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A Illustration of Policies

(a) A policy of just playing item 3. This policy has
depth 1.

(b) A policy that plays item 2 first. If it is small, it
plays item 1 whereas if it is large it plays item 3. After
this, the final item is determined due to the fact that
there are only 3 items in the problem. This policy has
depth 2.

Figure 4: Examples of policies in the simple 3 item, 2 sizes stochastic knapsack problem. Each blue line represents
choosing an item and the red lines represent the sizes of the previous items.

B Illustration of Bounds
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Figure 5: Example of where just looking at the optimistic policy might fail: If we always play the optimistic
policy then, since U(V +

Π∗) ≥ U(V +
Π ), we will always play Π∗ and so the confidence bounds on Π will not shrink.

This means that L(V +
Π∗) will never be (epsilon) greater than the best alternative upper bound so there will not

be enough confidence to conclude we have found the best policy.

C Algorithms

In these algorithms Generate(i) samples a reward and item size pair from the generative model of item i, whereas
sample(A, k) samples from a set A with replacement to get k samples. The notation i(d) = Π(d, b) indicates
that item i(d) was chosen by policy Π at depth d when the remaining capacity was b.
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Algorithm 3: EstimateValue(Π,m)

Initialization: For all i ∈ I, Si = S∗i
1 for j = 1, . . . ,m do
2 B0 = B;
3 for d = 1, . . . , d(Π) do
4 i(d) = Π(d,Bd−1);
5 if |Si(d)! ≤ 0 then (ri(d), ci(d)) = Generate(i(d)), S∗i = S∗i ∪ {ri(d), ci(d))};
6 else (ri(d), ci(d)) = sample(Si, 1), and Si = Si \ {(ri(d), ci(d))};
7 Bd = Bd−1 − ci(d);
8 if Bd < 0 then ri(d) = 0;

9 end

10 VΠ
(j)

=
∑d(Π)
d=1 ri(d);

11 end

12 return (VΠm = 1
m

∑m
j=1 VΠ

(j)
,S∗)

Algorithm 4: SampleBudget(Π,S)

Initialization: B0 = B and for all i ∈ I, Si = S∗i
1 for d = 1, . . . , d(Π) do
2 i(d) = Π(d,Bd−1);
3 if |Si(d)| ≤ 0 then (ri(d), ci(d)) = Generate(i(d)), S∗i = S∗i ∪ {ri(d), ci(d))};
4 else (ri(d), ci(d)) = sample(Si, 1), and Si = Si \ {(ri(d), ci(d))};
5 Bd = Bd−1 − ci(d);

6 end

7 Ψ(BΠ)
(j)

= Ψ(max{B −
∑d(Π)
d=1 ci(d), 0});

8 return
(

Ψ(BΠ)
(j)
,S∗

)

D Proofs of Theoretical Results

For convenience we restate any results that appear in the main body of the paper before proving them.

D.1 Bounding the Value of a Policy

Lemma 7 (Lemma 1 in main text) Let (Ω,A, P ) be the probability space from Section 2, then for m1 + m2

independent samples of policy Π, and δ1, δ2 > 0, with probability 1− δ1 − δ2,

VΠm1
− c1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ c1 + c2.

Where c1 :=
√

Ψ(B)2 log(2/δ1)
2m1

and c2 :=
√

Ψ(B)2 log(1/δ2)
2m2

.

Proof: Consider the average value of policy Π over m1 many trials. By Hoeffding’s Inequality,

P
(
|VΠm1

− E[VΠ]| > c1
)
≤ δ1 and, similarly, P

(
|Ψ(BΠ)m2

− E[Ψ(BΠ)]| > c2

)
≤ δ2. We are interested in

the probability,

P (|VΠm1
− V +

Π | > t) ≤ P (|VΠm1
− E[VΠ]|+ |E[VΠ]− V +

Π | > t)

≤ P (|VΠm1
− E[VΠ]|+ E[Ψ(BΠ)] > t).

where the first line follows from the triangle inequality and the second from the definition of
Ψ(BΠ). From the Hoeffding bounds and defining t = Ψ(BΠ)m2

