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A  Appendix

A.1 Algorithmic Details

We present a precise version of the algorithm described
in Section 3 as Algorithm 1. For ease of exposition, we
introduce the concept of matrix sampling, which is a
notational tool to represent the sampled entries from
different subsets of arms in a structured manner.

A.1.1 Matrix Sampling

Consider the L x K reward matrix U. Consider a
‘sampling matrix’ G with dimensions K x p. Let
{a1,a2...a,} C [K]. In this work, we consider G
only of the following form: G, ; =1, V1 <¢ <p and
zero otherwise. Consider the product between a row s
of U and G, i.e. U,.G. This selects the co-ordinates
corresponding to {as ...a,} in vector U, .. Given a row
s (a context s) of U, i.e. Uy . = u[s|, we describe how
to obtain a random Bernoulli vector estimate [s] such
that E[Q[s]] = %Us,: by sampling an arm as follows:

e Given that the context is s, sample a uniform
random variable x with support {a; ...a,}, which
represents the arm to be pulled after observing
the context.

e Conditioned on x = k, pull arm k and observe the
reward Y € {0,1}.

e The random vector sample is then given by G[s]; =
Y.e..

Then we have E[a[s]i] = E[E[Yx|k = k]] = %u[s}k. In
other words, whenever the context is s, we pull an
arm uniformly at random from {a1,as...a,} and the
samples are collected in [s].

A.1.2 Arms to be sampled during explore

Before we present the pseudocode, we define the sam-
pling matrices {G(0), G(1),--- ,G(l + 1)}. Recall that
any subset of arms can be encoded in a sampling ma-
trix. G(0) corresponds to the subset S in Step 1 of
explore stated in Section 3. For ease of reference, we
restate the sets relevant to the context specific sam-
pling procedure in Step 2 of explore. G(i) corresponds
to the subset R(s;) is s; € S(i). Let I = [ K/m] and
r = Kmod(m). A set R C [L] of contexts is sam-
pled at random, such that |R| = 2(I + 1)m’ at the
onset of the algorithm. We partition R into [ + 1 con-
tiguous subsets {S(1),S5(2),...,S( + 1)} of size 2m’
each. The elements of the set S(j) will be denoted
as S(j) = {s1(4),s2(4) -+ , s2m’(4)}. In Step 2 of ez-
plore, if sy € S(i), then R(s;) = {(i —1)m, (i — 1)m +
1,---max(im — 1, K)}. If sy ¢ S(4) for all ¢ € [l + 1],

then the algorithm is allowed to pull any arm at ran-
dom, and these samples are ignored.

1. G(0): An K x 2m' random matrix formed as
follows: An 2m’ subset a1,as...a2, C [K] is
chosen randomly uniformly among all 2m/-subsets
of [K] and G(0)g,; = 1, V1 < i < 2m’ and all
other entries are 0.

2. G(i): An K x m matrix such that,

G(i)kj = { 0.

when i € {1,2,---,1}.

otherwise

3. G(I+1): An K x r matrix defined as follows:

1, ifk=(m+j) forje{l,---r}
Gk = { 0, otherwise

In words, G(i) for i € [I] is the K x m matrix which
has an identity matrix I, x., embedded between rows
(i — 1)m and im — 1, and is zero everywhere else.

A.1.3 Representation of the collected

Samples
In what follows, let the mean of samples collected
through G(0) till time ¢ be collected in a L x 2m’ matrix
F (1) such that E [F/(t)| = (1/2m')F = (1/2m')UG(0)

as detailed in Section A.1.1. Let F(t) = 2m/F'(t). Let
the samples collected from G (%) be stored in a 2m’ x m

matrix M’;(¢) such that E [Mfi(t)} = L Ag). WG(i)
for all i € {1,2,...,1+1}. Let M;(t) = mM/;(t) be the

scaled version.

