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Abstract

In this paper, we develop new test statistics for private hypothesis testing. These statistics
are designed specifically so that their asymptotic distributions, after accounting for noise added
for privacy concerns, match the asymptotics of the classical (non-private) chi-square tests for
testing if the multinomial data parameters lie in lower dimensional manifolds (examples include
goodness of fit and independence testing). Empirically, these new test statistics outperform
prior work, which focused on noisy versions of existing statistics.
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1 Introduction

In 2008, Homer et al. [13] published a proof-of-concept attack showing that participation of indi-
viduals in scientific studies can be inferred from aggregate data typically published in genome-wide
association studies (GWAS). Since then, there has been renewed interest in protecting confiden-
tiality of participants in scientific data [15, 22, 27, 20] using privacy definitions such as differential
privacy and its variations [7, 6, 3, 5].

An important tool in statistical inference is hypothesis testing, a general framework for deter-
mining whether a given model – called the null hypothesis H0 – of a population should be rejected
based on a sample from the population. One of the main benefits of hypothesis testing is that it
gives a way to control the probability of false discovery or Type I error – falsely concluding that a
model should be rejected when it is indeed true. Type II error is the probability of failing to reject
H0 when it is false. Typically, scientists want a test that guarantees a pre-specified Type I error
(say 0.05) and has high power – complement of Type II error.

The standard approach to hypothesis testing is to (1) estimate the model parameters from the
data, (2) compute a test statistic T (a function of the data and the model parameters), (3) deter-
mine the (asymptotic) distribution of T under the assumption that the model generated the data,
(4) compute the p-value (Type I error) as the probability of T being more extreme than the realized
value from the data.1

Our main contribution is a general template for creating test statistics involving categorical
data. Empirically, they improve on the power of previous work on differentially private hypothesis
testing [12, 24], while maintaining at most some given Type I error. Our approach is to select
certain properties of non-private hypothesis tests (e.g., their asymptotic distributions) and then
build new test statistics that match these properties when Gaussian noise is added (e.g., to achieve
concentrated differential privacy [5, 3] or (approximate) differential privacy [6]). Although the test
statistics are designed with Gaussian noise in mind, other noise distributions can be applied, e.g.
Laplace.2

We point out that implications of this work extend beyond simply alleviating privacy concerns.
In adaptive data analysis, data may be reused for multiple analyses, each of which may depend on
previous outcomes thus potentially overfitting. This problem was recently studied in the computer
science literature by Dwork et al. [8], who show that differential privacy can help prevent overfitting
despite reusing data. There have been several follow up works [9, 4, 1] that improve and extend
the connection between differential privacy and generalization guarantees in adaptive data analysis.
Specifically, [18] deals with post-selection hypothesis testing where they can ensure a bound on Type
I error even for several adaptively chosen tests, as long as each test is differentially private.

We discuss related work in Section 2, provide background information about privacy in Section
3, present our extension of minimum chi-square theory in Section 4 and show how it can be applied
to goodness of fit (Section 5) and independence testing (Section 6). Experiments appear in these
latter two sections. We evaluate our test statistics with non-Gaussian noise in Section 7. We
present conclusions in Section 8.

1For one-sided tests, the p-value is the probability of seeing the computed statistic or anything larger under H0.
2If we use Laplace noise instead, we cannot match properties like the asymptotic distribution of the non-private

statistics, but the new test statistics still empirically improve the power of the tests.

3



2 Related Work

One of the first works to study the asymptotic distributions of statistics that use differentially
private data came from Wasserman and Zhou [25]. Smith [21] then showed that for a large family
of statistics, there is a corresponding differentially private statistic that shares the same asymptotic
distribution as the original statistic. However, these results do not ensure that statistically valid
conclusions are made for finite samples. It is then the goal of a recent line of work to develop
statistical inference tools that give valid conclusions for even reasonably sized datasets.

Prior work on private statistical inference for categorical data can be roughly grouped into two
main approaches. The first group adds appropriately scaled noise to the sampled data (or histogram
of data) to ensure differential privacy and uses existing classical hypothesis tests, disregarding the
additional noise distribution [15]. This approach is based on the argument that the impact of the
noise becomes small as the sample size grows large. Along these lines, [23] studies how many more
samples would be needed before the test with additional noise recovers the same level of power as
the original test on the actual data. However, as pointed out in [11, 16, 17, 12], even for moderately
sized datasets, the impact of privacy noise is non-negligible and therefore such an approach can
lead to misleading and statistically invalid results, specifically with much higher Type I error than
the prescribed amount.

The second group of work consists of tests that focus on adjusting step (3) in the standard
approach to hypothesis testing given in the introduction. That is, these tests use the same statistic
in the classical hypothesis tests (without noise) and after making the statistic differentially private,
they determine the resulting modified asymptotic distribution of the private statistic [22, 27, 24, 12].
Unfortunately, the resulting asymptotic distribution cannot be written analytically, and so Monte
Carlo (MC) simulations or numerical approximations are commonly used to determine at what
point to reject the null hypothesis.

We focus on a different technique from these two different approaches, namely modifying step
(2) in our outline of hypothesis testing. Thus, we consider transforming the test statistic itself
so that the resulting distribution is close to the original asymptotic distribution when additional
Gaussian noise is used. If the noise is non-Gaussian, then this is followed by another step that
appropriately adjusts the asymptotic distribution. The idea of modifying the test statistic for
regression coefficients to obtain a t-statistic in ordinary least squares has also been considered in
[19].

3 Privacy Preliminaries

Formal privacy definitions can be used to protect scientific data with the careful injection of noise.
Hypothesis testing must then properly account for this noise to avoid generating false conclusions.
We briefly discuss examples of privacy definitions that can be used and then elaborate on how to
add noise to satisfy those definitions.

Let X be an arbitrary domain for records. We define two datasets x = (x1, · · · , xn),x′ =
(x′1, · · · , x′n) ∈ X n to be neighboring if they differ in at most one entry, i.e. there is some i ∈ [n]
where xi 6= x′i, but xj = x′j for all j 6= i. We now define differential privacy (DP)[7, 6].

Definition 3.1 (Differential Privacy). A randomized algoirthmM : X n → O is (ε, δ)-DP if for all
neighboring datasets x,x′ and each subset of outcomes S ⊆ O,

Pr [M(x) ∈ S] ≤ eεPr
[
M(x′) ∈ S

]
+ δ.
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If δ = 0, we simply say M is ε-DP.

In this work, we focus on a recent variation of differential privacy, called zero concentrated
differential privacy (zCDP) [3] (see also [5] for the definition of concentrated differential privacy
which [3] modified). In order to define zCDP, we first define the Rényi-divergence between two
probability distributions.

Definition 3.2 (Rényi-Divergence). Let P1 and P2 be probability distributions on space Ω. For
α ∈ (1,∞), we define the Rényi-Divergence of order α of P1 from P2 as

Dα (P1||P2) =
1

α− 1
log

(
E

x∼P1

[(
P1(x)

P2(x)

)α−1
])

.

Remark 3.3. Note as α→ 1 we get KL-divergence and as α→∞ we get max-divergence.

We are now ready to define zCDP.

Definition 3.4 (zCDP). A mechanism M : X n → O is ρ-zero concentrated differentially private
(zCDP), if for all neighboring datasets x,x′ ∈ X n and all α ∈ (1,∞) we have

Dα

(
M(x)||M(x′)

)
≤ ρα

The following result shows that zCDP lies between pure-DP where δ = 0 and approximate-DP
where δ may be positive.

Theorem 3.5 ([3]). If M is ε-DP, then M is ε2

2 -zCDP. Further, if M is ρ-zCDP then M is

(ρ+ 2
√
ρ ln(1/δ), δ)-DP for every δ > 0.

In order to compute some statistic f : X n → Rd on the data, a differentially private mechanism
is to simply add symmetric noise to f(x) with standard deviation that depends on the global
sensitivity of f , which we define as

∆p(f) = max
neighboring x,x′∈Xn

{||f(x)− f(x′)||p}.

In statistical hypothesis tests, it is typical to use the central limit theorem to form statistics
of the data that are asymptotically normally distributed. Then we can determine whether to
reject the given model in hypothesis testing by computing the corresponding p-values based on the
asymptotic distribution of the statistic, which works well in practice. Because Gaussian random
variables have nice composition guarantees, like the sum of two Gaussian random variables is again
Gaussian (a property that is not shared with Laplace random variables), it is then desirable to
use a privacy definition which is more accustomed to Gaussian perturbations. We then define the
Gaussian mechanism MGauss : X n → Rd for statistic f : X n → Rd, where σ = ∆2(f)√

2ρ
, as

MGauss(x) ∼ N(f(x), σ2Id). (1)

Theorem 3.6. For statistic f : X n → Rd, the Gaussian mechanism MGauss is ρ-zCDP.