+ c1 + c2, we consider

P
(
|VΠm1

− E[VΠ]|+ E[Ψ(BΠ)] > Ψ(BΠ)m2
+ c1 + c2

)
. Define the events

A1 = {|VΠm1
− VΠ|+ E[Ψ(BΠ)] ≤ E[Ψ(BΠ)] + c1} and A2 =

{
|Ψ(BΠ)m2

− E[Ψ(BΠ)]| ≤ c2
}
.
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Then,

P
(
|VΠm1

− E[VΠ]|+ E[Ψ(BΠ)] > Ψ(BΠ)m2
+ c1 + c2

)
≤ P (Ω\(A1 ∩A2))

≤ P (Ω\A1) + P (Ω\A2)

≤ δ1 + δ2.

Hence,
P
(
VΠm1

− V +
Π > c1

)
≤ P

(
VΠm1

− VΠ > c1
)
≤ δ1 < δ1 + δ2

which gives the left hand side of the result. For the right hand side,

P
(
VΠm1

− V +
Π < −Ψ(BΠ)m2

− c1 − c2
)

≤ P
(
VΠm1

− E[VΠ]− E[Ψ(BΠ)] < −Ψ(BΠ)m2
− c1 − c2

)
≤ δ1 + δ2.

�

Lemma 8 Let {Zm}∞m=1 be a martingale with Zm defined on the filtration Fm, E[Zm] = 0 and |Zm−Zm−1| ≤ d
for all m where Z0 = 0. Then,

P

(
∃m ≤ n;

Zm
m
≥ 2d2

√
2

m
log

(
n

m

4

δ

))
≤ δ

Proof: The proof is similar to that of Lemma B.1 in Perchet, Rigollet, Chassang, and Snowberg (2016) and will
make use of the following standard results:

Theorem 9 Doob’s maximal inequality: Let Z be a non-negative submartingale. Then for c > 0,

P

(
sup
k≤n

Zk ≥ c
)
≤ E[Zn]

c
.

Proof: See, for example, Williams (1991), Theorem 14.6, page 137. �

Lemma 10 Let Zn be a martingale such that |Zi − Zi−1| ≤ di for all i with probability 1. Then, for λ > 0,

E[eλZn ] ≤ eλ
2D2

2 ,

where D2 =
∑n
i=1 d

2
i .

Proof: See the proof of the Azuma-Hoeffding inequality in Azuma (1967). �

Then, for the proof of Lemma 8, we first notice that since {Zm}∞m=1 is a martingale, by Jensen’s inequality for
conditional expectations, it follows that for any λ > 0,

E[eλZm |Fm−1] ≥ eλE[Zm|Fm−1] = eλZm−1 .

Hence, for any λ > 0, {eλZm}∞m=1 is a positive sub-martingale so we can apply Doob’s maximal inequality
(Theorem 9) to get

P

(
sup
m≤n

Zm ≥ c
)

= P

(
sup
m≤n

eλZm ≥ eλc
)
≤ E[eλZn ]

eλc
.

Then, by Lemma 10, since |Zi − Zi−1| ≤ d for all i, it follows that

P

(
sup
m≤n

Zm ≥ c
)
≤ E[eλZn ]

eλc
≤ eλ

2D2/2

eλc
= exp

{
λ2D2

2
− λc

}
. (5)
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Minimizing the right hand side with respect to λ gives λ̂ = c
D2 and substituting this back into (5) gives,

P

(
sup
m≤n

Zm ≥ c
)
≤ exp

{
− c2

2D2

}
.

Then, since we are considering the case where di = d for all i, D2 = nd2 and so,

P

(
sup
m≤n

Zm ≥ c
)
≤ exp

{
− c2

2nd2

}
.

Further, if we are interested in P (supk≤m≤n Zm ≥ c), we can redefine the indices to get

P

(
sup

k≤m≤n
Zm ≥ c

)
= P

(
sup

m′≤n−k+1
Zm ≥ c

)
≤ exp

{
− c2

2(n− k + 1)d2

}
. (6)

We then define εm = 2d
√

1
m log

(
n
m

8
δ

)
and use a peeling argument similar to that in Lemma B.1 of Perchet et al.

