Appendix

Proof of Lemma 2.1. Since unitary transformations preserve dot-products, i.e., $\langle T(x), T(y)\rangle=\langle x, y\rangle$, we need to show that a group element acting on the image $I: \mathbb{R}^{2} \mapsto \mathbb{R}$ as $T_{g}[I(x)]=\left|J_{g}\right|^{-1 / 2} I\left(T_{g}^{-1}(x)\right), \forall x$ is a unitary transformation.

Let J_{g} be the Jacobian of the transformation T_{g}, with determinant $\left|J_{g}\right|$. We have

$$
\begin{aligned}
\left\|I\left(T_{g}^{-1}(\cdot)\right)\right\|^{2} & =\int I^{2}\left(T_{g}^{-1}(x)\right) d x \\
& =\int I^{2}(z)\left|J_{g}\right| d z, \quad \text { substituting } z=T_{g}^{-1}(x) \Rightarrow d x=\left|J_{g}\right| d z \\
& =\left|J_{g}\right|\|I(\cdot)\|^{2}
\end{aligned}
$$

Hence the transformation given as $T_{g}[I(\cdot)]=\left|J_{g}\right|^{-1 / 2} I\left(T_{g}^{-1}(\cdot)\right)$ is unitary and thus $\left\langle T_{g}(I), T_{g}\left(I^{\prime}\right)\right\rangle=\left\langle I, I^{\prime}\right\rangle$ for two images I and I^{\prime}.

Proof of Theorem 3.1. We first define the notion of U-statistics [21].

U-statistics - Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a symmetric function of its arguments. Given an i.i.d. sequence $X_{1}, X_{2} \cdots X_{k}$ of $k(\geq 2)$ random variables, the quantity $U:=\frac{1}{n(n-1)} \sum_{i \neq j, i, j=1}^{n} g\left(X_{i}, X_{j}\right)$ is known as a pairwise U-statistics. If $\theta(P)=\mathbb{E}_{X_{1}, X_{2} \sim P} g\left(X_{1}, X_{2}\right)$ then U is an unbiased estimate of $\theta(P)$.

Our goal is to bound

$$
\sup _{x, y \in X}\left|\left\langle\psi_{R F}(x), \psi_{R F}(y)\right\rangle-k_{q, G}(x, y)\right|
$$

where

$$
\psi_{R F}(x)=\frac{1}{r} \sum_{i=1}^{r} z\left(g_{i} x\right), x \in X \subset \mathbb{R}^{d}
$$

We work with $z(\cdot)=\sqrt{2 / s}\left[\cos \left(\left\langle\omega_{1}, \cdot\right\rangle+b_{1}\right), \ldots, \cos \left(\left\langle\omega_{s}, \cdot\right\rangle+b_{s}\right] \in \mathbb{R}^{s}\right.$ with $b_{i} \sim \operatorname{Unif}(0,2 \pi)$ as in [33].
Let $\widehat{k}_{q, G}(x, y):=\frac{1}{r^{2}} \sum_{i, j=1}^{r^{2}} k\left(g_{i} x, g_{j} y\right)$ and $\widetilde{k}_{q, G}(x, y):=\frac{1}{r(r-1)} \sum_{i \neq j, i, j=1}^{r^{2}} k\left(g_{i} x, g_{j} y\right)$.

Using the triangle inequality we have

$$
\begin{aligned}
\sup _{x, y \in X} \mid\left\langle\psi_{R F}(x), \psi_{R F}(v)\right\rangle- & k_{q, G}(x, y) \mid \leq \underbrace{\sup _{x, y \in X}\left|\left\langle\psi_{R F}(x), \psi_{R F}(y)\right\rangle-\widehat{k}_{q, G}(x, y)\right|}_{A} \\
& +\underbrace{\sup _{x, y \in X}\left|\widetilde{k}_{q, G}(x, y)-k_{q, G}(x, y)\right|}_{B}+\underbrace{\sup _{x, y \in X}\left|\widehat{k}_{q, G}(x, y)-\widetilde{k}_{q, G}(x, y)\right|}_{C}
\end{aligned}
$$

Bounding A.

$$
A:=\sup _{x, y \in X}\left|\frac{1}{r^{2}} \sum_{i, j}\left(\left\langle z\left(g_{i} x\right), z\left(g_{j} y\right)\right\rangle-k\left(g_{i} x, g_{j} y\right)\right)\right|
$$

Let us define $f_{i j}(x, y):=\left\langle z\left(g_{i} x\right), z\left(g_{j} y\right)\right\rangle-k\left(g_{i} x, g_{j} y\right)$, and $f(x, y)=1 / r^{2} \sum_{i, j} f_{i j}(x, y)$. Since each of the s independent random variables in the summand of $1 / r^{2} \sum_{i, j}\left\langle z\left(g_{i} x\right), z\left(g_{j} y\right)\right\rangle=\frac{1}{s} \sum_{k=1}^{s}\left(\frac{1}{r^{2}}\right.$
$\left.\sum_{i, j} 2 \cos \left(\left\langle\omega_{k}, g_{i} x\right\rangle+b_{k}\right) \cos \left(\left\langle\omega_{k}, g_{j} y\right\rangle+b_{k}\right)\right)$ is bounded by [-2,2], using Hoeffding's inequality for a given pair x, y, we have

$$
\operatorname{Pr}[|f(x, y)| \geq \varepsilon / 4] \leq 2 \exp \left(-s \varepsilon^{2} / 128\right)
$$

