{t}=\Pi_{t}^{(2)}$ and

$$
L\left(V_{\Pi_{t}^{(1)}}^{+}\right)+\epsilon<\max _{\Pi \in \operatorname{ACTIVE\backslash \{ \Pi _{t}^{(1)}\} }} U\left(V_{\Pi}^{+}\right)=U\left(V_{\Pi_{t}^{(2)}}^{+}\right) .
$$

By equation (10),

$$
L\left(V_{\Pi_{t}^{(1)}}^{+}\right)+6 E \Psi\left(B_{\Pi}\right)-\frac{3}{4} \epsilon \geq U\left(V_{\Pi_{t}^{(1)}}^{+}\right)
$$

and by the selection criterion $U\left(\Psi\left(B_{\Pi_{t}^{(2)}}\right)\right) \geq U\left(\Psi\left(B_{\Pi_{t}^{(1)}}\right)\right)$. Therefore, for $\Pi_{t}=\Pi_{t}^{(2)} \neq \Pi_{t}^{*}$,

$$
\begin{aligned}
V_{\Pi_{t}}+12 E \Psi\left(B_{\Pi}\right)-\frac{6}{4} \epsilon-\epsilon & \geq L\left(V_{\Pi_{t}}^{+}\right)+6 E \Psi\left(B_{\Pi_{t}}\right)-\frac{3}{4} \epsilon+6 E \Psi\left(B_{\Pi_{t}}\right)-\frac{3}{4} \epsilon-\epsilon \\
& \geq U\left(V_{\Pi_{t}}^{+}\right)+6 E \Psi\left(B_{\Pi_{t}}\right)-\frac{3}{4} \epsilon-\epsilon \\
& \geq U\left(V_{\Pi_{t}}^{+}\right)+3 U\left(\Psi\left(B_{\Pi_{t}}\right)\right)-\epsilon \\
& \geq U\left(V_{\Pi_{t}}^{+}\right)+3 U\left(\Psi\left(B_{\Pi_{t}}^{(1)}\right)\right)-\epsilon \\
& \geq L\left(V_{\Pi_{t}^{(1)}}^{+}\right)+3 U\left(\Psi\left(B_{\Pi_{t}^{(1)}}\right)\right) \\
& \geq U\left(V_{\Pi_{t}^{(1)}}^{+}\right) \\
& \geq U\left(V_{\Pi_{t}^{*}}^{+}\right) \\
& \geq v^{*} .
\end{aligned}
$$

Hence $\Pi_{t} \in \mathcal{Q}^{\epsilon}$.
Theorem 17 (Theorem 5 in main text) The total number of samples required by OpStoK is bounded from above by,

$$
\sum_{\Pi \in \mathcal{Q}^{\epsilon}}\left(m_{1}(\Pi)+m_{2}(\Pi)\right) d(\Pi)
$$

with probability $1-\delta_{0,2}$.
Proof: The result follows from the following three lemmas.
Lemma 18 For $\Pi \in \mathcal{A}^{\epsilon}$ of depth $d=d(\Pi)$, then, with probability $1-\delta_{d, 2}$, the minimum number of samples of the value and remaining budget of the policy Π are bounded by

$$
m_{1}(\Pi)=\left\lceil\frac{8 \Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{\epsilon^{2}}\right\rceil \quad \text { and } \quad m_{2}(\Pi)=m^{*}
$$