(2016) to get

P

(
∃m ≤ n;

Zm
m
≥ εm

)
≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{
Zm
m
≥ εm

} (by union bound)

≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{
Zm
m
≥ ε2t+1

} (since εm decreasing in m)

≤
blog2(n)c+1∑

t=0

P

2t+1−1⋃
m=2t

{Zm ≥ 2tε2t+1}

 (as m ≥ 2t)

≤
blog2(n)c+1∑

t=0

exp

{
− (2tε2t+1)2

2t+1d2

}
(from (6))

≤
blog2(n)c+1∑

t=0

2t+1δ

8n
(substituting ε2t+1)

≤ 2log2(n)+3δ

8n
= δ. (since

k∑
i=1

2i = 2k+1 − 1)

�

Proposition 11 (Proposition 2 in main text) The Algorithm BoundValueShare (Algorithm 2) returns confidence
bounds,

L(V +
Π ) = VΠm1

−

√
Ψ(B)2 log(2/δ1)

2m1
U(V +

Π ) = VΠm1
+Ψ(BΠ)m2

+

√
Ψ(B)2 log(2/δ1)

2m1
+2Ψ(B)

√
1

m2
log

(
8n

δ2m2

)
which hold with probability 1− δ1 − δ2.

Proof: We begin by noting that our samples of item size are dependent since in each iteration we construct a
bound based on past samples and we use this bound to decide if we need to continue sampling or if we can stop.
To model this dependence let us introduce a stopping time τ such that τ(ω) = n if our algorithm exits the loop
at time n. Consider the sequence

Ψ(BΠ)1∧τ ,Ψ(BΠ)2∧τ , . . .

and define for m ≥ 1
Mm = (m ∧ τ)(Ψ(BΠ)m∧τ − E[Ψ(BΠ)]) with M0 = 0.
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Furthermore, define the filtration Fm = σ(BΠ,1, . . . , BΠ,m) then for m ≥ 1

E[Mm|Fm−1] = E[Mm|Fm−1, τ ≤ m− 1] + E[Mm|Fm−1, τ > m− 1].

Now
E[Mm|Fm−1, τ ≤ m− 1] = E[Mm−1|τ ≤ m− 1].

and due to independence of the samples BΠ,1, . . . , BΠ,m

E[Mm|Fm−1, τ > m− 1]

= E[m(Ψ(BΠ)m − E[Ψ(BΠ)])|Fm−1, τ > m− 1]

= E

m−1∑
j=1

Ψ(BΠ,j) + Ψ(BΠ,m)−mE[Ψ(BΠ)]

∣∣∣∣Fm−1, τ > m− 1


= (m− 1)E[Ψ(BΠ)m−1 − E[Ψ(BΠ)]|Fm−1, τ > m− 1]

+ E[Ψ(BΠ,m)− E[Ψ(BΠ)]|Fm−1, τ > m− 1]

= E[Mm−1|τ > m− 1] + E[Ψ(BΠ,m)]− E[Ψ(BΠ)] = E[Mm−1|τ > m− 1].

Hence, E[Mm|Fm−1] = Mm−1 and Mm is a martingale with increments |Mm−Mm−1| ≤ |Ψ(BΠ,m)−E[Ψ(BΠ)]| ≤
Ψ(B). We could apply the Azuma-Hoeffding inequality to gain guarantees for individual m-values. Alternatively,
we can use Lemma 8 to get,

P

(
sup
m≤n

Mm

m
≥ 2Ψ(B)

√
1

m
log

(
8n

δm

))
≤ δ2.

Combining this with the argument in Lemma 1 gives

VΠm1
− c1 ≤ V +

Π ≤ VΠm1
+ Ψ(BΠ)m2

+ c1 + c2,

where c1 :=
√

Ψ(B)2 log(2/δ1)
2m1

and c2 := 2Ψ(B)

√
1
m2

log
(

8n
δ2m2

)
and these bounds hold with probability 1−δ1−δ2.