To obtain a uniform convergence guarantee over X, we follow the arguments in [33], relying on covering the space with an ε-net and Lipschitz continuity of the function $f(x, y)$.
Since X is compact, we can find an ε-net that covers X with $N_{X}=\left(\frac{2 \operatorname{diam(X)}}{\eta}\right)^{d}$ balls of radius η [12]. Let $\left\{c_{k}\right\}_{k=1}^{N_{X}}$ be the centers of these balls, and let L_{f} denote the Lipschitz constant of $f(\cdot, \cdot)$, i.e., $\mid f(x, y)-$ $f\left(c_{k}, c_{l}\right) \left\lvert\, \leq L_{f}\left\|\binom{x}{y}-\binom{c_{k}}{c_{l}}\right\|\right.$ for all $x, y, c_{k}, c_{l} \in X$. For any $x, y \in X$, there exists a pair of centers c_{k}, c_{l} such that $\left\|\binom{x}{y}-\binom{c_{k}}{c_{l}}\right\|<\sqrt{2} \eta$. We will have $|f(x, y)|<\varepsilon / 2$ for all x, y if (i) $\left|f\left(c_{k}, c_{l}\right)\right|<\frac{\varepsilon}{4}, \forall c_{k}, c_{l}$, and (ii) $L_{f}<\frac{\varepsilon}{4 \sqrt{2} \eta}$.
We immediately get the following by applying union bound for all the center pairs $\left(c_{k}, c_{l}\right)$

$$
\begin{equation*}
\operatorname{Pr}\left[\cup_{k, l}\left|f\left(c_{k}, c_{l}\right)\right| \geq \varepsilon / 4\right] \leq 2 N_{X}^{2} \exp \left(-s \varepsilon^{2} / 128\right) \tag{9}
\end{equation*}
$$

We use Markov inequality to bound the Lipschitz constant of f. By definition, we have $L_{f}=\sup _{x, y} \| \nabla_{x, y}$ $f(x, y)\|=\| \nabla_{x, y} f\left(x^{*}, y^{*}\right) \|$, where $\nabla_{x, y} f(x, y)=\binom{\nabla_{x} f(x, y)}{\nabla_{y} f(x, y)}$. We also have $\mathbb{E}_{\omega \sim p} \nabla_{x, y}\left\langle z\left(g_{i} x\right), z\left(g_{j} y\right)\right\rangle=$ $\nabla_{x, y} k\left(g_{i} x, g_{j} y\right)$. It follows that

$$
\begin{aligned}
\mathbb{E}_{\omega \sim p}\left\|\nabla_{x, y} f\left(x^{*}, y^{*}\right)\right\|^{2} & =\mathbb{E}_{\omega \sim p}\left\|\frac{1}{r^{2}} \sum_{i, j=1}^{r} \nabla_{x, y}\left\langle z\left(g_{i} x^{*}\right), z\left(g_{j} y^{*}\right)\right\rangle\right\|^{2}-\left\|\frac{1}{r^{2}} \sum_{i, j=1}^{r} \nabla_{x, y} k\left(g_{i} x^{*}, g_{j} y^{*}\right)\right\|^{2} \\
& \leq \mathbb{E}_{\omega \sim p}\left\|\frac{1}{r^{2}} \sum_{i, j=1}^{r} \nabla_{x, y}\left\langle z\left(g_{i} x^{*}\right), z\left(g_{j} y^{*}\right)\right\rangle\right\|^{2} \\
& \leq \mathbb{E}_{\omega \sim p}\left(\frac{1}{r^{2}} \sum_{i, j=1}^{r}\left\|\nabla_{x, y}\left\langle z\left(g_{i} x^{*}\right), z\left(g_{j} y^{*}\right)\right\rangle\right\|\right)^{2} \\
& \leq 2 \mathbb{E}_{\omega \sim p}{\underset{x, y, g_{i}, g_{j}}{\sup _{x}}\left\|\nabla_{x}\left\langle z\left(g_{i} x\right), z\left(g_{j} y\right)\right\rangle\right\|^{2}} \begin{aligned}
& \leq 2 \mathbb{E}_{\omega \sim p} \sup _{x, g}\left(\frac{1}{s} \sum_{k=1}^{s}\left\|\nabla_{x} T_{g}(x) \omega_{k}\right\|\right)^{2} \\
& \leq 2 \mathbb{E}_{\omega \sim p} \sup _{x, g}\left(\frac{1}{s} \sum_{k=1}^{s}\left\|\nabla_{x} T_{g}(x)\right\|_{2}\left\|\omega_{k}\right\|\right)^{2} \\
& =2 \mathbb{E}_{\omega \sim p} \sup _{x, g}\left\|\nabla_{x} T_{g}(x)\right\|_{2}^{2} \frac{1}{s^{2}} \sum_{k=1}^{s} \sum_{l=1}^{s}\left\|\omega_{k}\right\|\left\|\omega_{l}\right\| \\
& =2 \sup _{x, g}\left\|\nabla_{x} T_{g}(x)\right\|_{2}^{2} \frac{1}{s^{2}} \sum_{k=1}^{s} \sum_{l=1}^{s} \mathbb{E}_{\omega \sim p}\left\|\omega_{k}\right\|\left\|\omega_{l}\right\| \\
& =2 \sup _{x, g}\left\|\nabla_{x} T_{g}(x)\right\|_{2}^{2} \frac{1}{s^{2}}\left(s \mathbb{E}_{\omega \sim p}\|\omega\|^{2}+\sum_{x, g}^{s}\left(\mathbb{E}_{\omega \sim p}\|\omega\|\right)^{2}\right) \quad\left(\omega_{k}\right. \text { i.i.d.) } \\
& \leq 2 \sup _{x, k \neq l} \nabla_{x} T_{g}(x) \|_{2}^{2} \frac{1}{s^{2}}\left(s \mathbb{E}_{\omega \sim p}\|\omega\|^{2}+\sum_{k, l=1, k \neq l}^{s} \mathbb{E}_{\omega \sim p}\|\omega\|^{2}\right) \quad \text { (Jensen's inequality) }
\end{aligned}
\end{aligned}
$$