We now state several of the nice properties that zCDP shares with DP.
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Theorem 3.7 (Post Processing [3]). Let M : X n → O and g : O → O′ be randomized algorithms.
If M is ρ-zCDP then M′ : X n → O′ where M′(x) = g(M(x)) is ρ-zCDP.

Theorem 3.8 (Composition [3]). Let M1 : X n → O and M2 : X n → O′ be randomized algorithms
where M1 is ρ1-zCDP and M2 is ρ2-zCDP. Then the composition M : X n → O × O′ where
M(x) = (M1(x),M2(x)) is (ρ1 + ρ2)-zCDP.

For this work we will be considering categorical data. That is, we assume the domain X has been
partitioned into d buckets or outcomes and the function f : X n → Rd returns a histogram counting
how many records are in each bucket. Our test statistics will only depend on this histogram. Since
neighboring datasets x,x′ of size n differ on only one entry, their corresponding histograms differ
by ±1 in exactly two buckets. Hence, we will say that two histograms are neighboring if they differ
in at most two entries by at most 1. In this case, ∆1(f) = 2 and ∆2(f) =

√
2. To preserve privacy,

we will add noise to the corresponding histogram X = (X1, · · · , Xd) of our original dataset to get
X̃ = (X̃1, . . . , X̃d). We perform hypothesis testing on this noisy histogram X̃. By Theorem 3.7,
we know that each of our hypothesis tests will be ρ-zCDP as long as we add Gaussian noise with
variance 1/ρ to each count in X. Similarly, if we add Laplace noise with scale 2/ε to each count,
we will achieve ε-DP (this is just an instance of the Laplace Mechanism [7]).

4 General Chi-Square Tests

In the non-private setting, a chi-square test involves a histogram X and a model H0 that produces
expected counts X over the d buckets. In general, H0 will have k < d parameters and will estimate
the parameters from X. The chi-square test statistic is defined as

Tchi =
d∑
i=1

(Xi −Xi)
2/Xi.

If the data were generated from H0 and if k parameters had to be estimated, then the asymptotic
distribution of Tchi is χ2

d−k−1, a chi-square random variable with d−k−1 degrees of freedom. This
is the property we want our statistics to have when they are computed from the noisy histogram
X̃ instead of X. Note that in the classical chi-square tests (e.g. Pearson independence test), the
statistic Tchi is computed and if it is larger than the 1− α percentile of χ2

d−k−1, then the model is
rejected.

The above facts are part of a more general minimum chi-square asymptotic theory [10], which we
overview in Section 4.2. However, we first explain the differences between private and non-private
asymptotics [24, 12].

4.1 Private Asymptotics

In non-private statistics, a function of n data records is considered a random variable, and non-
private asymptotics considers this distribution as n→∞. In private asymptotics, there is another
quantity σ2

n, the variance of the added noise.
In the classical private regime, one studies what happens as n/σ2

n →∞; i.e., when the variance
due to privacy is insignificant compared to sampling variance in the data (i.e. O(n)). In practice,
asymptotic distributions derived under this regime result in unreliable hypothesis tests because
privacy noise is significant [22].
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In the variance-aware private regime, one studies what happens as n/σ2
n → constant as n →

∞; that is, when the variance due to privacy is proportional to sampling variance. In practice,
asymptotic distributions derived under this regime result in hypothesis tests with reliable Type I
error (i.e. the p-values they generate are accurate) [12, 24]. From now on, we will be using the
variance-aware privacy regime.3

4.2 Minimum Chi-Square Theory

In this section, we present important results about minimum chi-square theory. The discussion
is based largely on [10] (Chapter 23). Our work relies on this theory to construct new private
test statistics in Sections 5 and 6 whose asymptotic behavior matches the non-private asymptotic
behavior of the classical chi-square test.

We consider a sequence of d-dimensional random vectors V (n) for n ≥ 1 (e.g. the data his-
togram). The parameter space Θ is a non-empty open subset of Rk, where k ≤ d. The model A
maps a k-dimensional parameter θ ∈ Θ into a d-dimensional vector (e.g., the expected value of
V (n)), hence it maps Θ to a subset of a k-dimensional manifold in d-dimensional space.

In this abstract setting, the null hypothesis is that there exists a θ0 ∈ Θ such that:4

√
n
(
V (n) −A(θ0)

)
D→ N(0, C(θ0)) (2)

where C(θ) ∈ Rd×d is a covariance matrix. Intuitively, Equation 2 says that the Central Limit
Theorem can be applied for θ0.

We measure the distance between V (n) and A(θ) with a test statistic given by the following
quadratic form:

D(n)(θ) = n
(
V (n) −A(θ)

)ᵀ
M(θ)

(
V (n) −A(θ)

)
(3)

where M(θ) ∈ Rd×d is a symmetric positive-semidefinite matrix; different choices of M will result
in different test statistics. We make the following standard assumptions about A(θ) and M(θ).

Assumption 4.1. For all θ ∈ Θ, we have:

• A(θ) is bicontinuous,5

• A(θ) has continuous first partial derivatives, which we denote as Ȧ(θ) with full rank k,

• M(θ) is continuous in θ and there exists an η > 0 such that M(θ) − ηId is positive definite
in an open neighborhood of θ0.

The following theorem will be useful in determining the distribution for the quadratic form
D(n)(θ).

Theorem 4.2 ([10]). Let W ∼ N(0,Λ). W ᵀW ∼ χ2
r (chi-square distribution with r degrees of

freedom) if and only if Λ is a projection of rank r. If Λ is invertible, W ᵀΛ−1W ∼ χ2
r.

3Note that taking n and σ2
n to infinity is just a mathematical tool for simplifying expressions while mathematically

keeping privacy noise variance proportional to the data variance; it does not mean that the amount of actual noise
added to the data depends on the data size.

4Here
D→ means convergence in distribution, as in the Central Limit Theorem [10].

5i.e. θj → θ ⇔ A(θj)→ A(θ).
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If θ0 is known, setting M(θ) = C(θ)−1 in (3) and applying Theorem 4.2 shows that then D(n)(θ0)
converges in distribution to χ2

d. However, as we show in Section 5, this can be a sub-optimal choice
of M .

When θ0 is not known, we need to estimate a good parameter θ̂(n) to plug into (3). One
approach is to set θ̂(n) = arg minθ∈ΘD

(n)(θ). However, this can be a difficult optimization. If there
is a rough estimate of θ0 based on the data, call it φ(V (n)), and if it converges in probability to θ0

(i.e. φ(V (n))
P→ θ0 as n→∞), then we can plug it into the middle matrix to get:

D̂(n)(θ) = n
(
V (n) −A(θ)

)ᵀ
M(φ(V (n)))

(
V (n) −A(θ)

)
. (4)

and then set our estimator θ̂(n) = arg minθ∈Θ D̂
(n)(θ). The test statistic becomes D̂(n)(θ̂(n)) and

the following theorems describe its asymptotic properties under the null hypothesis. We use the
shorthand A = A(θ0), M = M(θ0), and C = C(θ0). See the appendix for the full proof, which
follows a similar argument as in [10].

Theorem 4.3. Let θ̂(n) = argminθ∈Θ D̂
(n)(θ). Given Assumption 4.1 and (2), we have

√
n(θ̂(n) −

θ0)
D→ N(0,Ψ) where θ0 is the true parameter and

Ψ =
(
ȦᵀMȦ

)−1
ȦᵀMCMȦ

(
ȦᵀMȦ

)−1
.

Proof. Since φ(V (n)) converges in probability to θ0 and M(·) is a continuous mapping, then for
any b > 0, c > 0 there exists an n0 such that when n ≥ n0 then M(φ(V (n))) is within a distance
b from M(θ0) with probability at least 1− c, which makes M(φ(V (n))) positive definite with high
probability for sufficiently large n. Furthermore, for any d > 0, we can choose n large enough so
that the smallest eigenvalue of M(φ(V (n))) is at least γ − d.

Since the parameter space is compact, we know a minimizer exists for D̂(n)(θ). Together, this
implies that for sufficiently large n and with high probability D̂(n)(θ̂(n)) ≥ 0.

Also, D̂(n)(θ̂(n)) ≤ D̂(n)(θ0) but D̂(n)(θ0)/n
P→ 0 since M(φ(V (n)))

P→ M and V (n) P→ A. Thus

D̂(n)(θ̂(n))/n
P→ 0 which means V (n) − A(θ̂(n))

P→ 0 (since M(φ(V (n))) is positive definite with
high probability and uniformly bounded away from 0 in a neighborhood of θ0). This implies that

A(θ̂(n))
P→ A and so θ̂(n) P→ θ0 since A(θ) is bicontinuous by assumption.

Thus, with high probability (e.g., ≥ 1 − c for large enough n), θ̂(n) satisfies the first order
optimality condition ∇D̂(n)(θ̂(n)) = 0. This is the same as

Ȧ(θ̂(n))ᵀM(φ(V (n))(V (n) −A(θ̂(n))) = 0 (5)

Expanding A(θ̂(n)) around θ0.