�

Lemma 12 With probability 1 − δ0,1 − δ0,2, the bounds generated by BoundValueShare with parameters δ1,d =
δ0,1
d∗ N

−1
d and δ2,d =

δ0,2
d∗ N

−1
d hold for all policies Π of depth d = d(Π) ≤ d∗ simultaneously.

Proof: The probability that all bounds hold simultaneously is P (
⋂

Π∈P{L(V +
Π ) ≤ VΠ ≤ U(V +

Π )}) where P is

the set of all policies. From Proposition 2, for any policy Π of depth d = d(Π), P (L(V +
Π ) ≤ VΠ ≤ U(V +

Π )) ≥
1− δd,1 − δd,2. Then,

P

( ⋂
Π∈P
{L(V +

Π ) ≤ VΠ ≤ U(V +
Π )}

)
= 1− P

( ⋃
Π∈P
{L(V +

Π ) ≤ VΠ ≤ U(V +
Π )}c

)
≥ 1−

∑
Π∈P

P ({L(V +
Π ) ≤ VΠ ≤ U(V +

Π )}c)

≥ 1−
∑
Π∈P

(δd(Π),1 + δd(Π),2)

= 1−
d∗∑
d=1

Nd(δd,1 + δd,2)

≥ 1−
d∗∑
d=1

Nd

(
δ0,1
d∗

N−1
d +

δ0,2
d∗

N−1
d(Πt)

)

= 1−
d∗∑
d=1

1

d∗
(δ0,1 + δ0,2) = 1− δ0,1 − δ0,2

�
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D.2 Theoretical Results for Optimistic Stochastic Knapsacks (OpStoK)

Proposition 13 (Proposition 4 in main text) With probability at least (1 − δ0,1 − δ0,2), the algorithm OpStoK

returns a policy with value at least v∗ − ε.

Proof: The proof follows from the following lemma.

Lemma 14 For every round of the algorithm and incomplete policy Π, let D(Π) be the set of all descendants of
Π. Define the event A =

⋂
Π′∈D(Π){VΠ′ ∈ [L(V +

Π ), U(V +
Π )]}. Then P (A) ≥ 1− δ0,1 − δ0,2.

Proof: When BoundValueShare is called for a policy Π with d(Π) = d, it is done so with parameters δd,1 =
δ0,1
d∗ N

−1
d and δd,2 =

δ0,2
d∗ N

−1
d , where δd,1 and δd,2 are used to control the accuracy of the estimated value of VΠ

and EΨ(BΠ) respectively. It follows from Proposition 2, that for any active policy Π, the probability that the

interval
[
VΠm1

− c1, VΠm1
+ Ψ(BΠ)m2

+ c1 + c2

]
generated by BoundValueShare does not contain V +

Π is less

than δd,1 + δd,2. Furthermore, from standard Hoeffding bounds, the probability that VΠ is outside the interval
[VΠ − c1, VΠ + c1] is less than δd,1. Since any descendant policy Π′ of Π consists of adding at least one item to
the knapsack and item rewards are all ≥ 0, it follows that VΠ ≤ VΠ′ ≤ V +

Π . Hence, the probability of the value
of a descendant policy being outside the interval [L(V +

Π ), U(V +
Π )] is less than δd,1 + δd,2. By the same argument

as in Lemma 12, it can be shown that P (A) > 1−
∑d∗

d=1(δd,1 + δd,2)Nd = 1− δ0,1 − δ0,2. �

The result of the proposition follows by noting that the true optimal policy ΠOPT will be a descendant of Πi

for some i ∈ I. Let Π∗ be the policy outputted by the algorithm. By the stopping criterion, L(V +
Π∗) + ε ≥

maxΠ∈Active\{Π∗} ≥ U(V +
Π ) for any Π ∈ Active. From the expansion rule of OpStoK, it follows that either

ΠOPT ∈ Active or there exists some ancestor policy Π′ of ΠOPT in Active. In the first case, VΠOPT = v∗ ≤
U(V +

ΠOPT
) whereas in the latter VΠOPT = v∗ ≤ U(V +

Π′) with high probability from Lemma 14. In either case, it

follows that L(V +
Π∗) + ε ≥ v∗ and so VΠ∗ + ε ≥ v∗.