$$
\leq 2 \sigma_{p}^{2} \sup _{x \in X, g \in G}\left\|\nabla_{x} T_{g}(x)\right\|_{2}^{2}
$$

where $\sigma_{p}^{2}=\mathbb{E}\left(\omega^{\top} \omega\right)$, and $T_{g}(x)=g x$ denotes the transformation corresponding to the group action. If we assume the group action to be linear, i.e., $T_{g}(x+y)=T_{g}(x)+T_{g}(y)$ and $T_{g}(\alpha x)=\alpha T_{g}(x)$, which holds for all group transformations considered in this work (e.g., rotation, translation, scaling or general affine transformations on image x; permutations of x), we can bound $\left\|\nabla_{x} T_{g}(x)\right\|_{2}$ as

$$
\begin{aligned}
\left\|\nabla_{x} T_{g}(x)\right\|_{2} & =\sup _{u:\|u\|=1}\left\|\nabla_{x} T_{g}(x) u\right\| \\
& \left.=\sup _{u:\|u\|=1}\left\|\lim _{h \rightarrow 0} \frac{T_{g}(x+h u)-T_{g}(x)}{h}\right\| \quad \text { (directional derivative of vector valued function } T_{g}(\cdot)\right) \\
& =\sup _{u:\|u\|=1}\left\|T_{g}(u)\right\|=1
\end{aligned}
$$

(since $T_{g}(\cdot)$ is either unitary or is converted to unitary by construction (see Lemma 2.1))

Using Markov inequality, $\operatorname{Pr}\left[L_{f}^{2} \geq \varepsilon\right] \leq \mathbb{E}\left(L_{f}^{2}\right) / \varepsilon$, hence we get

$$
\operatorname{Pr}\left[L_{f} \geq \frac{\varepsilon}{4 \sqrt{2} \eta}\right] \leq \frac{64 \sigma_{p}^{2} \eta^{2}}{\varepsilon^{2}}
$$

Combining Eq. (9) with the above result on Lipschitz continuity, we get

$$
\begin{equation*}
\operatorname{Pr}\left[\sup _{x, y}|f(x, y)| \leq \varepsilon / 2\right] \geq 1-2 N_{X}^{2} \exp \left(-s \varepsilon^{2} / 128\right)-\frac{64 \sigma_{p}^{2} \eta^{2}}{\varepsilon^{2}} \tag{10}
\end{equation*}
$$

Bounding B.

As defined earlier, $\widetilde{k}_{q, G}(x, y):=\frac{1}{r(r-1)} \sum_{i \neq j, i, j=1}^{r} k\left(g_{i} x, g_{j} y\right)$. From the result of U-statistics literature [21], it is easy to see that $\mathbb{E}\left(\widetilde{k}_{q, G}(x, y)\right)=k_{q, G}(x, y)$.
Since $g_{1}, g_{2} \cdots g_{r}$ are i.i.d samples, we can consider $\widetilde{k}_{q, G}(x, y)$ as function of r random variables $\left(g_{1}, g_{2}, \cdots g_{r}\right)$. Denote $\widetilde{k}_{q, G}(x, y)$ as $f\left(g_{1}, g_{2}, \cdots g_{r}\right)$. Now if a variable g_{p} is changed to g_{p}^{\prime} then we can bound the absolute difference of the changed and the original function. For the rbf kernel, $\left|k\left(g_{p} x, g_{j} y\right)-k\left(g_{p}^{\prime} x, g_{j} y\right)\right| \leq 1$

