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A Proof of Theorem 1

In this section we give the proof of Theorem 1. Recall
that Ω is a d×(d−r) matrix, and that ωi ⊂ {1, . . . , d}
indexes the r + 1 nonzero entries in the ith column of
Ω. Each ωi indicates the coordinates of a projection
of U that we aim to identify. Since r2pca selects a
matrix Ω satisfying (i), Lemma 1 implies that if we find
the projections of U onto the coordinates indicated in
Ω, then we can reconstruct U from these projections.
Hence we need to show that under the assumptions
of Theorem 1, r2pca can find the projections of U
onto the ωi’s in Ω. To this end, we will show that
r2pca can potentially find the projection onto any
ω ⊂ {1, 2, . . . , d} with exactly r + 1 elements.

So let ω be given. As discussed in Section 2, finding
the projection Uω equates to finding r+1 uncorrupted
columns in Mω. So r2pca can potentially find Uω as
long as there are r + 1 uncorrupted columns in Mω.
Since Mω only contains r + 1 rows, A4 implies that

there are at most (n−r)(r+1)
2(r+1)α corrupted entries in Mω.

In the worst-case scenario, each of these corrupted en-
tries is located in a different column. It follows that
Mω has at most n−r

2(r+1)α−1 corrupted columns. Then

P
(
ith column in M′

ω is uncorrupted
)

≥ 1− 1

2(r + 1)α−1
,

which corresponds to the case where the first r columns
in M′

ω are uncorrupted, whence the ratio of uncor-
rupted columns ((n − r) − n−r

2(r+1)α−1 ) versus total re-

maining columns (n− r) is smallest. It follows that

P
(
all columns in M′

ω are uncorrupted
)

≥
(

1− 1

2(r + 1)α−1

)r+1

=

(
1−

1/2

(r + 1)α−1

)(r+1)1+(α−1)−(α−1)

=

(
1−

1/2

(r + 1)α−1

)(r+1)(α−1)(r+1)2−α

=

((
1−

1/2

(r + 1)α−1

)(r+1)(α−1))(r+1)2−α

≥ (1/2)
(r+1)2−α

. (1)

This implies that on expectation, r2pca will require
at most 2(r+1)2−α iterations to find a set of r+1 uncor-
rupted columns in Mω. This is true for every ω. Since
r2pca only searches over the ωi’s in Ω, and since Ω
has exactly d− r columns, it follows that on expecta-
tion, r2pca will require at most (d− r)2(r+1)2−α iter-
ations to find the projections of U onto the canonical
coordinates indicated by Ω. Since Ω satisfies condition
(i), we know by Lemma 1 that U is given by ker AT.

Now that U is known, let us show that r2pca can re-
cover L. Let U be an arbitrary basis of U . We will
show that r2pca can determine the matrix Θ contain-
ing the coefficients of L in this basis, such that in the
end, L will be given by UΘ. To this end, let m be
a column in M. Observe that r2pca can potentially
find the coefficients of the corresponding column of L
as long as there is a set ω ⊂ {1, 2, . . . , d} with r+ 1 el-
ements such that mω ∈ Uω. A1-A3 imply that with
probability 1, this will be the case if and only there
are at least r + 1 uncorrupted entries in m. By A4,
there are at most d−r

2(r+1)α−1 corrupted entries in m. It

follows that

P
(
ith entry in mω is uncorrupted

)
≥ 1− 1

2(r + 1)α−1
,

which corresponds to the case where the first r entries
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in mω are uncorrupted, whence the ratio of uncor-
rupted entries ((d − r) − d−r

2(r+1)α−1 ) versus total re-

maining entries (d− r) is smallest. It follows that

P
(
all entries in mω are uncorrupted

)
≥
(

1− 1

2(r + 1)α−1

)r+1

≥ (1/2)
(r+1)2−α

,

where the last inequality follows by the same arith-
metic manipulations as in (1). This implies that on

expectation, r2pca will require at most 2(r+1)2−α it-
erations to find a set of r + 1 uncorrupted entries in
m. This is true for every m. Since M has n columns,
it follows that on expectation, r2pca will require at
most n2(r+1)2−α iterations to recover L. Once L is
known, S can be trivially recovered as S = M − L.
This shows that on expectation, r2pca will require at
most (d + n − r)2(r+1)2−α iterations to recover U , L
and S from M. �

B Noisy Variant

In Section 5 we described a noisy variant of r2pca.
This variant iteratively selects matrices M′

κ ∈ Rk×k
formed with k rows of k columns of M, and verifies the
(r+1)th singular value of M′

κ. If this singular value is
within the noise level, Algorithm 1 will consider M′

κ

uncorrupted, and use it to estimate projections of U .
Otherwise Algorithm 1 will discard M′

κ and keep look-
ing. This process is repeated until there are enough
projections to recover U . Once U is estimated, Algo-
rithm 1 proceeds to estimate the coefficients of L using
k entries per column of M. If these entries agree with
the estimated subspace U , they will be considered un-
corrupted, and used to estimate the coefficient of the
corresponding column of L. Otherwise, Algorithm 1
will discard these entries, and select an other k. This
process is repeated until we recover all the coefficients
of L. This noisy variant of r2pca is summarized in
Algorithm 1.



Daniel Pimentel-Alarcón & Robert Nowak

Algorithm 1: Random Robust PCA
(r2pca, noisy variant)

1 Input: Data M ∈ Rd×n, rank r,

2 matrix Ω ∈ {0, 1}d×(d−r) satisfying
(i),

3 parameter k ∈ N.
4 PART 1: Estimate U
5 for i = 1, 2, . . . , d− r do
6 ωi = indices of the r + 1 nonzero

rows of
7 the ith column in Ω.
8 κi = subset of {1, . . . , d} containing

ωi
9 and k − r + 1 other rows

selected randomly. repeat
10 M′

κi ∈ Rk×k = k columns of Mκi ,
11 selected randomly.

12 until (r + 1)th singular value of M′
κi

13 is within the noise level.

14 Vκi ∈ Rk×r = r leading singular
vectors

15 of M′
κi .

16 υi = subset of κi with exactly r
elements,

17 selected randomly.
18 for each j ∈ κi\υi do
19 ωij := υi ∪ j.
20 aωij ∈ Rr+1 = nonzero vector

21 in ker VT
ωij .

22 aij ∈ Rd = vector with aωij in the
23 locations of ωij , and

zeros
24 elsewhere.
25 Insert aij into A.

26 Û ∈ Rd×r = basis of ker AT.

27 PART 2: Estimate Θ
28 for each column m in M do
29 repeat
30 κ = subset of {1, . . . , d} with k
31 elements, selected randomly.

32 until mκ is close to span{Ûκ}
33 (within the noise level).

34 θ̂ = (ÛT
κÛκ)−1ÛT

κmκ.

35 Insert θ̂ into Θ̂.

36 Output: Û, L̂ = ÛΘ̂, Ŝ = M− L̂.

C Additional Results

Microscopy Segmentation In Section 6 we gave
three examples of the background segmentation that
we obtained for three microscopy videos from the In-
ternet. Figure 1 shows more results.

Wallflower and I2R Datasets. To complement the
real data experiments in Section 6, we also ran r2pca
and RPCA-ALM on the Wallflower [23] and the I2R
[24] datasets. The results are summarized in Figure 2.
We point out that many cases of the Wallflower and
the I2R datasets have low coherence. In these cases,
the performance of r2pca and RPCA-ALM is very
similar. Consistent with our theory, the advantage of
r2pca becomes more evident in highly coherent cases,
like our microscopy and astronomy experiments.
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Figure 1: Sparse (foreground) plus low-rank (background) decomposition of some video frames from several microscopy
videos from the Internet [25] using r2pca and RPCA-ALM [18,19]. Notice that the background obtained by RPCA-ALM
contains foreground objects, while the background obtained by r2pca is much cleaner. This is because it these videos
the background is mostly dark with a few bright regions (which implies a highly coherent subspace) and the location
of the errors is highly correlated (the location of an object in consecutive frames is very similar). In contrast to other
optimization methods [5-12,18,19], we make no assumptions about coherence or the distribution of the sparse errors, and
so this does not affect our results.
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Original Frame
r2pca (this paper) RPCA-ALM
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Figure 2: Sparse (foreground) plus low-rank (background) decomposition of some video frames from the Wallflower [23]
and I2R [24] datasets using r2pca and RPCA-ALM [18,19].