�

Lemma 15 If Π is a complete policy then, U(V +
Π )− L(V +

Π ) ≤ ε, otherwise U(V +
Π )− L(V +

Π ) ≤ 6EΨ(BΠ)− 3
4ε.

Proof: By the bounds in Proposition 2, U(V +
Π ) − L(V +

Π ) ≤ Ψ(BΠ)m2
+ c2 + 2c1 = U(Ψ(BΠ)) + 2c1. For a

complete policy, U(Ψ(BΠ)) ≤ ε
2 and according to BoundValueShare, m1 is chosen such that 2c1 ≤ ε

2 which

implies U(V +
Π )− L(V +

Π ) ≤ ε.
If Π is not complete, by the sampling strategy in BoundValueShare, we continue sampling the remaining budget
until L(Ψ(BΠ)) ≥ ε

4 . In this setting, the maximal width of the confidence interval of EΨ(BΠ) will satisfy

2c2 ≤ EΨ(BΠ)− ε

4
. (7)

Hence,

U(V +
Π )− L(V +

Π ) ≤ U(Ψ(BΠ)) + 2c1

≤ 3U(Ψ(BΠ)) (8)

≤ 3(EΨ(BΠ) + 2c2)

≤ 3
(
EΨ(BΠ) + EΨ(BΠ)− ε

4

)
(9)

≤ 6EΨ(BΠ)− 3

4
ε.

Where (8) follows since, when L(Ψ(BΠ)) ≥ ε
4 , we sample the value of policy Π until c1 ≤ U(Ψ(BΠ)), and (9) by

substituting in (7). �

Lemma 16 (Lemma 3 in main text) Assume that L(V +
Π ) ≤ VΠ ≤ U(V +

Π ) holds simultaneously for all policies
Π ∈ Active with U(V +

Π ) and L(V +
Π ) as defined in Proposition 2. Then, Πt ∈ Qε for every policy selected by

OpStoK at every time point t, except for possibly the last one.
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Proof: Since, when we expand a policy, we replace it in Active by all its child policies, at any time point t ≥ 1
there will be one ancestor of Π∗ in the active set, denote this policy by Π∗t . If Πt = Π∗t , then by Lemma 14,
VΠ∗ ∈ [L(V +

Πt
), U(V +

Πt
)]. Hence,

VΠ + 6EΨ(BΠ) +
3

4
ε ≥ U(V +

Π ) ≥ v∗ ≥ v∗ − 6EΨ(BΠ)− 3

4
ε+ ε.

Where the last inequality will hold for any incomplete policy (since for an incomplete policy L(BΠ) ≥ ε
4 ) and

so, Πt ∈ Qε. For Πt = Π∗, since 6
4ε ≥ ε, Πt ∈ Qε.

Assume Πt 6= Π∗t . If Πt is a complete policy, U(V +
Πt

) − L(V +
Πt

) ≤ ε. For a complete policy Π to be selected, it

must have the largest U(V +
Π ), since most alternative policies will have larger U(Ψ(BΠ)). Hence Π

(1)
t = Πt and

L(V +

Π
(1)
t

) + ε ≥ U(V +

Π
(1)
t

) ≥ max
Π∈Active\{Π(1)

t }
U(V +

Π ),

so the algorithm stops.

Assume Πt = Π
(1)
t 6= Π∗t is an incomplete policy. By Lemma 15, for an incomplete policy,

U(V +
Π )− L(V +

Π ) ≤ 3U(Ψ(BΠ)) ≤ 6EΨ(BΠ)− 3

4
ε. (10)

Then, if the termination criteria is not met,

VΠt ≥ L(V +
Πt

) =⇒ VΠt + 6EΨ(BΠ)− 3

4
ε− ε ≥ L(V +

Πt
) + 6EΨ(BΠ)− 3

4
ε− ε

≥ U(V +
Πt

)− ε
≥ max

Π∈Active\{Πt}
U(V +

Π )− ε

≥ L(V +
Πt

)

≥ U(V +
Πt

)− 6EΨ(BΠ) +
3

4
ε

≥ U(V +
Π∗t

)− 6EΨ(BΠ) +
3

4
ε

≥ v∗ − 6EΨ(BΠ) +
3

4
ε

which follows since Π
(1)
t is chosen to be the policy with largest upper bound. Therefore, Πt ∈ Qε.