$$
\begin{aligned}
\left|f\left(g_{1}, g_{2}, \cdots g_{p}, \cdots g_{r}\right)-f\left(g_{1}, \cdots g_{p-1}, g_{p}^{\prime}, g_{p+1} \cdots g_{r}\right)\right| & =\frac{1}{r(r-1)}\left|\sum_{j=1, j \neq p}^{r} k\left(g_{p} x, g_{j} y\right)-k\left(g_{p}^{\prime} x, g_{j} y\right)\right| \\
& \leq \frac{1}{r(r-1)} \sum_{j=1, j \neq p}^{r}\left|k\left(g_{p} x, g_{j} y\right)-k\left(g_{p}^{\prime} x, g_{j} y\right)\right| \\
& \leq \frac{(r-1)}{r(r-1)}=\frac{1}{r}
\end{aligned}
$$

Using bounded difference inequality

$$
\operatorname{Pr}\left[\left|f\left(g_{1}, g_{2}, \cdots g_{r}\right)-\mathbb{E}\left[f\left(g_{1}, g_{2} \cdots g_{r}\right)\right]\right| \geq \frac{\varepsilon}{2}\right] \leq 2 \exp \left(\frac{-r \varepsilon^{2}}{2}\right)
$$

The above bound holds for a given pair x, y. Similar to the earlier segment for bounding the first term A, we use the ε-net covering of X and Lipschitz continuity arguments to get a uniform convergence guarantee. Using a union bound on all pairs of centers, we have

$$
\begin{equation*}
\operatorname{Pr}\left[\cup_{k, \ell=1}^{N_{X}}\left|\mathbb{E}\left[k\left(g c_{k}, g^{\prime} c_{\ell}\right)\right]-\frac{1}{r(r-1)} \sum_{i, j=1_{1}^{i \not \Psi_{j}}}^{r} k\left(g_{i} c_{k}, g_{j} c_{\ell}\right)\right|>\frac{\varepsilon}{2}\right] \leq 2 N_{X}^{2} \exp \left(\frac{-r \varepsilon^{2}}{2}\right) \tag{11}
\end{equation*}
$$

In order to extend the bound from the centers c_{i} to all $x \in X$, we use the Lipschitz continuity argument. Let

$$
h(x, y)=k_{q, G}(x, y)-\widetilde{k}_{q, G}(x, y)
$$

Let L_{h} denote the Lipschitz constant of $h(\cdot, \cdot)$, i.e., $\left|h(x, y)-h\left(c_{k}, c_{l}\right)\right| \leq L_{h}\left\|\binom{x}{y}-\binom{c_{k}}{c_{l}}\right\|$ for all $x, y, c_{k}, c_{l} \in X$. By the definition of ε-net, for any $x, y \in X$, there exists a pair of centers c_{k}, c_{l} such that $\left\|\binom{x}{y}-\binom{c_{k}}{c_{l}}\right\|<\sqrt{2} \eta$. We will have $|h(x, y)|<\varepsilon / 2$ for all x, y if (i) $\left|h\left(c_{k}, c_{l}\right)\right|<\frac{\varepsilon}{4}, \forall c_{k}, c_{l}$, and (ii) $L_{h}<\frac{\varepsilon}{4 \sqrt{2} \eta}$.
We will again use Markov inequality to bound the Lipschitz constant of h. By definition, we have $L_{h}=\sup _{x, y}\left\|\nabla_{x, y} h(x, y)\right\|=\left\|\nabla_{x, y} h\left(x^{*}, y^{*}\right)\right\|$, where $\nabla_{x, y} h(x, y)=\binom{\nabla_{x} h(x, y)}{\nabla_{y} h(x, y)}$. We also have $\mathbb{E}_{\omega \sim p} \nabla_{x, y} \widetilde{k}_{q, G}(x, y)=\nabla_{x, y} k_{q, G}(x, y)$. It follows that

$$
\begin{aligned}
\mathbb{E}_{g_{1}, \ldots, g_{r}}\left\|\nabla_{x, y} h\left(x^{*}, y^{*}\right)\right\|^{2} & =\mathbb{E}_{g_{1}, \ldots, g_{r}}\left\|\nabla_{x, y} \widetilde{k}_{q, G}\left(x^{*}, y^{*}\right)\right\|^{2}-\left\|\nabla_{x, y} k_{q, G}\left(x^{*}, y^{*}\right)\right\|^{2} \\
& \leq \mathbb{E}_{g_{1}, \ldots, g_{r}}\left\|\nabla_{x, y} \widetilde{k}_{q, G}\left(x^{*}, y^{*}\right)\right\|^{2} \\
& =\mathbb{E}_{g_{1}, \ldots, g_{r}}\left\|\frac{1}{r(r-1)} \sum_{i \neq j} \nabla_{x, y} k\left(g_{i} x^{*}, g_{j} y^{*}\right)\right\|^{2}
\end{aligned}
$$