A.1.4 Pseudocode

We present a detailed pseudo-code of our algorithm as
Algorithm 1. For the sake of completeness we include
the robust version of the Hottopix algorithm [18] which
is used as a sub-program in Algorithm 1. The following
LP is fundamental to the Hottopix algorithm,

min p’ diag(C) (3)
CERiX n

5.t HX . CXH < 2
00,1
and C;; <1, Cj; < Cy; Vi, j € [L]

where p is a vector with distinct positive values.

1, ifk=(—-1)m+jforje{l,---,m}
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Algorithm 1 NMF-Bandit - An e-greedy algorithm for Latent Contextual Bandits

1: At time ¢,
2: Observe context S; = s;
3: Let E(t) ~ Ber(e;)
4: if E(t) =1 then
2m’ :
5: Ezxplore: Let Hy ~ Ber <T+277,) s e SUHD
Ber (ni”;m,) , otherwise
6: If H; =1 sample an arm according to the matrix sampling technique applied to matrix G(0) and update
F(t).
7 If H; = 0 sample an arm according to the matrix sampling technique applied to matrix G(i) if s, € S(i)
fori € {1,2,---,1+ 1} and update l\A/Il(t) If s¢ is not in any of these sets then choose an arm at random.
8: else
9: Ezxploit:
10: Let us compute,

W (t) = Hottopix(F(t), m, 2m/~(t)).
A()=  argmin HF(t)—ZW(t)H

Z>0,rowsum(Z)=1 00,1

11: Let W(t) € R™*K be such that,

W(t) (i—1)m:im—1 — argmin HA(Z‘:)S(l),X - Mz(t)’

5
Xmxm

. Vie{l,2,.,1}

VAV(t):JWK = argmin

X'm,><7‘+1

A(t)s@), X — Mz+1(t)H2

12: Compute U(t) = A(t)W(t). Play the arm a; such that,

a; = argmax U(t)s, o
a

13: end if

Algorithm 2 Hottopix(X, m, €)

1: Input : X such that X = AW + N |, where A € [0, 1]5%™ and ||A; .||, = 1 for all i € [L], W € fozm, and
INll.,<e

oco,l —
Output : W such that W ~ W.

Compute an optimal solution C* to (3).

Let K denote the set of indices ¢ for which C}; > %

Set W = X}C,;-
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A.2 Theoretical Insights

Below, we discuss some of the key challenges in the
theoretical analysis.

Noise Guarantees for samples used in NMF: Ma-
trix completion algorithms that work under the incoher-
ence assumptions require the noise in each element of
the matrix to be O(1/K) in order to provide l,,-norm
guarantees on the recovered matrix [20]. In order to
ensure such noise guarantees, we require a very large
number of samples in order for estimates to concen-
trate. This in turn increases bandit exploration which
implies that regret scales as O(LK log(T)). To avoid
this, we follow a different route. In Step 1 of the ezplore
phase, the NMF-Bandit algorithm only samples from
a small subset of arms denoted by S. By leveraging
the ¢1-WStRIP property of W, we can ensure that
NMF on these samples (which are basically a noisy
version of U, ¢ ) gives us a good estimate of A at time
t; this estimate is denoted by A (t). We prove this state-
ment formally in Lemma 6. Given that we sample only
from a small subset of arms in the first step of explore,
in Lemma 11 we show that the samples concentrate
sharply enough.

Ensuring enough linear equations to recover
W: Recall that the reward matrix has the structure
U = AW. Therefore, an initial approach would be to
use the current estimate of A along with samples of
the rewards, and directly recover W. This however
will not work due to lack of concentrations. First, the
estimate of A in the early stages will be too noisy
to provide sharp estimates about the location of the
extreme points aka the latent contexts. Even if we
knew the identities of the observed contexts that cor-
respond to “pure” latent contexts (extreme points of
the affine space corresponding to the observed con-
texts), most observed contexts will not correspond to
these extreme points — thus, a large number of samples
will be wasted, again leading to poor concentrations.
Second, if one decides to sample the entries in U at
random, the concentration of the entries would be too
weak. As before, these weak concentrations will imply
O(LK log(T)) regret.

Instead, we design the context dependent sets of arms
to pull in Step 2 of the explore phase, such that we
get enough independent linear equations to recover
W. The key is to have a small number of arms to
sample per observed contexts, but the small number
of arms differ across observed contexts. In this case,
we show that by leveraging the fo-WStRIP property
of A we can get a good estimate of W, denoted by
W(t) even in the presence of sampling noise. Since we
sample from a small subset of arms for each observed
context, in Lemma 12 we can ensure that we have sharp

concentrations.

Scheduling the optimal arm during ezploit: The
loo-norm bounds on the errors in A(t) and W (t), im-

ply that Hﬂ(t) - UH < A/2 with probability at

least 1 — O(L;”’/) provided ¢; is sufficiently big (see
proof of Theorem 8). Here A = min,er(u*(s) —
maxjp+(s) Us,k). This essentially implies that the cor-
rect arm is pulled at time ¢ w.h.p if the algorithm

decides to exploit.

A.3 Description of Generative Models for
matrices W and A

The model for W and A are both very similar with
deterministic and random parts. The technical descrip-
tion of the model given below is complex due to the
following two reasons:

1. Fact 1: Rows of A must sum to 1.

2. Fact 2: The rows of W shifted by an arbitrary
vector m € R™X does not affect the NMF algo-
rithms employed. The setting is invariant to such
a shift.

1. Random+Deterministic Composition:

(a) We assume that columns W, p corresponding
to the column index set D C [K], |D| <
K/(32m) is arbitrary and deterministic. 0 <
W;; <1, 5 € D. The maximum entry in
every row of W is assumed to be contained
in the deterministic part.

(b) Similarly, Ag. where E C [L] is arbitrary
and deterministic. Let |E| < pL. p = 1/18.
Row sum of every row of Ag . is 1. In order
to ensure separability [33] we assume that
there is a subset M C E : |M| = m such that
Ap,.=Ipxm Foralliec E—M,0< A4 <
v <1

2. Bounded randomness in the random part:
W:,Dc =1x mT + R:’Dc + W:’Dc (4)

(a) (i,)-th entry of W. pe is an independent
mean zero sub-gaussian entry with variance
q, and bounded support and sub-gaussian pa-
rameter c¢(q). m € RIPIX! is an arbitrary

deterministic vector ! .
(b) R. pe is a deterministic perturbation matrix
satisfying ||R. ;|2 < £, Vj € D°. The sup-

port parameters for W:’Dc7 m and R. p- are
chosen such that 0 < W, ; <1 as., Vj€ D¢

!This is introduced to respect Fact 2 in Section A.3
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A ge . is a matrix which is a row-normalized version
of another random matrix A. We first describe
the random model on the | E°| x m matrix A. Like
in the case for model of W,

A=N+A (5)

(a) A is a matrix with independent mean zero
sub-gaussian entries each with variance ¢, and
bounded support and sub-gaussian parameter
c(q)-

(b) We denote the matrix of means by N consist-
ing of the parameters n;;. The ¢, norm of
every row of N is at most % The support,
sub-gaussian parameter and the matrix of
means N are chosen such that 1/m < /Lj <
«v < 1 a.s. The stricter condition (in the lower
bound) ensures that after normalization by
the row sum, A4;; <y <1, i € £

A.4 Projection onto a Low Dimensional
Space

In this section, we will prove some properties of the ma-
trix F = UG(0) = AWG(0) where G(0) is a K x 2m/
as defined in Section A.1.1. From the definition in Sec-
tion 2.1, A contains a I, x,, sub-matrix corresponding
to the rows in Z. Further, the row sum of every row of
A is 1. This means that the rows of U consists of points
in the convex hull of extreme points, i.e. the rows of
W, together with the extreme points themselves.

The extreme points in W are mapped to extreme points
in WG(0). We also show that the new set of extreme
points WG(0) also satisfy what is called the simplical
property when W satisfies the assumptions in Section
A.3.

When the entries in W are random and independent
bounded random variables as in Section 2.4, we show
that ¢; distance of any non-zero vector a such that
a1l = 0 is preserved under the map a’ WG (0)with
high probability over W for any fixed G(0). We need
some results relating to sub-gaussianity of the matrix
‘W which we deal with in the next subsection.

A.5 Sub-gaussianity of a matrix with
bounded i.i.d random entries

Definition 7. [16]/ A random wvariable X is sub-
gaussian with parameter ¢ > 0 if Elexp(tX)] <
exp(—c*t?), Vt € R.

Definition 8. [16]/ A random wvector Y € R™ is
isotropic if E[(YTx)?] = E[xTx|, vx € R*. [t is
sub-gaussian with parameter c if the scalar random
variable YTx is sub-gaussian with parameter c for
all x € R : |x|l2 = 1, ie. Elexp(t(YTx))] <
exp(—ct?),Vt € R, Vx|l = 1.

Lemma 1. [16],/35] Consider a random variable X
such that E[X] = 0, E[X?] = 1, |X| < b as for
some constant b > 0. Then, X is sub-gaussian with
parameter % Consider a random wvector Y € R"
where each entry is drawn i.i.d from a mean zero, unit
variance and a sub-gaussian distribution with parameter
c. Then'Y is a sub-gaussian isotropic vector with the

same sub-gaussian parameter c

Remark: The first part is from Theorem 9.9 in [35]
while the second part is from Lemma 9.7 from [16].

Lemma 2. [16] Let P and Q be two matrices of the
same dimensions. Let oy and omax be the largest and
smallest singular values of a matriz respectively. Then,

|Jmin (P) - Umin(Q)| S Omax (P - Q) (6)
Let P € RP*? where p > q. Then,
Omax(PTP —1,,) <6 = omm(P) > /(1 =0) (7)

Lemma 3. [16] Consider an mx s matriz P with every
row being a random independent sub-gaussian isotropic
vector with sub-gaussian parameter c. Let m > s, then:

1 ~

PI‘ <Unlax (PTP - sts) 2 5) S 2exp(f§52m + E
m 4 2

(®)

Further,

Pr (US(P) < MM) (9)

1
<Pr (Umax <PTP - Is><s> > 6)
m

T (10)

35
< Zexp(fgézm + 2

Here, ¢ is a constant that depends only on the sub-
gaussian parameter c.

Remark: The first result follows from equation (9.15)
in [16] and also from combining Lemma 9.8 and Lemma
9.9 in [16]. The second follows from applying Lemma 2

Definition 9 ([33]). Let us consider a matriz M which
is p x ¢ where p < q. Let m; € R'¥P be the i-th
row of the matriz M. The matrix M is a-simplical if

min min |lm; — x||s > «. In other
i€{l---p} x€conv({m;---my}\my)
words, every row is at least o far away in €1 distance
from the convex hull of other points.

A.6 Results regarding sub-matrices of W

The following results hold for WG(0)) since WG(0) =
W. s when S = {a ... an } is the set of column indices
associated with G(0) as in Section A.1.
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Theorem 5. Let W follow the random generative
model in Section 2.4. Let S C D°¢. Let |S| =m' >

2mlog(eK),

11
%n(w:,s) > (20> vm/ (11)
with probability at least 1 — ﬁ over the random-
ness in W. Here, ¢ is a constant that depends on the
sub-gaussian parameter c¢(q) of the distributions in the
generative model in Section 2.4.

Proof. According to the random generative model for
W in Section 2.4, Wg = W;,S + 1m§ + Rg. Here,
V"V:’S has sub-gaussian entries with parameter ¢(q),
since by Lemma 1, all bounded random variables on
support [—1,1] with zero mean are sub-gaussian and
their sub-gaussian parameter depends on the variance.
Let mg refer to the vector restricted to co-ordinate
in S. Applying Lemma 3 to the sub-gaussian matrix

(m' x m) W.g with m" > S2mlog(eK) and setting
d = 7/16, we have:

Pr(anmvvfg>s v%w) < 2exp(—Lmlog(K))

= W

< 2K77m/2.
Now, applying Lemma 2, we have:

|0'm(R:,S + W:,S) - O'm(W:,SN S Uma;L'(R:,S)
< [R:sllr

< é\/m’

Combining the above two equations, we have:

Pr <Um(w:,5 +R.s5) < <i - ;) \/n7>

< 2exp(—gmlog(K)) < 2K/,

For any fixed set of size S = m’, We have the following
chain:

[a" W 52

atoico Tals (12)
—wf la”(ImE + W5 + R, 5)]2
a#0:aT1=0 la]l2
_ o T(Wes +Ro)l2
(aT1=0) a#0::aT1=0 EXP
> om(R.s + W. ) (13)
O

Theorem 6. Consider a matrizc W with the generative

model in Section 2.4. Let m' > 332mlog(eK). For any

fized set S of size 2m’ such that S; = S\ D, |S1] <

% we have:
r /
YL (W) = 2" W.slh (13 Vi5m!
7 evanizo aly 60/ Vsm

(14)
with probability at least 1 — 2K~"™/2 over the ran-
domness in W. Further, rows of W. g is ¥} (W. g)-
simplical

PTOOf. Let SQ == SmDC Here, |SQ‘ Z 27’)’1/(1 - 1617n) Z

%m/ > 52 log(eK). The first result follows from the
following chain:

la" (W.s)lli = [la” [W. 5, W_5,]||2 (15)
Z) [2" W s, |2 = 2" W s, 12
a

2m’
> (W) — .
2l (W) — lallo/m g

(16)

> Jal Y2 (32— )

© Vam \4 5 V15

ST ERE N T

=\1 15) Vam KTm/2
a7

Justifications of the above chain are: (a)- Triangle in-
equality for the norm ||-||2. (b)- Definition of ., (-) and
12" W[l < [la"]l2[Ws, |lr < m|Sillla”]l2. (c)-
[I-ll2 > % and applying Theorem 5 because Sy C D¢

and |Sz| > 22mlog(eK).

For the second part, let us denote rfi € RY™™ to be

a vector satisfying > 7. " = —1, r," < 0 Vk # ¢ and
ki

r; " =1. It is easy to easy that:

e~ > 1. (18)

From the definition for an a-simplical matrix (Def-
inition 9), it is enough to show that for any r—¢,
lr=*Wg|l1 > L (W.s). We prove this as follows:

r""W.sllh > ¥ (W.s) (19)

- m
(e~ =21)

O

A.6.1 Choosing a good S for G(0)

Lemma 4. Let D be the set as defined in Section 2./.
Let a random 2m’-subset S be chosen out of [K| where

m' = 2Zmlog(eK). Then, Pr (|SﬂD|§%) <

21¢
exp(—cy log(eK)) for constant ¢; > 0 that depends on
C.
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Proof. Let X1, ... X5, be set of indicator functions
such that X; = 1 if the i-th element in the random
subset S chosen uniformly without replacement be-
longs to D and it is 0 otherwise. Let Y7,Y5...Y5,,s be
the set of indicator functions such that ¥; = 1 (and
0 otherwise) if the i-th element in the random multi-
set S belongs to D where the multiset elements are
chosen independently and uniformly with replacement
It is clear that E[X,] = E[Y;] = 2l = 1 > oy The
moment generating function of the sum of X;’s is dom-
inated by the moment generating function of the sum
of Y;’s. Therefore, all concentration inequalities, based
on moment generating functions, for variables drawn
with replacement holds for variables drawn without re-
placement [23]. In particular, the following inequality
derived from moment generating functions holds [24]
for any § > O:

Pr (Z Xi>(1+ 5)2m’u>
< Pr (Z X >0+ 5)2m/p)

<exp (62m/p) (1 + 6)_(1+5)2m/“ :

Let us take § = 1. Therefore, Pr (|SﬂD| > 2m’ ) <

= 16m ) —
4\~ 31z log(eK) _ 1
(E) = 32 Jog(4/e)
(eK)?21ic 8 ¢

Proof of Theorem 2. From Theorem 6 and Lemma 4

we have,
es (s < () e )|

< exp(—c; log(eK)) 4+ 2K~ /2
< 2exp(—cq log(eK)

Ew

Now by Markov’s inequality this implies that,

ru | (o (vhows < () 222

> 2exp(~ 5 log(ek))]

exp(—cy log(eK)
= oxp(—F log(eK)

< exp(—%1 log(eK))

This implies the following chain:

<]P’s <¢#(W:,s) > (éﬁ) g)
<1- 2exp(—%1 log(eK)))}

< exp(— 5 log(ekK)

B AR
>1- 2exp(—c—21 log(eK)))}

>1- exp(—%1 log(eK))

Pw

This proves that with probability at least 1 —
exp(—5-log(eK)) the £,-WStRIP condition is satisfied
with the said parameters. O

A.7 Results regarding sub-matrices of A

We assume that A satisfies the random generative
model in 2.4. We prove some results regarding the
minimum singular values of sub-matrices corresponding
to columns in set S (|S| = 2m’) which is a mix of
random and the deterministic columns. The proofs
follow closely those of W in the previous section.

Theorem 7. Let A follow the random generative

model in Section 2.4. Let m' > 32mlog(eL). Fiz any

set S of size 2m/ such that S; = S E, |S1] < sz"

Let So = S\ S1. Then, we have:
vm!' [ 1 2
om (As,;:) > = <20) wop 1= (20)

Proof. Let Sy be the set of rows in the random matrix
A that corresponds to the rows Ss in A. Here, A S

has sub-gaussian entries with sub-gaussian parameter
¢(q), since by Lemma 1, all bounded random variables
on support [—1, 1] with zero mean are sub-gaussian and
their sub-gaussian parameter depends on the variance.

Therefore, applying Lemma 3 to the sub-gaussian ma-
trix (|Sy| x m) A~ . with |Sy| > m/ > 22mlog(eL)
and setting § = 7/16 we have:

- log(L
Pr (0 (Rs, ) < 3V ) < vexp (- THEE))
< 2L77m/2'
Now, consider the following matrix:

[% (Ngw + ASQ,:) Asg, ] First, note that ac-
cording to the model in Section 2.4, rows of Ag, . sum

to 1. Therefore, we have the following chain for any
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non zero vector a € R1xm:
N 1 4
IINg, . + Ag, AsJall2 2 [Ng, . + —Ag, all2

(21)
— [|As, all2

> ||(Ng,, +Ag, ) all: = [ lIAsl3lal3
1€S1

|(Ng,.. +Ag, ) al = [ IAl

1€S1

> |[(Ng,, +Ag, ) all: = v/2om'Jal
> |As, all: — [N, all; — v/2pm| a3

. 1.1 1
> om <A§27: — \/2777,’(1 — 5)5 — \/29m’> ||a\|2

Y

tllall3

1 25 1
S Al om/(1 — =) w.p. 1 — 2L~ T™/2,
45 [ 1 9
9
3 1 1
> <4 T 2) Vm/ w.p. 1—2L7T/2, (22)

Now, we normalize the every row of [Ng, . +A§2,:Asl ]
to get [Ag, .Ag, ] = AgP where P is a permutation
matrix. Now, every entry gets scaled by at least 1/m
since rows sum is at most m. Therefore, the minimum
singular value scales by at least 1/m. Therefore,

\/:?(3 1 1)

Om (AS) =0m (ASP) >

A.7.1 Choosing a good S(i) for a G(i)

Lemma 5. Let E be the set as defined in Section 2.4.

Let a random 2m/-subset S be chosen out of [L] where

m' = 52mlog(eL). Then, Pr (\SﬂE| < %n’) <

exp(—camlog(eL)) for constant co > 0 that depends
on c.

Proof. The proof is identical to the proof of Lemma 4.