By the stopping criteria of OpStoK, if the algorithm does not stop and select Π
(1)
t as the optimal policy, then

Πt = Π
(2)
t and

L(V +

Π
(1)
t

) + ε < max
Π∈Active\{Π(1)

t }
U(V +

Π ) = U(V +

Π
(2)
t

).

By equation (10),

L(V +

Π
(1)
t

) + 6EΨ(BΠ)− 3

4
ε ≥ U(V +

Π
(1)
t

).
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and by the selection criterion U(Ψ(B
Π

(2)
t

)) ≥ U(Ψ(B
Π

(1)
t

)). Therefore, for Πt = Π
(2)
t 6= Π∗t ,

VΠt + 12EΨ(BΠ)− 6

4
ε− ε ≥ L(V +

Πt
) + 6EΨ(BΠt)−

3

4
ε+ 6EΨ(BΠt)−

3

4
ε− ε

≥ U(V +
Πt

) + 6EΨ(BΠt)−
3

4
ε− ε

≥ U(V +
Πt

) + 3U(Ψ(BΠt))− ε
≥ U(V +

Πt
) + 3U(Ψ(B

Π
(1)
t

))− ε

≥ L(V +

Π
(1)
t

) + 3U(Ψ(B
Π

(1)
t

))

≥ U(V +

Π
(1)
t

)

≥ U(V +
Π∗t

)

≥ v∗.

Hence Πt ∈ Qε. �

Theorem 17 (Theorem 5 in main text) The total number of samples required by OpStoK is bounded from above
by, ∑

Π∈Qε
(m1(Π) +m2(Π)) d(Π),

with probability 1− δ0,2.

Proof: The result follows from the following three lemmas.

Lemma 18 For Π ∈ Aε of depth d = d(Π), then, with probability 1− δd,2, the minimum number of samples of
the value and remaining budget of the policy Π are bounded by

m1(Π) =

⌈
8Ψ(B)2 log( 2

δd,1
)

ε2

⌉
and m2(Π) = m∗,

where m∗ is the smallest integer satisfying 16Ψ(B)2

(EΨ(BΠ)−ε/2)2 ≤ m
log(8n/mδ2) with n defined as in (2).

Proof: When EΨ(BΠ) ≤ ε
4 , the event {U(Ψ(BΠ)) ≤ ε

2} will eventually occur with enough samples of the
remaining budget of the policy. With probability greater than 1−δd,2, this will happen when 2c2 ≤ ε

2−EΨ(BΠ),

since by Hoeffding’s Inequality we know Ψ(BΠ)m2
∈ [EΨ(BΠ) − c2, EΨ(BΠ) + c2] where c2 is as defined in

Lemma 1. From this, it follows that U(Ψ(BΠ)) ∈ [EΨ(BΠ), EΨ(BΠ) + 2c2]. We want to make sure that
U(Ψ(BΠ)) ≤ ε

2 will eventually happen so we need to construct a confidence interval such that c2 satisfies
EΨ(BΠ) + 2c2 ≤ ε

2 . Therefore we select m2 such that,

2c2 ≤
ε

2
− EΨ(BΠ)

=⇒ 4Ψ(B)

√
2 log( 8n

m2δd,2
)

m2
≤ ε

2
− EΨ(BΠ)

=⇒ 16Ψ(B)2

(EΨ(BΠ)− ε/2)2
≤ m2

log(4n/m2δ2)
.

Defining, m2(Π) = m∗, where m∗ is the smallest integer satisfying the above, is therefore an upper bound on
the minimum number of samples necessary to ensure that U(Ψ(BΠ)) ≤ ε

2 with probability greater than 1− δd,2.