Noting $T_{g_{i}}(x)=g_{i} x$, and $k(x, y)=\exp -\frac{1}{2 \sigma^{2}}\|x-y\|^{2}$, we have

$$
\begin{aligned}
\nabla_{x} k\left(g_{i} x, g_{j} y\right) & =\nabla_{x} k\left(T_{g_{i}}(x), T_{g_{j}}(y)\right) \\
& =-\frac{1}{\sigma^{2}} \nabla_{x} T_{g_{i}}(x)\left(g_{i} x-g_{j} y\right) \exp \left(-\frac{1}{2 \sigma^{2}}\left\|g_{i} x-g_{j} y\right\|^{2}\right)
\end{aligned}
$$

Continuing

$$
\begin{aligned}
\left\|\frac{1}{r(r-1)} \sum_{i \neq j} \nabla_{x, y} k\left(g_{i} x, g_{j} y\right)\right\| & \leq \frac{1}{r(r-1)} \sum_{i \neq j}\left\|\nabla_{x, y} k\left(g_{i} x, g_{j} y\right)\right\| \\
& \leq \frac{\sqrt{2}}{r(r-1)} \sup _{x} \sum_{i \neq j}\left\|\nabla_{x} k\left(g_{i} x, g_{j} y\right)\right\| \quad(\text { using symmetry of } k(\cdot, \cdot)) \\
& =\frac{\sqrt{2}}{r(r-1) \sigma^{2}} \sup _{x} \sum_{i \neq j} k\left(g_{i} x, g_{j} y\right)\left\|\nabla_{x} T_{g_{i}}(x)\left(g_{i} x-g_{j} y\right)\right\| \\
& \leq \frac{\sqrt{2}}{r(r-1) \sigma^{2}} \sum_{i \neq j} k\left(g_{i} x, g_{j} y\right)\left\|\nabla_{x} T_{g_{i}}(x)\right\|_{2}\left\|\left(g_{i} x-g_{j} y\right)\right\| \\
& \leq \frac{\sqrt{2} e^{-1 / 2}}{\sigma} \sup _{x \in X, g \in G}\left\|\nabla_{x} T_{g}(x)\right\|_{2} \quad\left(\text { using } \sup _{z \geq 0} z e^{-z^{2} /\left(2 \sigma^{2}\right)}=\sigma e^{-1 / 2}\right) \\
& \leq \frac{\sqrt{2} e^{-1 / 2}}{\sigma} \quad\left(\operatorname{using} \operatorname{linearity} \text { and unitariy of } T_{g}(\cdot) \text { as before }\right)
\end{aligned}
$$

It follows that

$$
\mathbb{E}\left(L_{h}^{2}\right) \leq \frac{2}{\sigma^{2} e}
$$

Now using Markov inequality we have

$$
\mathbb{P}\left[L_{h}>\sqrt{t}\right]_{15} \leq \frac{\mathbb{E}\left(L_{h}^{2}\right)}{t}
$$

Hence we have for $t=\left(\frac{\varepsilon}{4 \sqrt{2} \eta}\right)^{2}$,

$$
\mathbb{P}\left[L_{h}>\frac{\varepsilon}{4 \sqrt{2} \eta}\right] \leq \frac{32 \eta^{2} \mathbb{E}\left(\left(L_{h}\right)^{2}\right)}{\varepsilon^{2}} \leq \frac{64 \eta^{2}}{e \sigma^{2} \varepsilon^{2}}
$$

Hence

$$
\operatorname{Pr}[B \leq \varepsilon / 2)] \geq 1-2\left(N_{X}\right)^{2} \exp \left(\frac{-r \varepsilon^{2}}{2}\right)-\frac{64 \eta^{2}}{e \sigma^{2} \varepsilon^{2}}
$$

Bounding C.

$$
\begin{aligned}
\left|\widetilde{k}_{q, G}(x, y)-\widehat{k}_{q, G}(x, y)\right| & =\left|\frac{1}{r(r-1)} \sum_{i, j=1, i \neq j}^{r} k\left(g_{i} x, g_{j} y\right)-\frac{1}{r^{2}} \sum_{i, j=1}^{r} k\left(g_{i} x, g_{j} y\right)\right| \\
& =\left|\left(\frac{1}{r(r-1)}-\frac{1}{r^{2}}\right) \sum_{i, j=1, i \neq j}^{r} k\left(g_{i} x, g_{j} y\right)-\frac{1}{r^{2}} \sum_{i, j=1, i=j}^{r} k\left(g_{i} x, g_{j} y\right)\right| \\
& \leq \max \left(\frac{1}{r^{2}(r-1)} \sum_{i, j=1, i \neq j}^{r} k\left(g_{i} x, g_{j} y\right), \frac{1}{r^{2}} \sum_{i, j=1, i=j}^{r} k\left(g_{i} x, g_{j} y\right)\right) \quad(\text { since } k(\cdot, \cdot) \geq 0) \\
& \leq \frac{1}{r} \quad(\text { as Gaussian } \operatorname{kernel} k(\cdot, \cdot) \leq 1)
\end{aligned}
$$

Finally we have

$$
\sup _{x, y \in X}\left|\left\langle\psi_{R F}(x), \psi_{R F}(y)\right\rangle-k_{q, G}(x, y)\right| \leq A+B+C \leq \varepsilon+\frac{1}{r}
$$

with a probability at least $1-2 N_{X}{ }^{2} \exp \left(\frac{-s \varepsilon^{2}}{128}\right)-2 N_{X}{ }^{2} \exp \left(\frac{-r \varepsilon^{2}}{2}\right)-\left(\frac{64 \eta^{2} d}{\varepsilon^{2} \sigma^{2}}\right)-\left(\frac{64 \eta^{2}}{e \varepsilon^{2} \sigma^{2}}\right)$, noting that $\sigma_{p}^{2}=d / \sigma^{2}$ for the Gaussian kernel $k(x, y)=e^{-\frac{\|x-y\|^{2}}{2 \sigma^{2}}}$.

Let

$$
\begin{aligned}
p & =1-2 N_{X}^{2} \exp \left(\frac{-s \varepsilon^{2}}{128}\right)-2 N_{X}^{2} \exp \left(\frac{-r \varepsilon^{2}}{2}\right)-\left(\frac{64 \eta^{2} d}{\varepsilon^{2} \sigma^{2}}\right)-\left(\frac{64 \eta^{2}}{e \varepsilon^{2} \sigma^{2}}\right) \\
& =1-2\left(\frac{2 \operatorname{diam}(X)}{\eta}\right)^{2 d} \exp \left(\frac{-s \varepsilon^{2}}{128}\right)-2\left(\frac{2 \operatorname{diam}(X)}{\eta}\right)^{2 d} \exp \left(\frac{-r \varepsilon^{2}}{2}\right)-\left(\frac{64 \eta^{2} d}{\varepsilon^{2} \sigma^{2}}\right)-\left(\frac{64 \eta^{2}}{e \varepsilon^{2} \sigma^{2}}\right) \\
& \geq 1-2 \eta^{-2 d}\left((2 \operatorname{diam}(X))^{2 d} \exp \left(\frac{-r \varepsilon^{2}}{2}\right)+(2 \operatorname{diam}(X))^{2 d} \exp \left(\frac{-s \varepsilon^{2}}{128}\right)\right)-\eta^{2}\left(\frac{64(d+1)}{\varepsilon^{2} \sigma^{2}}\right)
\end{aligned}
$$

The above probability is of the form of $1-\left(\kappa_{1}+\kappa_{2}\right) \eta^{-2 d}-\kappa_{3} \eta^{2}$ where $\kappa_{1}=2(2 \operatorname{diam}(X))^{2 d} \exp \left(\frac{-r \varepsilon^{2}}{2}\right)$, $\kappa_{2}=2(2 \operatorname{diam}(X))^{2 d} \exp \left(\frac{-s \varepsilon^{2}}{128}\right)$ and $\kappa_{3}=\left(\frac{64(d+1)}{\varepsilon^{2} \sigma^{2}}\right)$. Choose $\eta=\left(\frac{\kappa_{1}+\kappa_{2}}{\kappa_{3}}\right)^{\frac{1}{2(d+1)}}$
Hence $p \geq 1-2\left(\kappa_{1}+\kappa_{2}\right)^{\frac{1}{d+1}} \kappa_{3}^{\frac{d}{d+1}}$.
For given $\delta_{1}, \delta_{2} \in(0,1)$, we conclude that for fixed constants C_{1}, C_{2}, for

$$
\begin{aligned}
& r \geq \frac{C_{1} d}{\varepsilon^{2}} \log \left(\operatorname{diam}(\mathrm{X}) / \delta_{1}\right) \\
& s \geq \frac{C_{2} d}{\varepsilon^{2}}\left(\log \left(\operatorname{diam}(\mathrm{X}) / \delta_{2}\right)\right.
\end{aligned}
$$

we have

$$
\sup _{x, y \in X}\left|\left\langle\psi_{R F}(x), \psi_{R F}(y)\right\rangle-k_{q, G}(x, y)\right| \leq \varepsilon+\frac{1}{r}
$$

with probability $1-\left(\frac{64(d+1)}{\varepsilon^{2} \sigma^{2}}\right)^{\frac{d}{d+1}}\left(\delta_{1}+\delta_{2}\right)^{\frac{2 d}{d+1}}$.

