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INRIA - École Normale Supérieure, Paris
francis.bach@inria.fr

Indian Institute of Science
chiru@csa.iisc.ernet.in

Abstract

In this article, we provide additional state-
ments and proofs complementing the main
paper. We present here the proofs of the
statements given in the main paper. The sec-
tion numbers in this document are arranged
in correspondence to the respective sections
in the main paper.

3 Related Work: OWL, OSCAR, and
SLOPE

3.1 Proof of Proposition 3.1

Proof. 1. Let a = |w|. Let us assume WLOG that
a1 ≥ · · · ≥ ad ≥ 0. Then the Lovász extension
p(a) =

∑d
i=1 aici, where ci = f(i)− f(i− 1) (See

[1]). We get the result.

2. The derived penalty is non-decreasing since c ≥
0. And since c forms a decreasing sequence, P is
submodular. Hence the result.

4 SOWL - Definition and Properties

The below Lemma states that ΩS is a valid norm.

Lemma 4.A. Let w ∈ Rd. ΩS(w) defined in (SOWL)
is a valid norm if c1 + · · ·+ cd ≥ 0.

Proof. From Proposition 3.1, we see that we can de-
rive a submodular function P such that P (∅) = 0 and
P (A) > 0 for A ⊆ 1, . . . , d. Now, ΩS is a special case
of norms proposed in [2, Section 2], which are indeed
valid norms.
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The below statements show that for every c satisfying
c1 ≥ · · · ≥ cd, there exists c̃ satisfying c̃1 ≥ · · · ≥ c̃d ≥
0, such that ΩS is same for both c and c̃.

Lemma 4.B. Let w ∈ Rd. Given c ∈ Rd such that
c1 ≥ · · · ≥ cd. Let k be the minimum integer such that
ck + · · ·+ cd ≥ 0. Then define c̃ ∈ Rd such that c̃i = ci
for i = 1, . . . , k − 1, c̃k = ck + · · ·+ cd, and c̃i = 0 for
i = k+ 1, . . . , d. Explicitly mentioning the dependency
of ΩS on c as ΩS(w; c), we have ΩS(w; c) = ΩS(w; c̃).

Proof. Let P be the submodular function constructed
from c, and P̃ be the corresponding function con-
structed from c̃. From [2, Lemma 3], we see that both
have the same Lower Combinatorial Envelope, which
implies that ΩS(w; c) = ΩS(w; c̃).

4.1 Proof of Proposition 4.3

Proof. 1. Once we make the assumption on the lat-
tice, the objective in (SOWL) is separable in
terms of variables within each group Gj . And the
result follows.

2. This candidate δw is optimal only if for small
perturbations around ηw, the objective function
increases. Let us denote by Γ(η) =

∑d
i=1 ciη(i),

the Lovász extension of P . From [1], we see that
around ηw, we have the decomposition of Γ as

Γ(η + dη) = Γ(η) +

k∑
j=1

Γj(dηj),

where Γj is the lovasz extension of the function
Pj , which is defined over all Cj ⊆ Gj as Pj(Cj) =
P (G1 ∪ · · · ∪ Gj−1 ∪Cj)− P (G1 ∪ · · · ∪ Gj−1). For
all dη sufficiently small, we require that

d∑
i=1

w2
i

ηi + dηi
+ Γ(η + dη) >

d∑
i=1

w2
i

ηi
+ Γ(η)
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This is equivalent to

d∑
i=1

(
w2
i

ηi + dηi
− w2

i

ηi

)
+

k∑
j=1

Γj(dηj) > 0

k∑
j=1

Γj(dηj) >

d∑
i=1

w2
i

(
1

ηi
− 1

ηi + dηi

)

=

d∑
i=1

w2
i

ηi

(
dηi

(ηi + dηi)

)
.

Following [3], the above equation is satisfied for
all dη > 0 if and only if ∀j,

Γj(dηj) >
∑
i∈Gj

w2
i

η2
i

dηi = s>dηj , (1)

where si =
w2

i

η2i
. Defining ŝi =

w2
i

‖wGj ‖
2
2
, and (1)

is equivalent to ŝ(Cj) ≤ Pj(Cj)
Pj(Gj) ,∀Cj ⊆ Gj . The

statement follows.