When U(Ψ(BΠ)) ≤ ε
2 , BoundValueShare requires m1(Π) =

⌈
2Ψ(B)2 log( 2

δd,1
)

ε2

⌉
samples of the value of the policy

to ensure 2c1 ≤ ε
2 . �
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Lemma 19 For Π ∈ Bε of depth d = d(Π), then, with probability 1 − δd,2, the minimum number of samples of
the value and remaining budget of the policy Π are bounded by

m1(Π) ≤

⌈
Ψ(B)2 log( 2

δd,1
)

2EΨ(BΠ)2

⌉
and m2(Π) = m∗,

where m∗ is the smallest integer satisfying 16Ψ(B)2

(EΨ(BΠ)−ε/4)2 ≤ m
log(8n/mδ2) with n defined as in (2).

Proof: When EΨ(BΠ) ≥ ε
2 , by noting that the event {L(Ψ(BΠ)) ≥ ε

4} will eventually happen and using a very
similar argument to Lemma 18, it follows that m2(Π) is the smallest integer solution to

16Ψ(B)2

(EΨ(BΠ)− ε/4)2
≤ m

log(8n/mδ2)
,

with probability greater than 1 − δd,2. Whenever L(Ψ(BΠ)) ≥ ε
4 , BoundValueShare requires m1(Π) =⌈

2Ψ(B)2 log( 2
δd,1

)

(U(Ψ(BΠ))2

⌉
samples of the value of policy Π. Since U(Ψ(BΠ)) ∈ [EΨ(BΠ), EΨ(BΠ) + 2c2] with prob-

ability 1− δ0,2, U(Ψ(BΠ)) ≥ EΨ(BΠ), and so,

m1(Π) =

⌈
2Ψ(B)2 log( 2

δd,1
)

(U(Ψ(BΠ))2

⌉
≤

⌈
2Ψ(B)2 log( 2

δd,1
)

EΨ(BΠ)2

⌉

and the result holds. �

Lemma 20 For Π ∈ Cε of depth d = d(Π), then, with probability 1 − δd,2, the minimum number of samples of
the value and remaining budget of the policy Π are bounded by

m1(Π) ≤ max

{⌈
8Ψ(B)2 log( 2

δd,1
)

ε2

⌉
,

⌈
Ψ(B)2 log( 2

δd,1
)

2EΨ(BΠ)2

⌉}

and m2(Π) = m∗,where m∗ is the smallest integer satisfying 16Ψ(B)2

(ε/4)2 ≤ m
log(8n/mδ2) with n defined as in (2).

Proof: When ε
4 < EΨ(BΠ) < ε

2 , then the minimum width we will need a confidence interval to be is ε/4. By

an argument similar to Lemma 18, we can deduce that m2(Π) will be the smallest integer satisfying 16Ψ(B)2

(ε/4)2 ≤
m

log(8n/mδ2) .

In order to determine the number of samples of the value required by BoundValueShare, we need to know which
of {U(Ψ(BΠ)) ≤ ε

2} or {L(Ψ(BΠ)) ≥ ε
4} occurs first. However, when Π ∈ Cε, we do not know this so the best

we can do is bound m1(Π) by the maximum of the two alternatives,

m1(Π) ≤ max

{⌈
2Ψ(B)2 log( 2

δd,1
)

ε2

⌉
,

⌈
2Ψ(B)2 log( 2

δd,1
)

EΨ(BΠ)2

⌉}
.

�

The result of the theorem then follows by noting that for any policy Π of depth d(Π), it will be necessary to
have m1(Π) samples of the value of the policy and m2(Π) samples of the value of the policy. This requires
m1(Π)d(Π) samples of item rewards, m1(Π)d(Π) samples of item sizes (to calculate the rewards) and m2(Π)d(Π)
samples of item sizes (to calculate remaining budget), thus a total of (m1(Π)+m2(Π))d(Π) calls to the generative
model. From Lemma 3, any policy expanded by OpStoK will be in Qε so it suffices to sum over all policies in
Qε. This result assumes that all confidence bounds hold, whereas we know that for any policy Π of depth d(Π),
the probability of the confidence bound holding is greater than 1− δd,2. By an argument similar to Lemma 12,
the probability that all bounds hold is greater than 1− δ0,2. Note that, since |Qε| ≤ |P|, the probability should
be considerably greater than 1− δ0,2. �


