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Appendix

A Theoretical results for the probabilistic disjunction model

A.1 Proof of Theorem 1

Proof. The problem is clearly in NP. To show hardness, we will use a reduction from 3SAT.

Given a 3SAT instance �(x1, . . . , xq

) = C1 ^ C2 ^ · · · ^ C
p

, where each clause C
j

is a disjunction of three literals,
create the following topic labeling problem:

• There are 2q topics: t1, . . . , tq, t
0
1, . . . , t

0
q

. Think of t
i

as corresponding to the positive literal x
i

and t0
i

the
negative literal x

i

.

• For each variable x
i

, create a document d
i

whose topic distribution ✓(di) has probability 1/2 on t
i

and on t0
i

and zero elsewhere.

• For each clause C
j

, create a document d0
j

whose topic distribution puts 1/3 probability on (the t
i

or t0
i

corresponding to) each of the literals in C
j

.

• The data set consists of document-label pairs (d
i

, 0), (d
i

, 1), (d0
j

, 1): a total of p+ 2q labeled documents.

Now, suppose there is an assignment ` : {t1, . . . , tq, t01, . . . , t0q} ! {0, 1, ?} with nonzero likelihood. Then for
each labeled document (d, y) there is at least one topic t such that ✓

(d)
t

> 0 and `(t) = y. Now, document d
i

appears with label 0 as well as with label 1. Therefore, one of `(t
i

), `(t0
i

) must be 0 and one of them must be 1.
If `(t

i

) = 0, `(t0
i

) = 1, we will assign x
i

= 0. If `(t
i

) = 1, `(t0
i

) = 0, we will assign x
i

= 1. To see that this is a
satisfying assignment, pick any clause C

j

. The corresponding document d0
j

has label 1; therefore at least one of
the three topics corresponding to its literals must be assigned label 1 under `(·). Hence that literal is assigned a
value of 1.

Conversely, if � is satisfiable, then the mapping

`(t
i

) = 0, `(t0
i

) = 1 if x
i

= 0

`(t
i

) = 1, `(t0
i

) = 0 if x
i

= 1

has nonzero likelihood.

A.2 Proof of Theorem 2

Proof. First, fix any t, y with `(t) 6= y. Under Assumption 1, each time topic t is selected, there is less than a �/2
probability that the label is y. Conditioned on n

t

, the expected value of n
ty

is therefore at most �n
t

/2, and by a
multiplicative Chernoff bound,

Pr(n
ty

� �n
t

)  e�nt�/6,

which is  �/(Tk) if n
t

� n
o

.

Likewise, for any predictive feature t 2 P , the expected value of n
t,`(t) is at least 2�n

t

. Again using a multiplicative
Chernoff bound,

Pr(n
t,`(t) < �n

t

)  e�nt�/6.

Taking a union bound over all pairs (t, y) 2 [T ]⇥ [k], we conclude that with probability at least 1� �, the following
holds whenever n

t

� n
o

:

• If y 6= `(t) then n
ty

< �n
t

.

• If t 2 P then n
t,`(t) � �n

t

.

Therefore, b̀(t) = `(t) for t 2 P and ? otherwise.
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A.3 Proof of Theorem 3

Proof. Pick any predictive topic t 2 P , and let y = `(t). For a document x chosen at random,

Pr

x

(topic t selected) � Pr

x

(document label = y)Pr
x

(topic t selected | document label = y)

� E
x

"P
t

0:`(t0)=y

✓
t

0
(x)

P
t

02P

✓
t

0
(x)

· c
o

✓
t

(x)P
t

0:`(t0)=y

✓
t

0
(x)

#
= c

o

�
t

.

Therefore, the expected number of documents that need to be seen before n
t

reaches n
o

is at most n
o

/(c
o

�
t

).

B Incorporating feature feedback through regularization

B.1 Proof of Theorem 5

Recall that we wish to bound R
n

(F). The powerful results of [Kakade et al., 2009] achieve this for a wide range
of cases: for any F = {w : kwk  W}, where k · k satisfies a strong convexity property. Specifically, they show

R
n

(F)  W ·max

x2X
kxk⇤ ·

r
2

n

where X is the input space, and k · k⇤ is the dual norm of k · k.

We now apply this bound to our setting, where our regularizer norm is k · k
A

for positive definite A.
Lemma 7. Pick any positive definite p⇥ p matrix A and consider the Mahalanobis norm k · k

A

on Rp.

1. The function k · k2
A

is 2-strongly convex. In particular, for any u, v 2 Rp and 0  ↵  1,

↵kuk2
A

+ (1� ↵)kvk2
A

� k↵u+ (1� ↵)vk2
A

= ↵(1� ↵)ku� vk2
A

.

2. The dual norm of k · k
A

is k · k
A

�1 .

Proof. The first assertion follows directly by expanding the expression. For the second, we note that the dual
norm of k · k

A

is defined by
kxk⇤ = sup

kykA1
x · y.

We will show that this is kxk
A

�1 .

First, take

y =

A�1xp
xTA�1x

.

Then

kyk2
A

= yTAy =

xTA�1AA�1x

xTA�1x
= 1

so kyk
A

= 1. Moreover, x · y =

p
xTA�1x = kxk

A

�1 .

Conversely, pick any y with kyk
A

 1. Then

x · y = xTA�1/2A1/2y = (A�1/2x)T (A1/2y)  kA�1/2xk2kA1/2yk2 = kxk
A

�1kyk
A

 kxk
A

�1 .

If w⇤ is the sparse target classifier, the function class of interest is F = {w : kwk
A

 kw⇤k
A

} and by [Kakade
et al., 2009] we have

R
n

(F)  kw⇤k
A

·max

x2X
kxk

A

�1

r
2

n
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Let R = {i 2 [p] : w⇤
i

6= 0} denote the relevant features. We can split any x into its relevant and other components,
x = (x

R

, x
o

), and when we downweight the diagonal R-entries of A by a factor of c, we get

kxk2
A

�1 = kx
o

k22 + ckx
R

k22

whereas
kw⇤k2

A

=

1

c
kwk22

(assuming we have captured all the features on which w⇤ is non-zero). Thus

R
n

(F)  kw⇤k2 ·max

x2X

s✓
1

c
kx

o

k22 + kx
R

k22
◆r

2

n
.

C Proof of Lemma 6

Proof. Consider the optimization problem for computing the support vector classifier using the Mahalanobis
regularizer.

minimize
w

1

2

kwk2
A

+ C

NX

i=1

⇠
i

subject to ⇠
i

� 0, y
i

(xT

i

w + b) � 1� ⇠
i

, 8i.

(1)

The Lagrangian of (1) is

L(w, b, ⇠, µ,↵) =
1

2

kwk2
A

+ C

NX

i=1

⇠
i

�
NX

i

µ
i

⇠
i

�
NX

i

↵
i

[y
i

(xT

i

w + b)� (1� ⇠
i

)],

where the ↵
i

, µ
i

are the Lagrange multipliers. It easy to see that the Lagrange dual function L
D

is

L
D

(µ,↵) =

NX

i=1

↵
i

� 1

2

NX

i=1

NX

j=1

↵
i

↵
j

y
i

y
j

xT

i

A�1x
j

.

which corresponds to the `2-regularized SVM with data (A�1/2x
i

, y
i

).
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D Experiments

D.1 Data sets

20 NewsGroups: The 20-Newsgroups collection is a set of approximately 20,000 newsgroup documents,
partitioned evenly across the 20 different newsgroups. The documents are postings about politics, sports,
technology, religion, science etc., and contain subject lines, signature files, and quoted portions of other articles.
Some of the newsgroups are very closely related to each other (e.g., IBM computer system hardware vs Macintosh
computer system hardware), while others are unrelated (e.g., misc for sale vs social religion and christian). A
processed version of the data set was obtained. The original data set can be found on Jason Rennie’s website. 1.

Reuters-21578: This is another widely used collection for text categorization research. The documents appeared
on the Reuters newswire in 1987 and were manually classified into several topics by personnel from Reuters Ltd.
See Lewis et al. [2004] for further details on the data set. Sub-collections R10 (10 classes with the highest number
of topics) and R90 (at least one positive and one training example) are usually considered for text categorization
tasks. As our goal here was to consider single-labeled data, all the documents with less than or with more than
one label were eliminated, resulting in R8 (8 classes) and R52 (52 classes).

webkb: This data set contains web pages collected from computer science departments of various universities in
January 1997 by the World Wide Knowledge Base project of the CMU text learning group 2.

cade: The documents in this collection correspond to web pages extracted from the CADE Web Directory, which
points to Brazilian web pages classified by human experts in 12 classes, including services, education, sciences,
sports, culture etc.

ohsumed: This data set includes medical abstracts from the MeSH (Medical Subject Headings) categories of the
year 1991 3 on 23 cardiovascular disease categories. We only considered documents with a single label.

For each data set we only considered tokens that occurred at least 3 times. Figure 3 below provides a summary
of the data as they were used in the experiment.

# tokens # training docs # test docs # topics # classes
20 NewsGroups (20ng) 33,223 11,293 7,528 200 20

Reuters 8 (R8) 7,744 5,485 2,189 80 8
Reuters 52 (R52) 8,868 6,532 2,568 520 52

cade 68,983 27,322 13,661 120 12
webkb 7,644 2,803 1,396 40 4

ohsumed 13,627 3,357 4,043 230 23

Figure 3: Summary of the datasets and the number of topics used in the experiment

1
http://qwone.com/ jason/20Newsgroups/

2
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-4/text-learning/www/index.html

3
ftp://medir.ohsu.edu/pub/ohsumed
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D.2 Results

An example of a PDM from the 20ng dataset is shown in figure 4. Figures 5 - 10 show our experimental results
for each one of the data sets in more detail. Figures 11- 12, show the amount of feedback over time.

Topic 1 Topic 2 Topic 3 Topic 4

1 gener air unit bike

2 process heat engin dod

3 thi temperatur cross ride

4 sinc water bnr motorcycl

5 effect cold adjust bmw

6 anoth pressur link rider

7 requir hot pre helmet

8 real fan replac sun

9 result effect nick drink

10 case ga put biker

Figure 4: Left : Topic representation of a document with the class rec.motorcycles before and after feature
feedback, on the oracle features bike and biker Right: Descriptive words of the topics that are present in the
document.
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Figure 5: 20ng
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Figure 6: webkb
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Figure 7: R8
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Figure 8: R52
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Figure 9: Cade
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Figure 10: Ohsumed
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Figure 11: Amount of Feature Feedback
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Figure 12: Amount of Feature Feedback
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D.3 Human Experiment.

Figure 13 depicts the interface that was used to solicit labels and feature feedback from human annotators.
Annotators were given the option to select a number of features from a list. They were also given the ability to
insert a feature from the document that was not in the list.

Figure 13: Interface used in Human Experiment
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