Proof of Theorem 3.2. We give here the proof of Theorem 3.2.
Lemma A. 1 (Lemma 4 [35]). - Let $\boldsymbol{X}=\left\{x_{1}, x_{2} \cdots x_{K}\right\}$ be iid random variables in a ball \mathcal{H} of radius M centered around the origin in a Hilbert space. Denote their average by $\overline{\boldsymbol{X}}=\frac{1}{K} \sum_{i=1}^{K} x_{i}$. Then for any $\delta>0$, with probability at least $1-\delta$,

$$
\|\overline{\boldsymbol{X}}-\mathbb{E} \overline{\boldsymbol{X}}\| \leq \frac{M}{\sqrt{K}}\left(1+\sqrt{2 \log \frac{1}{\delta}}\right)
$$

Proof. For proof, see [35].
Now consider a space of functions,

$$
\mathcal{F}_{p} \equiv\left\{f(x)=\int_{\Omega} \alpha(\omega) \int_{G} \phi(g x, \omega) q(g) d \nu(g) d \omega| | \alpha(\omega) \mid \leq C p(\omega)\right\}
$$

and also consider another space of functions,

$$
\hat{\mathcal{F}}_{p} \equiv\left\{\left.\hat{f}(x)=\sum_{k=1}^{s} \alpha_{k} \frac{1}{r} \sum_{i=1}^{r} \phi\left(g_{i} x, \omega_{k}\right)| | \alpha_{k} \right\rvert\, \leq \frac{C}{s}\right\},
$$

where $\phi(g x, \omega)=e^{-i\langle g x, \omega\rangle}$.
Lemma A.2. Let μ be a measure defined on X, and f^{\star} a function in \mathcal{F}_{p}. If $\omega_{1}, \omega_{2} \ldots \omega_{s}$ are iid samples from $p(\omega)$, then for $\delta_{1}, \delta_{2}>0$, there exists a function $\hat{f} \in \hat{\mathcal{F}}_{p}$ such that

$$
\left\|f^{\star}-\hat{f}\right\|_{\mathcal{L}_{2}(X, \mu)} \leq \frac{C}{\sqrt{s}}\left(1+\sqrt{2 \log \frac{1}{\delta_{1}}}\right)+\frac{C}{\sqrt{r}}\left(1+\sqrt{2 \log \frac{1}{\delta_{2}}}\right),
$$

with probability at least $1-\delta_{1}-\delta_{2}$.
Proof. Consider $\psi\left(x ; \omega_{k}\right)=\int_{G} \phi\left(g x, \omega_{k}\right) q(g) d \nu(g)$. Let $\tilde{f}_{k}=\beta_{k} \psi\left(. ; \omega_{k}\right), k=1 \cdots s$, with $\beta_{k}=\frac{\alpha\left(\omega_{k}\right)}{p\left(\omega_{k}\right)}$. Hence $\mathbb{E}_{\omega_{k} \sim p} \tilde{f}_{k}=f^{\star}$.
Define $\tilde{f}(x)=\frac{1}{s} \sum_{k=1}^{s} \tilde{f}_{k}$. Let $\hat{f}_{k}(x)=\beta_{k} \hat{\psi}\left(x ; \omega_{k}\right)$, where $\hat{\psi}\left(x ; \omega_{k}\right)=\frac{1}{r} \sum_{i=1}^{r} \phi\left(g_{i} x, \omega_{k}\right)$ is the empirical estimate of $\psi\left(x ; \omega_{k}\right)$. Define $\hat{f}(x)=\frac{1}{s} \sum_{k=1}^{s} \hat{f}_{k}(x)$. We have $\mathbb{E}_{g_{i} \sim q} \hat{f}(x)=\tilde{f}(x)$.

$$
\left\|f^{\star}-\hat{f}\right\|_{\mathcal{L}_{2}(X, \mu)} \leq\left\|f^{\star}-\tilde{f}\right\|_{\mathcal{L}_{2}(X, \mu)}+\|\tilde{f}-\hat{f}\|_{\mathcal{L}_{2}(X, \mu)}
$$

From Lemma 1 of [35], with probability $1-\delta_{1}$,

$$
\left\|f^{\star}-\tilde{f}\right\|_{\mathcal{L}_{2}(X, \mu)} \leq \frac{C}{\sqrt{s}}\left(1+\sqrt{2 \log \frac{1}{\delta_{1}}}\right) .
$$

Since $\hat{f}(x)=\frac{1}{r} \sum_{i=1}^{r} \sum_{k=1}^{s} \frac{\beta_{k}}{s} \phi\left(g_{i} x, \omega_{k}\right)$ and $\mathbb{E}_{g_{i} \sim q} \hat{f}(x)=\tilde{f}(x)$ with g_{i} iid (and $\left\{\omega_{k}\right\}_{k=1}^{s}$ fixed beforehand), we can apply Lemma A. 1 with

$$
M=\left\|\sum_{k=1}^{s} \frac{\beta_{k}}{s} \phi\left(g_{i} x, \omega_{k}\right)\right\| \leq \sum_{k=1}^{s}\left|\frac{\beta_{k}}{s}\right|\left\|\phi\left(g_{i} x, \omega_{k}\right)\right\| \leq \sum_{k=1}^{s}\left|\frac{\beta_{k}}{s}\right| \leq C
$$

We conclude that with a probability at least $1-\delta_{2}$,

$$
\|\tilde{f}-\hat{f}\|_{\mathcal{L}_{2}(X, \mu)} \leq \frac{C}{\sqrt{r}}\left(1+\sqrt{2 \log \frac{1}{\delta_{2}}}\right)
$$

Hence, with probability at least $1-\delta_{1}-\delta_{2}$, we have

$$
\left\|f^{\star}-\hat{f}\right\|_{\mathcal{L}_{2}(X, \mu)} \leq \frac{C}{\sqrt{s}}\left(1+\sqrt{2 \log \frac{1}{\delta_{1}}}\right)+\frac{C}{\sqrt{r}}\left(1+\sqrt{2 \log \frac{1}{\delta_{2}}}\right)
$$

Theorem A. 3 (Estimation error [35]). Let \mathcal{F} be a bounded class of functions, $\sup _{x \in X}|f(x)| \leq C$ for all $f \in \mathcal{F}$. Let $V\left(y_{i} f\left(x_{i}\right)\right)$ be an L-Lipschitz loss. Then with probability $1-\delta$, with respect to training samples $\left\{x_{i}, y_{i}\right\}_{i=1,2 \cdots N}($ iid $\sim P)$, every f satisfies

$$
\mathcal{E}_{V}(f) \leq \hat{\mathcal{E}}_{V}(f)+4 L \mathcal{R}_{N}(\mathcal{F})+\frac{2|V(0)|}{\sqrt{N}}+L C \sqrt{\frac{1}{2 N} \log \frac{1}{\delta}}
$$

where $\mathcal{R}_{N}(\mathcal{F})$ is the Rademacher complexity of the class \mathcal{F} :

$$
\mathcal{R}_{N}(\mathcal{F})=\mathbb{E}_{x, \sigma}\left[\sup _{f \in \mathcal{F}}\left|\frac{1}{N} \sum_{i=1}^{N} \sigma_{i} f\left(x_{i}\right)\right|\right]
$$

and σ_{i} are iid symmetric Bernoulli random variables taking value in $\{-1,1\}$, with equal probability and are independent form x_{i}.

Proof. See in [35].
Let $f \in \mathcal{F}_{p}$ and $\hat{f} \in \hat{\mathcal{F}}_{p}$ then the approximation error is bounded as

$$
\begin{aligned}
\mathcal{E}_{V}(\hat{f})-\mathcal{E}_{V}(f) & \leq \mathbb{E}_{(x, y) \sim P}|V(y \hat{f}(x))-V(y f(x))| \\
& \leq L \mathbb{E}|\hat{f}(x)-f(x)| \\
& \leq L \sqrt{\mathbb{E}(\hat{f}(x)-f(x))^{2}} \quad(\text { Jensen's inequaity for } \sqrt{ } \text { c concave function) } \\
& \leq L C\left(\frac{1}{\sqrt{s}}\left(1+\sqrt{2 \log \frac{1}{\delta_{1}}}\right)+\frac{1}{\sqrt{r}}\left(1+\sqrt{2 \log \frac{1}{\delta_{2}}}\right)\right)
\end{aligned}
$$

with probability at least $1-\delta_{1}-\delta_{2}$. Now let $f_{N}^{\star}=\arg \min _{f \in \hat{\mathcal{F}}_{p}} \hat{\mathcal{E}}_{V}(f)$ and $\tilde{f}=\arg \min _{f \in \hat{\mathcal{F}}_{p}} \mathcal{E}_{V}(f)$. We have

$$
\begin{aligned}
\mathcal{E}_{V}\left(f_{N}^{\star}\right)-\min _{f \in \mathcal{F}_{P}} \mathcal{E}_{V}(f)= & \hat{\mathcal{E}_{V}}\left(f_{N}^{\star}\right)-\mathcal{E}_{V}(\tilde{f})+\mathcal{E}_{V}(\tilde{f})-\min _{f \in \mathcal{F}_{P}} \mathcal{E}_{V}(f) \\
\leq & 2 \sup _{\tilde{f} \in \hat{\mathcal{F}}_{P}}\left|\mathcal{E}_{V}(\tilde{f})-\hat{\mathcal{E}_{V}}(\tilde{f})\right|+L\left(\frac{C}{\sqrt{s}}\left(1+\sqrt{2 \log \frac{1}{\delta_{1}}}\right)+\frac{C}{\sqrt{r}}\left(1+\sqrt{2 \log \frac{1}{\delta_{2}}}\right)\right) \\
\leq & 2\left(4 L \mathcal{R}_{N}(\mathcal{F})+\frac{2|V(0)|}{\sqrt{N}}+L C \sqrt{\frac{1}{2 N} \log \frac{1}{\delta}}\right)+ \\
& L C\left(\frac{1}{\sqrt{s}}\left(1+\sqrt{2 \log \frac{1}{\delta_{1}}}\right)+\frac{1}{\sqrt{r}}\left(1+\sqrt{2 \log \frac{1}{\delta_{2}}}\right)\right)
\end{aligned}
$$

with probability at least $1-\delta-\delta_{1}-\delta_{2}$. It is easy to show that $\mathcal{R}_{N}(\mathcal{F}) \leq \frac{C}{\sqrt{N}}$. Taking $\delta=\delta_{1}=\delta_{2}$ yields the statement of the theorem.