where m^{*} is the smallest integer satisfying $\frac{16 \Psi(B)^{2}}{\left(E \Psi\left(B_{\Pi}\right)-\epsilon / 2\right)^{2}} \leq \frac{m}{\log \left(8 n / m \delta_{2}\right)}$ with n defined as in (2).
Proof: When $E \Psi\left(B_{\Pi}\right) \leq \frac{\epsilon}{4}$, the event $\left\{U\left(\Psi\left(B_{\Pi}\right)\right) \leq \frac{\epsilon}{2}\right\}$ will eventually occur with enough samples of the remaining budget of the policy. With probability greater than $1-\delta_{d, 2}$, this will happen when $2 c_{2} \leq \frac{\epsilon}{2}-E \Psi\left(B_{\Pi}\right)$, since by Hoeffding's Inequality we know $\overline{\Psi\left(B_{\Pi}\right)}{ }_{m_{2}} \in\left[E \Psi\left(B_{\Pi}\right)-c_{2}, E \Psi\left(B_{\Pi}\right)+c_{2}\right]$ where c_{2} is as defined in Lemma 1. From this, it follows that $U\left(\Psi\left(B_{\Pi}\right)\right) \in\left[E \Psi\left(B_{\Pi}\right), E \Psi\left(B_{\Pi}\right)+2 c_{2}\right]$. We want to make sure that $U\left(\Psi\left(B_{\Pi}\right)\right) \leq \frac{\epsilon}{2}$ will eventually happen so we need to construct a confidence interval such that c_{2} satisfies $E \Psi\left(B_{\Pi}\right)+2 c_{2} \leq \frac{\epsilon}{2}$. Therefore we select m_{2} such that,

$$
\begin{aligned}
& 2 c_{2} \leq \frac{\epsilon}{2}-E \Psi\left(B_{\Pi}\right) \\
\Longrightarrow & 4 \Psi(B) \sqrt{\frac{2 \log \left(\frac{8 n}{m_{2} \delta_{d, 2}}\right)}{m_{2}}} \leq \frac{\epsilon}{2}-E \Psi\left(B_{\Pi}\right) \\
\Longrightarrow & \frac{16 \Psi(B)^{2}}{\left(E \Psi\left(B_{\Pi}\right)-\epsilon / 2\right)^{2}} \leq \frac{m_{2}}{\log \left(4 n / m_{2} \delta_{2}\right)}
\end{aligned}
$$

Defining, $m_{2}(\Pi)=m^{*}$, where m^{*} is the smallest integer satisfying the above, is therefore an upper bound on the minimum number of samples necessary to ensure that $U\left(\Psi\left(B_{\Pi}\right)\right) \leq \frac{\epsilon}{2}$ with probability greater than $1-\delta_{d, 2}$. When $U\left(\Psi\left(B_{\Pi}\right)\right) \leq \frac{\epsilon}{2}$, BoundValueShare requires $m_{1}(\Pi)=\left\lceil\frac{2 \Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{\epsilon^{2}}\right\rceil$ samples of the value of the policy to ensure $2 c_{1} \leq \frac{\epsilon}{2}$.

Lemma 19 For $\Pi \in \mathcal{B}^{\epsilon}$ of depth $d=d(\Pi)$, then, with probability $1-\delta_{d, 2}$, the minimum number of samples of the value and remaining budget of the policy Π are bounded by

$$
m_{1}(\Pi) \leq\left\lceil\frac{\Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{2 E \Psi\left(B_{\Pi}\right)^{2}}\right\rceil \quad \text { and } \quad m_{2}(\Pi)=m^{*}
$$

where m^{*} is the smallest integer satisfying $\frac{16 \Psi(B)^{2}}{\left(E \Psi\left(B_{\Pi}\right)-\epsilon / 4\right)^{2}} \leq \frac{m}{\log \left(8 n / m \delta_{2}\right)}$ with n defined as in (2).
Proof: When $E \Psi\left(B_{\Pi}\right) \geq \frac{\epsilon}{2}$, by noting that the event $\left\{L\left(\Psi\left(B_{\Pi}\right)\right) \geq \frac{\epsilon}{4}\right\}$ will eventually happen and using a very similar argument to Lemma 18 it follows that $m_{2}(\Pi)$ is the smallest integer solution to

$$
\frac{16 \Psi(B)^{2}}{\left(E \Psi\left(B_{\Pi}\right)-\epsilon / 4\right)^{2}} \leq \frac{m}{\log \left(8 n / m \delta_{2}\right)}
$$

with probability greater than $1-\delta_{d, 2}$. Whenever $L\left(\Psi\left(B_{\Pi}\right)\right) \geq \frac{\epsilon}{4}$, BoundValueShare requires $m_{1}(\Pi)=$ $\left\lceil\frac{2 \Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{\left(U\left(\Psi\left(B_{\Pi}\right)\right)^{2}\right.}\right\rceil$ samples of the value of policy Π. Since $U\left(\Psi\left(B_{\Pi}\right)\right) \in\left[E \Psi\left(B_{\Pi}\right), E \Psi\left(B_{\Pi}\right)+2 c_{2}\right]$ with probability $1-\delta_{0,2}, U\left(\Psi\left(B_{\Pi}\right)\right) \geq E \Psi\left(B_{\Pi}\right)$, and so,