A(θ̂(n)) = A(θ0) +

∫ 1

0
Ȧ(θ0 + t(θ̂(n) − θ0)) dt︸ ︷︷ ︸

≡B(θ̂(n))

(θ̂(n) − θ0) (6)

Substituting (6) into (5), we get:

Ȧ(θ̂(n))ᵀM(φ(V (n)))
(

(V (n) −A(θ0)−B(θ̂(n))(θ̂(n) − θ0)
)

= 0 (7)
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Ȧ(θ̂(n))ᵀM(φ(V (n)))B(θ̂(n))
√
n(θ̂(n) − θ0) = Ȧ(θ̂(n))ᵀM(φ(V (n)))

√
n(V (n) − p(θ0)) (8)

Now, by the continuity of Ȧ(·) and the definition of B and the convergence in probability of θ̂(n)

to θ0, we have B(θ̂(n))
P→ Ȧ(θ0). Since Ȧ(θ) has full rank by assumption, then for sufficiently large

n, B(θ̂(n)) has full rank with high probability. This leads to the following expression with high
probability for sufficiently large n,

√
n(θ̂(n) − θ0) =

(
Ȧ(θ̂(n))ᵀM(φ(V (n)))B(θ̂(n))

)−1
Ȧ(θ̂(n))ᵀM(φ(V (n)))

√
n(V (n) −A) (9)

Since M(φ(V (n))) has smallest eigenvalue at least γ − d > 0 with high probability for n large

enough, and since φ(V (n))
P→ θ0, θ̂(n) P→ θ0, B(θ̂(n)) → Ȧ(θ0) in probability, using continuity in

all of the above functions, and the assumption that
√
n(V (n) −A)→ N(0, C) in distribution (and

Slutsky’s theorem) we get:

√
n(θ̂(n) − θ0)

D→ N (0,Ψ) as n→∞. (10)

We then state the following result using a slight modification of Theorem 24 in [10]. The proof
can be in the appendix.

Theorem 4.4. Let ν be the rank of C(θ0). If Assumption 4.1 and (2) hold, and, for all θ ∈ Θ,

C(θ)M(θ)C(θ) = C(θ)

and
C(θ)M(θ)Ȧ(θ) = Ȧ(θ)

then for θ̂(n) given in Theorem 4.3 and D̂(n)(θ) given in (4) we have:

D̂(n)
(
θ̂(n)

)
D→ χ2

ν−k

Proof. Note that Theorem 24 in [10] shows that if the hypotheses hold then

n
(
V (n) −A(θ̂(n))

)ᵀ
M(θ̂(n))

(
V (n) −A(θ̂(n))

)
D→ χ2

ν−k.

Note that we have φ(V (n))
P→ θ0 and θ̂(n) P→ θ0 for the true parameter θ0 ∈ Θ. We can then apply

Slutsky’s Theorem due to M(·) being continuous, to obtain the result for D̂(n)(θ̂(n)).

5 Private Goodness of Fit Tests

As a warmup, we will first cover goodness of fit testing where the null hypothesis is simply testing
whether the underlying unknown parameter is equal to a particular value. We consider categorical

data X(n) =
(
X

(n)
1 , · · · , X(n)

d

)
∼ Multinomial(n,p) where p = (p1, · · · , pd) is some probability

vector over the d outcomes. We want to test the null hypothesis H0 : p = p0, where each component
of p0 is positive, but we want to do so in a private way. We then have the following classical result
[2].

9



Lemma 5.1. Under the null hypothesis H0 : p = p0, X(n)/n is asymptotically normal

√
n

(
X(n)

n
− p0

)
D→ N(0,Σ)

where Σ has rank d− 1 and can be written as

Σ
defn
= Diag(p0)− p0(p0)ᵀ. (11)

5.1 Unprojected Private Test Statistic

To preserve ρ-zCDP, we will add appropriately scaled Gaussian noise to each component of the

histogram X(n). We then define the zCDP statistic U
(n)
ρ =

(
U

(n)
ρ,1 , · · · , U

(n)
ρ,d

)
where we write

Z ∼ N (0, 1/ρ · Id) and

U (n)
ρ

defn
=
√
n

(
X(n) + Z

n
− p0

)
. (12)

We next derive the asymptotic distribution of U
(n)
ρ under both private asymptotic regimes in

Section 4.1 (note that σ2 = 1/ρ).

Lemma 5.2. The random vector U
(n)
ρn from (12) under the null hypothesis H0 : p = p0 has the

following asymptotic distribution. If nρn →∞ then U
(n)
ρn

D→ N(0,Σ). Further, if nρn → ρ > 0 then

U
(n)
ρn

D→ N(0,Σρ) where Σρ has full rank and

Σρ
defn
= Σ + 1/ρ · Id. (13)

Proof. We know from the central limit theorem that U
(n)
ρ will converge in distribution to a mul-

tivariate normal with covariance matrix given in (13). We now show that Σρ is full rank. From
(11) we know that Σ is positive-semidefinite because it is a covariance matrix, hence it has all
nonnegative eigenvalues. We then consider the eigenvalues of Σρ. Let x ∈ Rd be be an eigenvector
of Σρ with eigenvalue λ ∈ R, i.e.

Σρx = λx =⇒ Σx = (λ− 1/ρ)x.

We then must have that x is also an eigenvector of Σ. Because Σ is positive-semidefinite we have
the following inequality

λ− 1/ρ ≥ 0 =⇒ λ ≥ 1/ρ > 0.

Thus, all the eigenvalues of Σρ are positive, which results in Σρ being nonsingular.

Because Σρ is invertible when the privacy parameter ρ > 0, we can create a new statistic based

on U
(n)
ρ that has a chi-square asymptotic distribution under variance-aware privacy asymptotics.

Theorem 5.3. Let U
(n)
ρn be given in (12) for nρn → ρ > 0. If the null hypothesis H0 : p = p0

holds, then for Σnρn given in (13), we have

Q(n)
ρn

defn
=
(
U (n)
ρn

)ᵀ
Σ−1
nρnU

(n)
ρn

D→ χ2
d. (14)

10



Proof. We directly apply Theorem 4.2 with W (n) = Σ
−1/2
nρn U

(n)
ρn which is asymptotically multivariate

normal with mean zero and covariance Σ
−1/2
ρ ΣρΣ

−1/2
ρ = Id.

By computing the inverse of Σnρn we can simplify the statistic Q
(n)
ρn .

Lemma 5.4. We can rewrite the statistic in (14) as

Q(n)
ρ =

d∑
i=1

(
U

(n)
ρ,i

)2

p0
i + 1

nρ

+
nρ∑d

`=1
p0`

p0`+
1
nρ

 d∑
j=1

p0
j

p0
j + 1

nρ

· U (n)
ρ,j

2

. (15)

Proof. We begin by writing the inverse of the covariance matrix Σρ from (13) by applying Wood-
bury’s formula [26] which gives the inverse of a modified rank deficient matrix,

Σ−1
ρ = Diag(p0 + 1/ρ · 111)−1 +

1

1− p0 · ω(ρ)
ω(ρ)ω(ρ)ᵀ (16)

where ω(ρ) =
(

p01
p01+1/ρ

, · · · , p0d
p0d+1/ρ

)ᵀ
= p0

p0+1/ρ·111 .

We note that the vector 111 is an eigenvector of Σρ and Σ−1
ρ with eigenvalue 1/ρ and ρ, respectively.

Letting X̃
(n)
i = X

(n)
i + Zi be the perturbed version of X

(n)
i leads to the test statistic

(
U (n)
ρ

)ᵀ
Σ−1
nρU

(n)
ρ =

d∑
i=1

(X̃
(n)
i − np0

i )
2

np0
i + 1/ρ

+
1

1−
∑

i
(p0i )

2

p0i+
1
nρ

(
d∑
i=1

(X̃
(n)
i − np0

i )√
n

p0
i

p0
i + 1

nρ

)2

=
d∑
i=1

(X̃
(n)
i − np0

i )
2

np0
i + 1/ρ

+
1

1−
∑

i
(p0i )

2

p0i+
1
nρ

(
d∑
i=1

(X̃
(n)
i − np0

i )√
n

p0
i

p0
i + 1

nρ

)2

We can then rewrite the term in the denominator,

1−
d∑
i=1

(p0
i )

2

p0
i + 1

nρ

=
d∑
i=1

(
p0
i (p

0
i + 1

nρ)

p0
i + 1

nρ

− (p0
i )

2

p0
i + 1

nρ

)
=

1

nρ
·

d∑
i=1

p0
i

p0
i + 1

nρ

.

Recalling the form of U
(n)
ρ from (12) concludes the proof.