4.2 Stability of the grouping variable ηw

Proposition 4.C. Given w ∈ Rd, and let the mini-
mizer of (SOWL) ηw ∈ Dk. define the following quan-
tities

1. β(w) = minj<h

( ‖wGj ‖2√
Aj(Gj)

−
‖wGh

‖2√
Ah(Gh)

)
(√

|Gj |
Aj(Gj)

+

√
|Gh|
Ah(Gh)

) ,

2. γj(wGj ) = mini∈Gj

(
‖wui

‖2√
Aj(|ui|)

−
‖wvi

‖2√
Aj(|Gj |)−Aj(|ui|)

)
(√

|ui|
Aj(|ui|)

+

√
|vi|

Aj(|Gj |)−Aj(|ui|)

) ,

where ui = {̂i ∈ Gj |̂i ≤ i}, and vi = Gj \ ui. Define
γ(w) = minj γj(wj).

Let w̃ = w+ε, and let ηw̃ be the minimizer of (SOWL)
for w̃. Then ηw̃ ∈ Dk if ‖ε‖∞ ≤ min(β(w), γ(w)).

Proof. It is easy to see that Condition 1 in Proposition
(4.3) is met when ‖ε‖∞ ≤ βD(w). And Condition 2 is
satisfied when ‖ε‖∞ ≤ γD(w).

4.3 Proof of Theorem 4.4

Proof. We construct the proof by establishing the fol-
lowing results. We introduce the notion of group co-
herency, which is inspired from [4] which will help es-
tablishing the proof.

Definition 4.D. A group Gj having indices [s, e], 0 ≤
s ≤ e ≤ d, is defined to be Coherent if there does not

exist an index i such that
w2

s+···+w2
i

cs+···+ci >
w2

i+1+···+w2
e

ci+1+···+ce .

Proposition 4.E. A group Gj is coherent if and only
if the inequality (3) in Proposition 4.3 is satisfied.

Proof. Trivial to see.

The following Lemma gives the conditions under which
two adjacent groups can be merged while maintaining
coherency.

Lemma 4.F. Consider a lattice D(k) and assume
|w1| ≥ · · · ≥ |wd|. Let us assume that the groups
Gj and Gj+1 are coherent, and let max({i|i ∈ Gj}) >
min({̂i|̂i ∈ Gj+1}). The group Gj ∪ Gj+1 is also coher-

ent if and only if
‖wGj ‖2√
Aj(|Gj |)

<
‖wGj+1

‖2√
Aj+1(|Gj+1|)

.

Proof. It the condition is not satisfied, obviously the
merged group is not coherent. We now show that this
is a sufficient condition too. W.l.o.g, let us assume
j = 1 and denote the indices in G1 and G2 are [1 : h]
and [h+ 1 : d] respectively. Choose an index m ∈ [1 :
d]. Let us consider the case m ≤ h. The following
relations hold because G1 and G2 are coherent.√

w2
1 + · · ·+ w2

m√
A1(m)

<

√
w2
m+1 + · · ·+ w2

h√
A1(h)−A1(m)

,

√
w2

1 + · · ·+ w2
m√

A1(m)
<

√
w2
h+1 + · · ·+ w2

d√
A2(d− h)

.

Since

√
w2

m+1+···+w2
d√

A2(d−h)+A1(h)−A1(m)
is sandwiched between

the rhs of the above two expressions, we have√
w2

1+···+w2
m√

A1(m)
<

√
w2

m+1+···+w2
d√

A2(d−h)+A1(h)−A1(m)
. A similar rea-

soning as above holds for m > h case also. Thus G1∪G2

is coherent.

Lemma 4.G. Let w ∈ Rd and ηw be the minimizer
of (SOWL). If |w1| ≥ · · · ≥ |wd|, then (ηw)1 ≥ · · · ≥
(ηw)d.

Proof. Let ηw ∈ Dk with unique values δj , j =
1, . . . , k. W.l.o.g., let us assume that k = 2. As a
contradiction, let δ2 > δ1 corresponding to adjacent
groups G1 and G2. We denote d1 = |G1|, d2 = |G2|. By
optimality conditions from Proposition (4.3), we have
‖wG2‖2√
c1+···+cd2

>
‖wG1‖2√

cd2+1+···+cd1+d2

, and cd2+1 > 0. Since

c1 > · · · > cd, we have

|wd1+1|√
cd2

≥ ‖wG2‖2√
c1 + · · ·+ cd2

>
‖wG1‖2√

cd2+1 + · · ·+ cd1+d2

≥ |wd1 |√
cd2+1

.