$$
m_{1}(\Pi)=\left\lceil\frac{2 \Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{\left(U\left(\Psi\left(B_{\Pi}\right)\right)^{2}\right.}\right\rceil \leq\left\lceil\frac{2 \Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{E \Psi\left(B_{\Pi}\right)^{2}}\right\rceil
$$

and the result holds.
Lemma 20 For $\Pi \in \mathcal{C}^{\epsilon}$ of depth $d=d(\Pi)$, then, with probability $1-\delta_{d, 2}$, the minimum number of samples of the value and remaining budget of the policy Π are bounded by

$$
m_{1}(\Pi) \leq \max \left\{\left\lceil\frac{8 \Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{\epsilon^{2}}\right\rceil,\left\lceil\frac{\Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{2 E \Psi\left(B_{\Pi}\right)^{2}}\right\rceil\right\}
$$

and $m_{2}(\Pi)=m^{*}$, where m^{*} is the smallest integer satisfying $\frac{16 \Psi(B)^{2}}{(\epsilon / 4)^{2}} \leq \frac{m}{\log \left(8 n / m \delta_{2}\right)}$ with n defined as in (2).
Proof: When $\frac{\epsilon}{4}<E \Psi\left(B_{\Pi}\right)<\frac{\epsilon}{2}$, then the minimum width we will need a confidence interval to be is $\epsilon / 4$. By an argument similar to Lemma 18, we can deduce that $m_{2}(\Pi)$ will be the smallest integer satisfying $\frac{16 \Psi(B)^{2}}{(\epsilon / 4)^{2}} \leq$ $\frac{m}{\log \left(8 n / m \delta_{2}\right)}$.
In order to determine the number of samples of the value required by BoundValueShare, we need to know which of $\left\{U\left(\Psi\left(B_{\Pi}\right)\right) \leq \frac{\epsilon}{2}\right\}$ or $\left\{L\left(\Psi\left(B_{\Pi}\right)\right) \geq \frac{\epsilon}{4}\right\}$ occurs first. However, when $\Pi \in \mathcal{C}^{\epsilon}$, we do not know this so the best we can do is bound $m_{1}(\Pi)$ by the maximum of the two alternatives,

$$
m_{1}(\Pi) \leq \max \left\{\left\lceil\frac{2 \Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{\epsilon^{2}}\right\rceil,\left\lceil\frac{2 \Psi(B)^{2} \log \left(\frac{2}{\delta_{d, 1}}\right)}{E \Psi\left(B_{\Pi}\right)^{2}}\right\rceil\right\}
$$

The result of the theorem then follows by noting that for any policy Π of depth $d(\Pi)$, it will be necessary to have $m_{1}(\Pi)$ samples of the value of the policy and $m_{2}(\Pi)$ samples of the value of the policy. This requires $m_{1}(\Pi) d(\Pi)$ samples of item rewards, $m_{1}(\Pi) d(\Pi)$ samples of item sizes (to calculate the rewards) and $m_{2}(\Pi) d(\Pi)$ samples of item sizes (to calculate remaining budget), thus a total of $\left(m_{1}(\Pi)+m_{2}(\Pi)\right) d(\Pi)$ calls to the generative model. From Lemma 3, any policy expanded by OpStoK will be in \mathcal{Q}^{ϵ} so it suffices to sum over all policies in \mathcal{Q}^{ϵ}. This result assumes that all confidence bounds hold, whereas we know that for any policy Π of depth $d(\Pi)$, the probability of the confidence bound holding is greater than $1-\delta_{d, 2}$. By an argument similar to Lemma 12 the probability that all bounds hold is greater than $1-\delta_{0,2}$. Note that, since $\left|\mathcal{Q}^{\epsilon}\right| \leq|\mathcal{P}|$, the probability should be considerably greater than $1-\delta_{0,2}$.