Note that the coefficient on the second term of (15) grows large as nρ → ∞, so this test
statistic does not approach the nonprivate test for a fixed ρ. This is not surprising since Σnρ must
converge to a singular matrix as nρ → ∞. Further, the additional noise adds a degree of freedom
to the asymptotic distribution of the original statistic. This additional degree of freedom results in
increasing the point in which we reject the null hypothesis, i.e. the critical value. Thus, rejecting an
incorrect model becomes harder as we increase the degrees of freedom, and hence decreases power.
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5.2 Projected Private Test Statistic

Given that the test statistic in the previous section depends on a nearly singular matrix, we now
derive a new test statistic for the private goodness of fit test. It has the remarkable property that
its asymptotic distribution is χ2

d−1 under both private asymptotics.
We start with the following observation. In the classical chi-square test, the random variables(

(X
(n)
i −np

0
i )√

np0i

)d
i=1

have covariance matrix Id−
√

p0
√

p0
ᵀ

under the null hypothesis H0 : p = p0. The

classical test essentially uncorrelates these random variables and projects them onto the subspace

orthogonal to
√

p0. We will use a similar intuition for the privacy-preserving random vector U
(n)
ρ .

The matrix Σρ in (13) has eigenvector 111 with eigenvalue 1/ρ – regardless of the true parameters
of the data-generating distribution. Hence we think of this direction as pure noise. We therefore

project U
(n)
ρ onto the space orthogonal to 111 (i.e. enforce the constraint that the entries in U

(n)
ρ add

up to 0, as they would in the noiseless case). We then define the projected statistic QQQ(n)
ρ as the

following where we write the projection matrix PPP
defn
= Id − 1

d111111ᵀ

QQQ(n)
ρ

defn
=
(
U (n)
ρ

)ᵀ
PPPΣ−1

nρPPPU
(n)
ρ . (17)

It will be useful to write out the middle matrix inQQQ(n)
ρn for analyzing its asymptotic distribution.

Lemma 5.5. For the covariance matrix Σnρn given in (13), we have the following identity when
nρn → ρ > 0

PPPΣ−1
nρnPPP → Σ−1

ρ −
ρ

d
· 111111ᵀ (18)

Further, when nρn →∞, we have the following

PPPΣ−1
nρnPPP → PPPDiag

(
p0
)−1

PPP (19)

Proof. To prove (18), we use the fact that Σ−1
ρ has eigenvalue ρ with eigenvector 111. We then focus

on proving (19). We use the identity for the inverse of Σ−1
nρn from (16).

PPPΣ−1
nρnPPP

= PPPDiag(p0 +
1

nρn
· 111)−1PPP

+
nρn∑d

i=1
p0i

p0i+
1

nρn

·PPP

(
p0

p0 + 1
nρn

111

)(
p0

p0 + 1
nρn

111

)ᵀ

PPP

We then focus on the second term and write λn =
∑d

i=1
p0i

p0i+
1

nρn

.

nρn
λn
·PPP

(
p0

p0 + 1
nρn

111

)(
p0

p0 + 1
nρn

111

)ᵀ

PPP

=
nρn
λn
·

(
p0

p0 + 1
nρn

111
− λn

d
· 111

)(
p0

p0 + 1
nρn
· 111
− λn

d
· 111

)ᵀ

12



=
nρn
λn
·

(
p0

p0 + 1
nρn
· 111

)(
p0

p0 + 1
nρn
· 111

)ᵀ

− nρn
d
·

(
p0

p0 + 1
nρn
· 111

)
111ᵀ − nρn

d
· 111

(
p0

p0 + 1
nρn
· 111

)ᵀ

+
nρnλn
d2

111111ᵀ

We consider entry (i, j) of the above matrix, which we can write as

nρn
λn
·

(
p0
i

p0
i + 1

nρn

)
·

(
p0
j

p0
j + 1

nρn

)
− nρn

d

(
p0
i

p0
i + 1

nρn

+
p0
j

p0
j + 1

nρn

)
+
nρnλn
d2

=
nρn
dλn

(
λ2
n

d
− 1

(p0
i + 1

nρn
)(p0

j + 1
nρn

)

(
λn
nρn

(p0
i + p0

j )− p0
i p

0
j (d− 2λn)

))

= nρn

(
λn
d2
−

(2λn − d)p0
i p

0
j

d(p0
i + 1

nρn
)(p0

j + 1
nρn

)

)
−

p0
i + p0

j

dλn(p0
i + 1

nρn
)(p0

j + 1
nρn

)
.

We then let n→∞ to get

nρn
d

(
λn
d
−

(2λn − d)p0
i p

0
j

λn(p0
i + 1

nρn
)(p0

j + 1
nρn

)

)
−

p0
i + p0

j

dλn(p0
i + 1

nρn
)(p0

j + 1
nρn

)
→ 1

p0
i

+
1

p0
j

− 1

p0
i

− 1

p0
j

= 0.

Thus, we have shown that for nρn →∞,

PPPΣ−1
nρnPPP → PPPDiag

(
p0
)−1

PPP .

The projected statistic is asymptotically chi-square distributed in both private asymptotic
regimes.

Theorem 5.6. Let U
(n)
ρ be given in (12). For null hypothesis H0 : p = p0, we can write the

projected statistic QQQ(n)
ρ in the following way for ñ =

∑d
i=1(X

(n)
i + Zi)

QQQ(n)
ρ =

d∑
i=1

(
U

(n)
ρ,i

)2

p0
i + 1

nρ

− ρ

d
(ñ− n)2

+
nρ∑d

`=1
p0`

p0`+
1
nρ

 d∑
j=1

p0
j

p0
j + 1

nρ

· U (n)
j (ρ)

2

. (20)

Further for nρn → ρ > 0, if the null hypothesis holds then QQQ(n)
ρn

D→ χ2
d−1.

Proof. We first show that we can write the projected statistic in (17) in the proposed way. Using
(18), we can write the projected statistic in terms of the unprojected statistic in (15), which will
give the expression in (20)

QQQ(n)
ρn =

(
U (n)
ρn

)ᵀ (
Σ−1
nρn −

nρn
d
· 111111ᵀ

)
U (n)
ρn = Q(n)

ρn −
nρn
d
·
(
U (n)
ρn

)ᵀ
111111ᵀU (n)

ρn .

13



We then turn to determining the asymptotic distribution of the projected statistics when nρn →
ρ > 0. Recall that 111 is an eigenvector of Σρ. Note that Σρ is diagonalizable, i.e. Σρ = BDBᵀ

where D is a diagonal matrix and B is an orthogonal matrix with one column being 1/d · 111. For
the following matrix Λ, we can write it as a d× d identity matrix except one of the entries on the
diagonal is zero.

Λ = Σ−1/2
ρ PPPBDBᵀPPPΣ−1/2

ρ .

Thus, Λ is idempotent and has rank d − 1. We define W ∼ N(0, Id−1). We then know that QQQ(n)
ρn

has the same asymptotic distribution as W ᵀW and so we can apply Theorem 4.2.

Theorem 5.7. For histogram data X(n), the projected statistic QQQ(n)
ρn in Theorem 5.6 converges in

distribution to a χ2
d−1 when H0 : p = p0 holds and nρn →∞. In fact, as nρn →∞, the difference

between QQQ(n)
ρn and the classical chi-square statistic

∑d
i=1

(
X

(n)
i −np

0
i

)2
np0i

converges in probability to 0.

Proof. Although Σ−1
nρn does not exist as nρn → ∞, we can still write the asymptotic projected

statistic. The middle matrix in the projected statistic when nρn →∞ is then PPPDiag(p0)−1PPP .

When nρn → ∞, we also have that U
(n)
ρn

D→ N(0,Σ) from Lemma 5.2. We then analyze
the asymptotic distribution of the projected statistic, where we write U ∼ N(0,Σ) and study the
distribution of UᵀPPPDiag(p0)−1PPPU . We note that we have Uᵀ111 = 0, which simplifies the asymptotic
distribution of the projected statistic.

UᵀPPPDiag(p0)−1PPPU =

d∑
i=1

U2
i

p0
i

Note that this last final form is exactly the original chi-square statistic used in the classical test,
which is known to converge to χ2

d−1.

5.3 Comparison of Statistics

We now want to compare the two private chi-square statistics in (14) and (17) to see which may
lead to a larger power (i.e. smaller Type II error). The following theorem shows that we can write
the unprojected statistic (14) as a combination of both the projected statistic (17) and squared
independent Gaussian noise.

Theorem 5.8. Consider histogram data X(n) that has Gaussian noise Z ∼ N(0, 1/ρ · Id) added to

it. For the statistics Q
(n)
ρ and QQQ(n)

ρ based on the noisy counts given in (14) and (17) respectively,
we have

Q(n)
ρ =QQQ(n)

ρ +
ρ

d

(
d∑
i=1

Zi

)2

.

Further, for any fixed data X(n), QQQ(n)
ρ is independent of

(∑d
i=1 Zi

)2
.

To prove this we will use the noncentral version of Craig’s Theorem.

Theorem 5.9 (Craig’s Theorem [14]). Let Y ∼ N(µ, V ). Then the quadratic forms Y ᵀAY and
Y ᵀBY are independent if AV B = 0.