This is impossible since |wd1 | > |wd1+1| and cd2 >
cd2+1, and hence the result.
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Proof of Theorem 4.4 continued. Lemma 4.G
shows that the ordering of ηw follows that of |w|.
Hence when |w| is sorted, the coherent groups Gj in
η are contiguous. The sorting of |w| takes O(d log d)
time. Algorithm 1 starts with coherent groups of size
1, and Lemma 4.F guarantees that the groups evolv-
ing are all coherent. Thus Algorithm 1 computes ηw
which satisfy the conditions of Proposition 4.3. The
outer loop is executed exactly d− 1 times, and the in-
ner loop is executed as many times a merge is made
which is also upper bounded by d − 1. Hence the re-
sult.

4.4 Proof of Theorem 4.5

Proof. Before analyzing the solutions of the proximal
operator of ΩS , let us now analyze the solutions η̂ ob-
tained from solving the regression problem (5). Re-
calling the equivalence to submodular penalties, we
denote denoting Γ(η) =

∑d
i=1 ciη(i). Now eliminating

w, we arrive at the following equivalent problem only
in η.

min
η≥0

J(η) + Γ(η) (2)

Where J(η) = y>M−1(η)y, M(η) =(
XD (η)X> + nλI

)
. The following proposition

gives necessary and sufficient conditions for η̂
belonging to a particular lattice D(k).

Proposition 4.H. Consider a lattice D(k) along with
its partition G1, . . . ,Gk. For the problem (2), the so-

lution η̂ ∈ Dk with unique values δ̂1 > · · · > δ̂k in the
respective partitions if and only if the following state-
ments hold true, where we denote by ν̄ the subgradient
at δ̂ with respect to the positivity constraint δ ≥ 0.

1. η̂ satisfies the order constraints for the lattice
D(k).

2. η̂ satisfies
∑
i∈Gj ‖x

>
i M

−1(η̂)y‖22 + ν̄j =

Aj(|Gj |),∀j = 1, . . . , k.

3. s = ∂Γ
∂η̂ satisfies s(C) ≤ c1 + · · ·+ c|C|,∀C ⊆ V .

Proof. Point 1 is the requirement of the lattice as-
sumption. Define H ∈ Rd×k with each Hij = 1 if
i ∈ Gj and 0 otherwise. The lattice assumption in-
cluded in (2) leads to the following reduced problem,
where we denote tj = Aj(|Gj |).

min
δ≥0

J(Hδ) + δ>t. (3)

The first order conditions for optimality for the above
equation leads to the following gradient equation,

which proves the point 2.∑
i∈Aj

‖x>i M−1(Hδ̂)y‖22 + ν̄j = tj ,∀j (4)

This means at optimality, δ̂ solves the above non-linear
system of equations. Now, from optimality conditions
of (2), we have

‖x>i M−1(η̂)y‖22 + νi = si, (5)

with s is an element of the subgradients of Γ at η̂, and
νi the subgradient of the positivity constraint on η̂i.
Invoking the properties of Lovász extensions [1], we
denote by P the submodular function derived from c.
For any η ∈ Rd, we characterize the subgradient as
follows.

Claim 4.I. Let s be the subgradient of Γ at η. Then
subgradient s should satisfy (a) s ∈ B(P )(Base poly-
tope) and (b) s>η = Γ(η).

Proof. Follows from the definition of the lovasz exten-
sion.

Point (a) in the above claim is thus shown to be nec-
essary. Whereas the following claim shows that, since
η̂ satisfies (5) and (4), the point (b) in the above claim
is redundant.

Claim 4.J. Let η̂ = Hδ̂ be consistent with (4). Then
in Claim 4.I, condition (a) implies the condition (b).

Proof. For s ∈ B(P ), s>η = Γ(η) is satisfied as soon
as s(G1∪· · ·∪Gi) = P (G1∪· · ·∪Gi). Now, from (5) and
(4) s(G1∪· · ·∪Gi) = t1 + · · ·+ti = P (G1∪· · ·∪Gi).

Now the condition s ∈ B(P ) is equivalent to the con-
dition s(C) ≤ c1 + · · ·+ c|C|,∀C ⊆ V . This completes
the proof.