14



We are now ready to prove our theorem.

Proof of Theorem 5.8. We first show that we can write Q
(n)
ρ −QQQ(n)

ρ = ρ
d

(∑d
i=1 Zi

)2
. Note that(

U
(n)
ρ

)ᵀ
111 =

∑d
i=1 Zi/

√
n and Σ−1

ρ has eigenvalue ρ with eigenvector 111. We then have

Q(n)
ρ =

(
U (n)
ρ

)ᵀ
Σ−1
nρU

(n)
ρ

=
(
U (n)
ρ

)ᵀ(
Id −

1

d
111111ᵀ +

1

d
111111ᵀ
)ᵀ

Σ−1
nρ

(
Id −

1

d
111111ᵀ +

1

d
111111ᵀ
)
U (n)
ρ

=QQQ(n)
ρ +

2

d
(U (n)

ρ )ᵀ111111ᵀΣ−1
nρ

(
Id −

1

d
111111ᵀ
)
U (n)
ρ +

1

d2
(U (n)

ρ )ᵀ111111ᵀΣ−1
nρ111111ᵀU (n)

ρ

=QQQ(n)
ρ +

2

d
(U (n)

ρ )ᵀ111111ᵀΣ−1
nρPPPU

(n)
ρ +

ρ

d

(
d∑
i=1

Zi

)2

=QQQ(n)
ρ +

2nρ

d

(
d∑
i=1

Zi/
√
n

)
111ᵀU (n)

ρ − 2ρ

d

(
d∑
i=1

Zi

)2

+
ρ

d

(
d∑
i=1

Zi

)2

=QQQ(n)
ρ +

ρ

d

(
d∑
i=1

Zi

)2

We now apply Craig’s Theorem to show that for a fixed histogram X(n), we have QQQ(n)
ρ is inde-

pendent of
(∑d

i=1 Zi

)2
. When X(n) is fixed, we can define the random variable Y ∼ N (µ, 1/ρId)

where µ = (X(n)−np0)/
√
n. If we set A = PPPΣ−1

nρPPP , then our projected statistic can be rewritten as

Y ᵀAY . Further, if we define B = 111111ᵀ, then
(∑d

i=1 Yi

)2
= Y ᵀBY . We then have A (1/ρ · Id)B = 0,

so that the projected statistic is independent of
(∑d

i=1 Yi

)2
. We next note that Y = Z + µ and

that 111ᵀµ = 0. Hence,

Y ᵀBY = (Z + µ)ᵀB(Z + µ) = ZᵀBZ + 2µᵀBZ + µᵀBµ = ZᵀBZ =

(
d∑
i=1

Zi

)2

.

Algorithm 1 (zCDP-GOF) shows how to perform goodness of fit testing with either of these two
test statistics, i.e. unprojected (14) or projected (17). We note that our test is zCDP for neighboring
histogram datasets due to it being an application of the Gaussian mechanism and Theorem 3.7.
Hence:

Theorem 5.10. zCDP-GOF(·; ρ, α,p0) is ρ-zCDP.

5.4 Power Analysis

From Theorem 5.8 we see that the difference between Q
(n)
ρ and QQQ(n)

ρ is the addition of squared
independent noise. This additional noise can only hurt power, because for the same data the
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Algorithm 1 zCDP Chi-Square Goodness of Fit Test

procedure zCDP-GOF(X(n); ρ, α, H0 : p = p0)
Set X̃(n) ← X(n) + Z where Z ∼ N(0, 1/ρ · Id).

For the unprojected statistic:

T← 1
n

(
X̃(n) − np0

)ᵀ
Σ−1
nρ

(
X̃(n) − np0

)
t← (1− α) quantile of χ2

d

For the projected statistic:

T← 1
n

(
X̃(n) − np0

)ᵀ
PPPΣ−1

nρPPP
(
X̃(n) − np0

)
t← (1− α) quantile of χ2

d−1

if T > t then Reject

statistic Q
(n)
ρ has larger variance than QQQ(n)

ρ and does not depend on the underlying data. If we fix
an alternate hypothesis, we can obtain asymptotic distributions for our two test statistics.

Theorem 5.11. Consider the null hypothesis H0 : p = p0 and the alternate hypothesis H1 : p =
p0+ ∆∆∆√

n
where

∑d
i=1 ∆i = 0. Assuming the data X(n) comes from the alternate H1, the two statistics

QQQ(n)
ρn , and Q

(n)
ρn have noncentral chi-square distributions when nρn → ρ > 0, i.e.

Q(n)
ρn

D→ χ2
d

(
∆∆∆ᵀΣ−1

ρ ∆∆∆
)

& QQQ(n)
ρn

D→ χ2
d−1

(
∆∆∆ᵀΣ−1

ρ ∆∆∆
)
.

Further, if nρn →∞ then

QQQ(n)
ρn

D→ χ2
d−1

(∑
i

∆2
i

p0
i

)

We point out that in the case where nρn →∞, the projected statistic has the same asymptotic
distribution as the classical (nonprivate) chi-square test under the same alternate hypothesis.

We will use the following result to prove this theorem.

Lemma 5.12 ([10]). Suppose Y ∼ N(δδδ, V ). If V is a projection of rank ν and V δδδ = δδδ then
Y ᵀY ∼ χ2

ν(δδδᵀδδδ).

Proof of Theorem 5.11. In this case we have the random vector U
(n)
ρn from (12) converging in dis-

tribution to N(∆∆∆,Σρ) if nρn → ρ > 0 or N(∆∆∆,Σ) if nρn → ∞ by Lemma 5.2. We first consider

the case when nρn → ρ > 0. Consider U ∼ N(∆∆∆,Σρ) and Y = Σ
−1/2
ρ U ∼ N((Σ

−1/2
ρ ∆∆∆, Id). We

then know that Y ᵀY and the unprojected statistic Q
(n)
ρn have the same asymptotic distribution. In

order to use Lemma 5.12, we need to verify that Σ
−1/2
ρ ΣρΣ

−1/2
ρ

(
Σ
−1/2
ρ ∆∆∆

)
= Σ

−1/2
ρ ∆∆∆, which indeed

holds.
We then consider the projected statistic QQQ(n)

ρn where nρn → ρ > 0. Similar to the proof of
Theorem 5.6, we diagonalize Σρ = BDBᵀ where B is an orthogonal matrix with one column being
1/d · 111 and D is a diagonal matrix. We then let U ∼ N(∆∆∆,Σρ) and let

Y = Σ−1/2
ρ PPPU
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We then have Y ᵀY and QQQ(n)
ρn will have the same asymptotic distribution. Recall that Λ =

Σ
−1/2
ρ PPPΣρPPPΣ

−1/2
ρ is idempotent with rank d − 1. Lastly, to apply Lemma 5.12 we need to show

the following

Λ
(

Σ−1/2
ρ PPP∆∆∆

)
= Σ−1/2

ρ PPP∆∆∆.

Let B̂ ∈ Rd×(d−1) be the same as matrix B whose corresponding column for 1/d ·111 is missing, which
we assume to be the last column of B. Further, we define D̂ ∈ R(d−1)×(d−1) to be the same as D
without the last row and column. We can then write PPPΣρPPP = B̂D̂B̂ᵀ. We can then simplify the
left hand side to have

Σ−1/2
ρ PPPΣρPPPΣ−1

ρ PPP

= BD−1/2BᵀPPPΣρB̂D̂
−1B̂ᵀ

= BD−1/2BᵀB̂DBᵀB̂D̂−1B̂ᵀ

= BD−1/2BᵀB̂DD̂−1B̂ᵀ

= BD−1/2B̂ᵀ

= BD−1/2BᵀPPP

= Σ−1/2
ρ PPP

The noncentral parameter is then
∆∆∆ᵀPPPΣ−1

ρ PPP∆∆∆

We then note that
∑

i ∆i = 0.
For the case when nρn →∞. From (19), we have PPPΣnρnPPP →M∞, which can be diagonalized.

As we showed in Theorem 5.7, we have(
U (n)
ρn

)ᵀ
M∞U

(n)
ρn =

(
U (n)
ρn

)ᵀ
Diag(p0)−1U (n)

ρn

From Lemma 5.2, we know that
(
U

(n)
ρn

)
D→ N(∆∆∆,Σ). We then write U ∼ N(∆∆∆,Σ) so that our

projected chi-square statistic has the same asymptotic distribution as

UᵀDiag(p0)−1U

which has a χ2
d−1(∆∆∆Diag(p0)−1∆∆∆) distribution.

Note that the noncentral parameters in the previous theorem are the same for both statistics
and only the degrees of freedom are different.

5.5 Experiments for Goodness of Fit Testing

Throughout all of our experiments, we will fix α = 0.05 and privacy parameter ρ = 0.001. All
of our tests are designed to achieve Type I error at most α, as we empirically show for different
null hypotheses p0 and sample size n in Figure 1. We include 1.96 times the standard error of our
100, 000 independent trials (giving a 95% confidence interval) for each sample size and each null
hypothesis.
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Figure 1: Empirical Type I Error for our new goodness of fit tests in zCDP-GOF with error bars cor-
responding to 1.96 times the standard error in 100, 000 trials. We set ρ = 0.001 which corresponds
to a variance of 1, 000 for the additional noise to the counts due to privacy. The horizontal line
corresponds to the target α = 0.05 Type I error that we permit.
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We then empirically check the power of our new tests in zCDP-GOF for both the projected and
unprojected statistic. Subject to the constraint that our tests achieve Type I error at most α, we
seek to maximize power, or the probability of rejecting the null hypothesis when a distribution
p1 6= p0, called the alternate hypothesis, is true. We expect to see the projected statistic achieve
higher power than the unprojected statistic due to Theorem 5.8. Further, the critical value we
use for the projected statistic is smaller than the critical value for the unprojected statistic, which
might improve the power of the projected statistic.

Here we present a typical experimental scenario. We set the null hypothesis p0 = (1/2, 1/6, 1/6, 1/6)
and alternate hypothesis p1 = p0 + 0.01 · (1,−1/3,−1/3,−1/3) for various sample sizes (we em-
pirically found this to be a tough alternative hypothesis for our statistics). For each sample size
n, we sample 5, 000 independent datasets from the alternate hypothesis and test H0 : p = p0 in
zCDP-GOF. The resulting power plots are in Figure 2a for zCDP-GOF from Algorithm 1. We label
“NonPrivate” as the classical chi-square goodness of fit test used on the actual data (and thus
not private). Further, we write “ProjGOF” as the test from zCDP-GOF with the projected statis-
tic whereas “UnProjGOF” uses the unprojected statistic. Clearly, the projected outperforms the
unprojected statistic.

We then compare the projected and unprojected statistic in zCDP-GOF to prior work in Figure 2b.
Since the projected statistic outperforms the other tests, we plot the difference in power between
the projected statistic and the other tests. We label “GLRV MCGOF GAUSS” as the Monte-Carlo
(MC) test with Gaussian noise from [12],6 and “GLRV GOF Asympt” as the asymptotics-based
test with Gaussian noise from [12, 24]. The error bars show 1.96 times the standard error in the
difference of proportions from 100, 000 trials, giving a 95% confidence interval.

6 General Chi-Square Private Tests

We now consider the case where the null hypothesis contains many distributions, so that the best
fitting distribution must be estimated and used in the test statistics. The data is multinomial
X(n) ∼ Multinomial(n,p(θ0)) and p is a function that converts parameters into a d-dimensional
multinomial probability vector. The null hypothesis is H0 : θ0 ∈ Θ; i.e. p(θ0) belongs to a subset
of a lower-dimensional manifold. We again use Gaussian noise Z ∼ N(0, 1/ρ ·Id) to ensure ρ-zCDP,
and we define

U (n)
ρ (θ)

defn
=
√
n

(
X(n) + Z

n
− p (θ)

)
. (21)

With θ0 being the unknown true parameter, we are now ready to define our two test statistics in

terms of some function φ : Rd → R, such that φ(X(n) + Z)
P→ θ0 (recall from Section 4.2 that φ is

a simple but possibly a suboptimal estimate of the true parameter θ0 based on the noisy data) and
the covariance matrix

Σρ(θ)
defn
= Diag (p(θ))− p(θ)p(θ)ᵀ + 1/ρ · Id.

We define the unprojected statistic R
(n)
ρ (θ) as follows:

M̂
defn
=
(

Σnρ

(
φ(X(n) + Z)

))−1

R(n)
ρ (θ)

defn
= U (n)

ρ (θ)ᵀM̂U (n)
ρ (θ). (22)

6We set the the number of MC trials m = 59 in these experiments, which guarantees at most 5% Type I error.
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Figure 2: Empirical power results for our new goodness of fit tests in zCDP-GOF with α = 0.05
and a comparisons to previous private tests in [12]. We use ρ = 0.001, which corresponds to the
variance of 1, 000 for the additional noise to the counts.
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This is a specialization of (4) in Section 4.2 with the following substitutions: V (n) =
(
X(n)+Z

n

)
,

A(θ) = p(θ), and M(θ) = (Σnρ(θ))
−1.

For the projected statistic RRR(n)
ρ (θ), the corresponding substitutions are PPP = Id − 1

d111111ᵀ, V (n) =

PPP ·
(
X(n)+Z

n

)
, A(θ) = PPP · p(θ), and again M(θ) = (Σnρ(θ))

−1 giving:

RRR(n)
ρ (θ)

defn
= U (n)

ρ (θ)ᵀ ·PPPM̂PPP · U (n)
ρ (θ). (23)

We then assume that for both the projected and unprojected statistic Assumption 4.1 holds using
their relative vectors V (n), A(θ), and matrix M(θ). We now present the asymptotic distribution of
both statistics, which is proved using the result in Theorem 4.4 .

Theorem 6.1. Under H0 : θ0 ∈ Θ, the following are true as n→∞. Setting θ̂(n) = arg minθ∈ΘR
(n)
ρn (θ)

we have R
(n)
ρn (θ̂(n))

D→ χ2
d−k if nρn → ρ > 0. Furthermore, setting θ̂(n) = arg minθ∈ΘRRR

(n)
ρn (θ) we

have RRR(n)
ρn (θ̂(n))

D→ χ2
d−k−1 if nρn → ρ or nρn →∞.

Proof. To prove this result, we appeal to Theorem 4.4. For the unprojected statistic R
(n)
ρ (·) we

have that C(θ) = Σρ(θ) and the middle matrix M(θ) is simply the inverse of it, which satisfies the
hypotheses of Theorem 4.4.

For the projected statistic RRR(n)
nρn(·), we will write C(θ) = PPP · Σnρn(θ) ·PPP , M(θ) = Σ−1

nρn(θ), and

Ȧ(θ) = PPP · ∇p(θ) ∈ Rd×k. Note that C(θ) has rank d− 1 for all θ ∈ Θ in a neighborhood of θ0 and
all n. We will now show that we can satisfy the hypotheses in Theorem 4.4 with these matrices,
i.e. we show the following two equalities hold for all θ ∈ Θ

C(θ) ·M(θ) · C(θ) = C(θ) & C(θ) ·M(θ) · Ȧ(θ) = Ȧ(θ).

We first focus on proving the first equality C(θ) ·M(θ) · C(θ) = C(θ). From (18), we can simplify
the left hand side of the equality significantly by rewriting it as

PPPΣnρn(θ)PPP − nρn
d
PPPΣnρn(θ)111111ᵀΣnρn(θ)PPP

We now show that PPPΣnρn(θ)111111ᵀΣnρn(θ) = 0 for all n, which would prove this equality. Note that
Σnρn(θ) is symmetric and has eigenvector 111 with eigenvalue 1

nρn
. Thus,

PPPΣρ(θ)111111ᵀΣnρn(θ) =
1

n2ρ2
n

PPP111111ᵀ = 0 ∀n.

We now prove the second equality C(θ) ·M(θ) · Ȧ(θ) = Ȧ(θ). We again use (18) to simplify the
left hand side of the equality:

PPPΣnρn(θ)
[
Σ−1
nρn(θ)− nρn

d
· 111111ᵀ

]
∇p(θ)

= PPP
[
Id −

nρn
d
· Σnρn(θ)111111ᵀ

]
∇p(θ)

= PPPPPP∇p(θ)

= PPP∇p(θ).

This completes the proof for both cases nρn → ρ > 0 and nρn →∞.
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Again, the projected statistic has the same distribution under both private asymptotic regimes
and matches the non-private chi-square test asymptotics. We present our more general test
zCDP-Min-χ2 in Algorithm 2. The quick-and-dirty estimator φ(·) is application-specific (Section
6.1 gives independence testing as an example).7 Further, for neighboring histogram data, we have
the following privacy guarantee.

Theorem 6.2. zCDP-Min-χ2(·; ρ, α, φ,Θ) is ρ-zCDP.

Algorithm 2 zCDP General Chi-Square Test

procedure zCDP-Min-χ2(X(n); ρ, α, φ, H0 : θ0 ∈ Θ)
Set X̃(n) ← X(n) + Z where Z ∼ N(0, 1/ρ · Id).
Set M̂ = Σnρ

(
φ(X̃(n))

)−1

For the unprojected statistic:

T(θ) =
1

n

(
X̃(n) − np(θ)

)ᵀ
M̂
(
X̃(n) − np(θ)

)
Set θ̂(n) = argminθ∈Θ T(θ)
t← (1− α) quantile of χ2

d−k
For the projected statistic:

T(θ) =
1

n

(
X̃(n) − np(θ)

)ᵀ
PPPM̂PPP

(
X̃(n) − np(θ)

)
Set θ̂(n) = argminθ∈Θ T(θ)
t← (1− α) quantile of χ2

d−k−1

if T(θ̂(n)) > t then Reject

6.1 Application - Independence Test

We showcase our general chi-square test zCDP-Min-χ2 by giving results for independence testing.
Conceptually, it is convenient to think of the data histogram as an r × c table, with pi,j being the
probability a person is in the bucket in row i and column j. We then consider two multinomial
random variables Y ∼ Multinomial(1, π(1)) for π(1) ∈ Rr (the marginal row probability vector) and
Y ′ ∼ Multinomial(1, π(2)) for π(2) ∈ Rc (the marginal column probability vector). Under the null

hypothesis of independence between Y and Y ′, pi,j = π
(1)
i π

(2)
j . Generally, we write the probabilities

as p(π(1), π(2)) = π(1)
(
π(2)

)ᵀ
so that

X(n) ∼ Multinomial
(
n,p(π(1), π(2))

)
.

Thus we have the underlying parameter vector θ0 =
(
π

(1)
1 , · · · , π(1)

r−1, π
(2)
1 , · · · , π(2)

c−1

)
- we do not

need the last component of π(1) or π(2) because we know that each must sum to 1. Also, we have

7For goodness-of-fit testing, φ always returns p0 and k = 0 so zCDP-Min-χ2 is a generalization of zCDP-GOF.
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d = rc and k = (r − 1) + (c − 1) in this case. We want to test whether Y is independent of Y ′.
For our data, we are given a collection of n independent trials of Y and Y ′. We then count the
number of joint outcomes in a contingency table given in Table 1. Each cell in the contingency

table contains element X
(n)
i,j that gives the number of occurrences of Yi = 1 and Y ′j = 1. Since our

test statistics notationally treat the data as a vector, when needed, we convert X(n) to a vector
that goes from left to right along each row of the table.

Table 1: Contingency Table.

Y \ Y ′ 1 2 · · · c Marginals

1 X
(n)
1,1 X

(n)
1,2 · · · X

(n)
1,c X

(n)
1,·

2 X
(n)
2,1 X

(n)
2,2 · · · X

(n)
2,c X

(n)
2,·

...
...

...
. . .

...
...

r X
(n)
r,1 X

(n)
r,2 · · · X

(n)
r,c X

(n)
r,·

Marginals X
(n)
·,1 X

(n)
·,2 · · · X

(n)
·,c n

In order to compute the statistic R
(n)
ρ (θ̂(n)) or RRR(n)

ρ (θ̂(n)) in zCDP-Min-χ2, we need to find a
quick-and-dirty estimator φ(X(n) +Z) that converges in probability to p

(
π(1), π(2)

)
as n→∞. We

will use the estimator for the unknown probability vector based on the marginals of the table with

noisy counts, so that for näıve estimates π̃
(1)
i =

X
(n)
i,· +Zi,·
ñ , π̃

(2)
j =

X
(n)
·,j +Z·,j
ñ where ñ = n+

∑
i,j Zi,j

we have8

φ
(
X(n) + Z

)
=
(
π̃

(1)
1 , · · · , π̃(1)

r−1, π̃
(2)
1 , · · · , π̃(2)

c−1

)
. (24)

Note that as n → ∞, the marginals converge in probability to the true probabilities even for

Z ∼ N(0, 1/ρn · Irc) with ρn = ω(1/n2), i.e. we have that π̃
(1)
i

P→ π
(1)
i and π̃

(2)
j

P→ π
(j)
j for all i ∈ [r]

and j ∈ [c]. Recall that in Theorem 6.1, in order to guarantee the correct asymptotic distribution
we require the nρn → ρ > 0, or in the case of the projected statistic, we need ρn = Ω(1/n).
Thus, Theorem 6.1 imposes more restrictive settings of ρn for the unprojected statistic than what
we need in order for the näıve estimate to converge to the true underlying probability. For the
projected statistic, we only need ρn = ω(1/n) to satisfy the conditions in Theorem 6.1 and for

φ(X(n) + Z)
P→ p

(
π(1), π(2)

)
.

We then use this statistic φ(X(n)+Z) in our unprojected and projected statistic in zCDP-Min-χ2

to have a ρ-zCDP hypothesis test for independence between two categorical variables. Note that
in this setting, the projected statistic has a χ2

(r−1)(c−1) distribution, which is exactly the same
asymptotic distribution used in the classical Pearson chi-square independence test.

For our results we will again fix α = 0.05 and ρ = 0.001. In Figure 3 we give the empirical Type
I error for our independence tests given in zCDP-Min-χ2 for both the projected and unprojected
statistic in 100, 000 trials for various n and data distributions. We note that for small sample sizes
we are achieving much smaller Type I Errors than the target α due to the fact that sometimes the
noise forces us to have small expected counts (< 5 in any cell) in the contingency table based on
the noisy counts, in which case our tests are inconclusive and fail to reject H0.

8We note that in the case of small sample sizes, we follow a common rule of thumb where if any of the expected
cell counts are less than 5, i.e. if nπ̃

(1)
i π̃

(2)
j ≤ 5 for any (i, j) ∈ [r]× [c], then we do not make any conclusion.
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Figure 3: Empirical Type I Error for our new independence tests in zCDP-Min-χ2 with 1.96 times
the standard error in 100, 000 trials. We set ρ = 0.001 which corresponds to variance 1, 000 due to
noise in each cell count. It is desired to have Type I error at most α = 0.05, which is given as the
horizontal line.
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α = 0.05 and ρ = 0.001.

Figure 4: Empirical power results for our new independence tests in zCDP-Min-χ2 and a comparisons
to previous private tests in [12]

We then compare the power zCDP-Min-χ2 achieves for either of our test statistics. As a sample
of our experiments, we set r = c = 2 and π(1) = (2/3, 1/3), π(2) = (1/2, 1/2). We then sample
our contingency table X(n) from Multinomial(n,p(π(1), π(2)) + ∆∆∆) where ∆∆∆ = 0.01 · (1, 0,−1, 0),
so that the null hypothesis is indeed false and should be rejected. We give the empirical power of

zCDP-Min-χ2 in Figure 4a using both the unprojected R
(n)
ρ (θ̂(n)) from (22) and projected statistic

RRR(n)
ρ (θ̂(n)) from (23) for 5, 000 independent trials and various sample sizes n. Note that again we

pick θ̂(n) from Theorem 4.3 relative to the statistic we use. We label “NonPrivate” as the classical
Pearson chi-square test used on the actual data and“ProjIND” as the test from zCDP-Min-χ2 with
the projected statistic whereas “UnProjIND” uses the unprojected statistic.

The projected statistic again outperforms prior work, so in Figure 4b, we plot the difference in
power between the projected statistic in zCDP-Min-χ2 and the competitors (the unprojected statis-
tic and independence tests from [12]) in 50, 000 trials. Note that we label “GLRV MCIND GAUSS”
(resp., “GLRV IND Asympt”) as the Monte Carlo (resp., asymptotics-based) test with Gaussian
noise from [12].
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6.2 Application - GWAS Testing

We next turn to demonstrating that our new general class of private hypothesis tests for categorical
data significantly improves on existing private hypothesis tests even when extra structure is assumed
about the dataset. Specifically, we will be interested in GWAS data, which was the primary reason
for why hypothesis tests for independence should be made private [13]. We will then assume that
r = 3 and c = 2 and the data is evenly split between the two columns - as is the case in a control
and case group. For such tables, we can directly compute the sensitivity of the classical chi-square
statistic q(·):

q(X(n)) =

3∑
i=1

2∑
j=1

n ·
(
X

(n)
i,j −

X
(n)
·,j ·X

(n)
i,·

n

)2

X
(n)
·,j ·X

(n)
i,·

Lemma 6.3 ([22, 27]). The `1 and `2 global sensitivity of the chi-square statistic q(·) based on a
3× 2 contingency table with positive margins and n/2 cases and n/2 controls is ∆(q) = 4n/(n+ 2).

Hence, a different approach for a private independence test is to add Gaussian noise with

variance σ2 = ∆2(q)2

2ρ to the statistic q(·) itself, which we call output perturbation. Our statistic
is then simply Gaussian mechanism MGauss for statistic q. We then compare the private statistic
value with the distribution of TGauss(n, ρ) = χ2

2+N
(
0, σ2

)
where the degrees of freedom is 2 because

we have (r− 1) · (c− 1) = 2. Thus, given a Type I error of at most α, we then set our critical value
as τGauss(α;n, ρ) where

Pr [TGauss(n, ρ) > τGauss(α;n, ρ)] = α

Hence, if MGauss(X
(n)) for the statistic q is larger than τGauss(α;n, ρ) then we reject the null

hypothesis.
For our experiments, we again set ρ = 0.001 and α = 0.05. We fix the probability vec-

tor (1/3, 1/3, 1/3) over the 3 rows in the first column whereas in the second column we set
(1/2, 1/4, 1/4), therefore the case and control groups do not produce the same outcomes. In Fig-
ure 5, we show a comparison in the power between our test with the projected statistic, which
assumes no structure on the data, and the output perturbation test, which crucially relies on the
fact that the data is evenly split between the case and control groups. We label “ProjIND” and
“UnProjIND” as the tests from zCDP-Min-χ2 with the projected statistic and unprojected statis-
tic, respectively. Further, we label “YFSU Gauss” as the output perturbation tests for Gaussian
noise proposed in [27]. Note that our new proposed test does significantly better than the output
perturbation test, sometimes requiring 5 times more samples to achieve the same level of power
than for our projected statistic test.