Proof of Theorem 4.5 continued.

1. When η̂
(µ)
i > 0,∀i, the optimality conditions 4

translate to∑
i∈Gj

y2
i(

δ̂
(µ)
j + nµ

)2 =
∑
i∈Gj

y2
i(

η
(µ)
i + nµ

)2 = Aj(|Gj |).

(6)

This implies
(
δ̂

(µ)
j + nµ

)2

=

∑
i∈Gj y

2
i

Aj(|Gj |)
, (7)
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which is independent of µ.

Let Cj ⊆ Gj , then, s(Cj) =
∑
i∈Cj

y2
i(

δ̂
(µ)
j + nµ

)2

(8)

=

∑
i∈Cj

y2
i∑

i∈Gj y
2
i

Aj(|Gj |). (9)

Then ∀C ⊆ {1, . . . , d}, s(C) =

m∑
j=1

s(C ∪ Gj).

(10)

This implies that s(C) does not depend on µ, and
we arrive at the statement.

2. From the optimality condition (4), we see that

δ̂
(λ)
j = 0,when

√∑
i∈Gj y

2
i

Aj(|Gj |)
< nλ,

ν̄j = tj −
∑
i∈Gj y

2
i

n2λ2
.

The first part of the theorem guarantees that

δ
(λ)
k = 0, for all k > j. Also, the problem (3) can

now be reduced in terms of the positive values of
η and the first part of this theorem applies.

4.5 Proof of Corollary 4.6

Proof. From Theorem 4.5 it is clear that ηx can be
computed in O(d log d) time. And the first order opti-
mality condition for (5) gives

xi = zi
(ηx)i

(ηx)i + λ
.

Hence the result.

5 Regularization with SOWL

5.1 Proof of Proposition 5.2

Proof. Consider the following proposition.

Proposition 5.A. Consider w ∈ Rd, and Let the
minimizer of (SOWL) ηw ∈ Dk. Then ΩS(w) =∑k
j=1

√
Aj(|Gj |)‖wGj‖2.

Proof. Once the lattice assumption is made, Γ is linear
function on η. The problem (SOWL) is then separable
in terms of the groups Gj and we get the result.

Proof of Proposition 5.2 continued. Given η̂,
Corollary 5.A shows that the norm is equivalent to the
group lasso penalty, and the conditions 1, 2 are the op-
timality conditions of the group lasso [5]. And Given
ŵ, η̂ is optimal if and only if it satisfied the conditions
given in Proposition 4.3. The convexity of the problem
(5) guarantees that (ŵ, η̂) is indeed optimal.

5.2 Proof of Theorem 5.3

Proof. First we note that if δ∗k = 0, then Gk = J c.Now
let us consider the restricted problem only on the sup-
port J , and denote the minimizer as wJ .

min
wJ

1

2
‖XJwJ − y‖22 + λΩ(wJ )

As λ→ 0, the objective in the above problem tends to
1
2y
>y+ 1

2w
>
JΣJ ,JwJ − y>XwJ . It is easy to see that

wJ → w∗J due to the invertibility of ΣJ ,J . We now
construct a candidate w by concatenating wJ with
zeros for the remaining columns. We shall now show
that the candidate solution is an optimal one. From
the optimality conditions of the reduced problem, ∀j =
1, . . . , k − 1, we have

X>Gj (XJ (ŵJ − w∗J ) + εJ ) = −λn
√
Aj(|Gj |)

ŵj
‖ŵj‖2

⇒ ŵJ − w∗J = −λn(ΣJ ,J )−1D

(√
Aj(|Gj |)
‖ŵGj‖2

)
ŵJ

+Op(n
− 1

2 ).

Now,

X>J cy −X>J cXJ ŵJ = ΣJ c,J (w∗J − ŵJ ) +Op(n
− 1

2 )

= λnΣJ c,J (ΣJJ )
−1

D

(√
Aj(|Gj |)
‖ŵGj‖2

)
ŵS +Op(n

− 1
2 )

⇒ ‖X>J c(XJ ŵJ − y)‖2 ≤ λn,

where the last line used the irrepresentability condi-
tion. Thus ŵ converges to w∗ in probability and proves
the theorem.

5.3 Proof of Theorem 5.1

Proof. Let us denote by Γ(η) =
∑d
i=1 ciη(i). The prob-

lem (5) is jointly convex in w, η and first order condi-
tions are neccessary and sufficient. They are

x>i (Xŵ − y) + λ
ŵi
η̂i

= 0 (11)

− ŵ
2
i

η̂2
i

+ si + hi = 0, (12)

where si denotes the subgradient of Γ with respect to
ηi, and hi the subgradient with respect to the positiv-
ity condition on ηi. Obviously, when η̂i > 0, hi = 0.
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When η̂i = 0, we see that from (11) that ŵi = 0.
Substituting this in (12), hi = −si.

Let us assume η̂i(λ) 6= η̂j(λ) and different from the
rest. This implies that si = ci. This leads to the
following equations which follows from (11) and (12).

ŵi
η̂i

= − 1

λ
x>i (Xŵ − y)

ci =
ŵ2
i

η̂2
i

=
1

λ2
(Xŵ − y)

>
xix
>
i (Xŵ − y)

|ci − cj | =
1

λ2

∣∣∣(Xŵ − y)
>

(xix
>
i − xjx>j ) (Xŵ − y)

∣∣∣
≤ 1

λ2
‖Xŵ − y‖22‖xix>i − xjx>j ‖2

≤ 1

λ2
‖y‖22 ‖xi + xj‖2 ‖xi − xj‖2

≤ 1

λ2
‖y‖22

√
2 + 2ρij

√
2− 2ρij

=
1

λ2
‖y‖22

√
4− 4ρ2

ij

We know that |ci − cj | ≥ C > 0, where C =
mink<d(ck − ck+1). This implies that

0 < C ≤ |ci − cj | ≤
1

λ2
‖y‖22

√
4− 4ρ2

ij

This is impossible to happen for all λ > 0 and leads to
a contradiction for the assumption that η̂i(λ) 6= η̂j(λ).

We define λ0 = ‖y‖2√
C

(4 − 4ρ2
ij)

1
4 and we have η̂i(λ) =

η̂j(λ) for all λ > λ0.

5.4 Proof of Theorem 5.4

Proof. The proof proceeds by proving the following
lemmas. In this section we denote by Let A = supp(η).

Lemma 5.B. Consider the prob (6). Let |A| = r.
Then the following statements hold true.

z2
r

cr
> λ2,

z2
r+1

cr+1
≤ λ2. (13)

Proof. Consider any j < r, and perturb ηi for i =
j, . . . , r as η̃i = ηi − h for a fixed h > 0. Then the
difference of the objective in (6) for η and η̃ is given
as

r∑
i=j

z2
i

(
1

ηi − h+ λ
− 1

ηi + λ

)
− cih > 0,

because of the optimality of η. Rearranging the terms
we have,

r∑
i=j

z2
i

(ηi + λ)2
>

r∑
i=j

ci.

for j = r, we get the first condition. The proof of
the next condition is similar by perturbing the ηi for
i > r.

Lemma 5.C. Consider the following modified problem
of (6), where z̃ = [z2, . . . , zd], c̃ = [c2, . . . , cd].

min
η̃≥0

d−1∑
i=1

(
z̃2
i

η̃i + λ
+ c̃iη̃(i)

)
(14)

If problem (6) has exactly r non-zero values in η at
optimality, then problem (14) has exactly r − 1 non-
zero entries in η̃.

Proof. Trivial.

Lemma 5.D. Let Hi be the hypothesis that ηi = 0.
Then {z|Hi is rejected and |A| = r} = {z|z2

i > λc2r}.

Proof of Theorem 5.4 continued. We now choose√
λcr = Φ−1

(
1− iq

2d

)
, which leads to the following

bound.

P (Hi rejected and |A| = r) ≤P (z2
i > λcr and |Ã| = r − 1)

≤P (z2
i > λcr)P (|Ã| = r − 1)

≤P (|zi| >
√
λcr)P (|Ã| = r − 1)

≤qr
d
P (|Ã| = r − 1)

Hence the FDR is given as

FDR =

d∑
r=1

1

r

d0∑
i=1

P (Hi rejected and |A| = r)

≤
d∑
r=1

qd0

d
P (|S̃| = r − 1) =

qd0

d
.

6 Additional Plots

We show in Figure 1 the proximal denoising plots given
in the main paper with error bars.
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Figure 1: Proximal denoising plots (a), and (b) refer
to examples in Figures 3a, , 3b respectively.
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