7 General Chi-Square Tests with Arbitrary Noise Distributions

We next show that we can apply our testing framework in Algorithm 2 for any type of noise
distribution we want to include for privacy concerns. For example, we consider adding Laplace
noise rather than Gaussian noise if our privacy benchmark were (pure) differential privacy (DP).

In this case, we add Laplace noise with variance 8/ε2 when computing the two statistics R
(n)
ε2/8

(θ̂(n))

from (22) and RRR(n)
ε2/8

(θ̂(n)) from (23) so that the resulting tests will be ε-DP and hence ε2

2 -zCDP

26



2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GWAS Test Power Comparisons in  5000 Trials

n

po
w

er

ProjIND

UnProjIND

YSFU_Gauss

Figure 5: A comparison of power between different hypothesis tests for independence testing for
GWAS type datasets where the data is publicly known to be evenly split between the two columns
and there are three rows in the contingency table.

from Theorem 3.5. Note that the resulting asymptotic distribution in this case will not be chi-
square when we use noise other than Gaussian. We will then rely on Monte Carlo (MC) sampling
to find the critical value in which to reject the null hypothesis. We give the MC based test which
adds independent Laplace noise with variance 8/ε2 in Algorithm 3 and is thus ε-DP, but any noise
distribution can be used where we replace the parameter 1/ρ in the two statistics to be the variance
of the noise that is added to each count. In fact, Gaussian noise can be used in this framework
although the asymptotic distribution seems to do well in practice even for small sample sizes.

7.1 Application - Goodness of Fit Testing

We first show that we can use the general chi-square test DP-MC-MIN with ε-DP which uses Laplace
noise in Algorithm 3 for goodness of fit testing H0 : p = p0. In this case we select p(θ̂(n)) = p0

and φ(X(n) + Z) = p0 in both the unprojected and projected statistics. From the way that we
have selected the critical value τ(α, ε) in Algorithm 3, we have the following result on Type I error,
which follows directly from Theorem 5.3 in [12].

Theorem 7.1. When the number of independent samples m we choose for our MC sampling is
larger than 1/α, testing H0 : p = p0 in Algorithm 3 guarantees Type I error at most α .

We then focus on empirically checking the power of DP-MC-MIN with α = 0.05 for the dif-
ferent statistics. As we did in the previous experiments, we will set the null hypothesis p0 =
(1/2, 1/6, 1/6, 1/6) and alternate hypothesis p1 = p0 +0.01 · (1,−1/3,−1/3,−1/3) for various sam-
ple sizes. We set the privacy parameter ε =

√
2 · .001 ≈ 0.045, which implies (ρ = 0.001)-zCDP due
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Algorithm 3 DP Minimum Chi-Square Test using MC

procedure DP-MC-MIN(Histogram data X(n) = (X
(n)
1 , · · · , X(n)

d ); ε, α, H0 : θ0 ∈ Θ, m trials)

Set X̃(n) ← X(n) + Z where Z = (Z1, · · · , Zd), where Zi ∼ Lap(2/ε).

Set M̂ = Σnρ

(
φ(X̃(n))

)−1

For the unprojected statistic:

T(θ) =
1

n

(
X̃(n) − np(θ)

)ᵀ
M̂
(
X̃(n) − np(θ)

)
Set θ̂(n) = argminθ∈Θ T(θ)

Sample {r1, · · · , rm} as m samples from the distribution of T(θ̂(n)).
Set τ(α, ε) to be the d(m+ 1)(1− α)e-largest value of {r1, · · · , rm}.
For the projected statistic:

T(θ) =
1

n

(
X̃(n) − np(θ)

)ᵀ
PPPM̂PPP

(
X̃(n) − np(θ)

)
Set θ̂(n) = argminθ∈Θ T(θ)

Sample {r1, · · · , rm} as m samples from the distribution of T(θ̂(n)).
Set τ(α, ε) to be the d(m+ 1)(1− α)e-largest value of {r1, · · · , rm}.

if T(θ̂(n)) > τ(α, ε) then Reject

to Theorem 3.5. We set the number of independent samples we draw from the distribution of the
statistic under the null hypothesis as m = 59. In Figure 6a, we compare the power of the projected
and unprojected statistitic in DP-MC-GOF, labeled “ProjGOF LAP” and “UnProjGOF LAP” re-
spectively, with the classical non-private chi-square test for various n each with 5, 000 trials. Note
that there is a drastically larger power when we use the projected statistic as opposed to the
unprojected statistic.

We then show that the projected statistic using Laplace noise achieves significantly higher power
than using the other unprojected test statistic as well as previous DP hypothesis tests with Laplace
noise from [12]. We then label “GLRV MCGOF LAP” as the MC based test with Laplace noise
from [12] and plot the power loss in Figure 6b that the other DP goodness of fit tests suffer when
compared to the power that DP-MC-GOF achieves with the projected statistic. Note that the error
bars in the figure show 1.96 times the standard error in the difference of proportions from 100, 000
trials.

7.2 Application - Independence Testing

We then apply our general framework to independence testing as in Section 6.1. Unlike our goodness
of fit testing, we are not guaranteed to have Type I error at most α when we have composite
tests, e.g. independence testing, in DP-MC-MIN because we are not sampling from the exact data
distribution.

We then empirically show the Type I error is at most the desired level α = 0.05. We again fix
ε =
√

2 ∗ 0.001 ≈ 0.045, which ensures ε-DP as well as (ρ = 0.001)-zCDP due to Theorem 3.5. We
will use m = 59 samples in all of our MC testing. We then give the empirical Type I error for
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Figure 6: Empirical power results for our new DP goodness of fit tests in DP-MC-MIN and a compar-
isons to a previous private test in [12] that uses Laplace noise with variance 4, 000 added to each
cell count.
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Figure 7: Empirical Type I Error for the new DP independence tests in DP-MC-MIN with 1.96 times
the standard error in 10, 000 trials. We set ε =

√
.001 ∗ 2 ≈ 0.045 which corresponds to variance

1, 000 due to noise for each cell count. It is desired to have Type I error at most α = 0.05, which
is given as the horizontal line.

various n and data distributions in Figure 7. Note that we use the same rule of thumb as before
where if our näıve estimate for the probability distribution produces expected cell counts smaller
than 5, then our test in inconclusive and fails to reject. This is why in our experiments, the Type
I error is close to zero for small sample sizes.

We also consider the power of our tests in DP-MC-MIN. As we did before, we will set the data
distribution with π(1) = (2/3, 1/3), π(2) = (1/2, 1/2). We then sample our contingency table X(n)

from Multinomial(n,p(π(1), π(2)) + ∆∆∆) where ∆∆∆ = 0.01 · (1, 0,−1, 0) for various sample sizes. In
Figure 8a, we compare the power of the projected and unprojected statistic in DP-MC-MIN, labeled
“ProjIND LAP” and “UnProjIND LAP” respectively, with the classical non-private chi-square test
for 1, 000 trials.

We then label “GLRV MCIND LAP” as the MC based test with Laplace noise from [12]. Note
that the error bars show 1.96 times the standard error in the difference of proportions from 10, 000
trials, giving a 95% confidence interval.

8 Conclusions

We have demonstrated a new broad class of private hypothesis tests zCDP-Min-χ2 for categorical
data based on the minimum chi-square theory. We gave two statistics (unprojected and projected)
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Figure 8: Empirical power results for our new DP independence tests in DP-MC-MIN and a compar-
isons to a previous private test in [12] that uses Laplace noise.
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that converge to a chi-square distribution when we use Gaussian noise and thus lead to zCDP
hypothesis tests. Unlike prior work, these statistics have the same asymptotic distributions in the
private asymptotic regime as the classical chi-square tests have in the classical asymptotic regime.

Our simulations show that with both statistics our tests achieve at most α Type I error .
Empirically, the test using the projected statistic significantly improves the Type II error when
compared to the unprojected statistic and prior work [12]. Further, our new tests give comparable
power to the classical (nonprivate) chi-square tests. We then gave further applications to GWAS
data and other privacy-preserving noise distributions (e.g. Laplace).
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[16] V. Karwa and A. Slavković. Differentially private graphical degree sequences and synthetic
graphs. In J. Domingo-Ferrer and I. Tinnirello, editors, Privacy in Statistical Databases,
volume 7556 of Lecture Notes in Computer Science, pages 273–285. Springer Berlin Heidelberg,
2012.
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