We just choose = %8 and 6 = 1. Therefore we have:

2m’ 1
P S |E|> < 23
r <| ﬂ | = 9 ) = (eL) 5121108%(64/9)m ( )

Proof of Theorem 3. From Theorem 7 and Lemma 5

’ B

Now by Markov’s inequality this implies that,

o[ 2 )

> exp(czlzmlog(eL))ﬂ

exp(—chmlog(el))

2|3

Ea lps (O’m(Asy;) <

< 3exp(—cymlog(el))

<3

exp(—%?mlog(eL))
/

<3 exp(—%zm log(eL))

This implies the following chain:

[frfon20)

<1- exp(—;’zmlog(@m)ﬂ

/

<3 exp(—%m log(eL))

o rom 2 3)

>1-— exp(—(;émlog(efl))ﬂ

iPA

/
>1- SGXp(—C—;mlog(eL))

This proves that with probability at least 1 —

exp(—%mlog(eL)) the fo-WStRIP condition is sat-
isfied with the said parameters. O

A.8 Noisy NMF in Low dimensions

In this section we enhance the guarantees of the robust
Hottopix algorithm from [18] provided W satisfies
£1-WStRIP and the subset S chosen by Algorithm 1 is
good as in Section 4.

Lemma 6. Suppose W satisfies £1-WStRIP with pa-
rameter (0, p1,2m’) and the subset S of its columns
(S| = 2m') satisfies ¥} (Ws.) > p1. Consider
a matric X = AW. g + N such that |[N|__, < ¢
and A is separable [33]. Under these assumptions
Hottopix(X,m, €) returns W such that,

<e (24)
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if € < %57)‘). Suppose A =
argmingso ;owsum(z)=1 HX — ZWH Then we
have,
~ 4
poalsis
1 pP1 — €

Proof. Let W =W, g and X = AW, g. The bound
in (6) is immediate from Theorem 2 in [18] as W' is
p1-robust simplical by Theorem 6. We first note that,

foaw] < fxox] s awi,
0,1

n HAW’ _ AWH

Wl

o [ W= W]

<Ja(w

< ||A] +e< 2
oco,1

The first inequality follows from the triangle inequality
while the last one holds because ||A| ; = 1. Thus,

the LP to recover A will always output A with,
[x-aw|_ = [aw -Aw| <a @9

We can apply triangle inequality to get,

[(a-a)w_ <aw-
0,1 00,1
+[[& (w-w))
00,1
<se+[a]_, [w—w]
00,1 00,1

< 3¢+ (1 +[A- AHOO,1> ¢
(27)

In order to get the desired result we need to lower bound
the L.H.S in (27). Note that rowsum (A - A) =
Therefore we have,

(a-4)w

Ja-al oo

by definition. Combining (28) and (27) we get the
required bound. O

A.9 Noisy Recovery of Extreme Points

In this section we assume that A satisfies the /5-

WStRIP property with parameter (§/L, pa, m’).

Lemma 7. If A satisfies the l5-WStRIP property with

parameter (§/L, pa,2m') then the sets {S(1),---,S(l+
1)} with |S(2)| = 2m’ satisfy,

om(As(),:) > p2, for all i€ [l 4 1]

with probability atleast 1 — § over the randomness in
choosing the subsets.

Proof. The proof of this lemma is just an union bound
over all the events {am(As(i)ﬁ) < pg}. Note that by
virtue of £5-WStRIP each of these events is true with
probability atmost 6/ L. O

If the conditions of the above lemma are satisfied we will
call the corresponding sets good. Recall the definition
of M;(t). We will show that if A(t) is close to A and
the matrices Mi(t) are sufficiently close to their means,
then we recover W upto the same accuracy. Let us

define Mz =E |:1\A/Il (t):| .

Lemma 8. Suppose A satisfies the {o-WStRIP prop-
erty and {S(1),S(2),---S(I+1)} are good in the sense
of Lemma 7. Given that HA(t) —AH < € and

0,1

HM - M; < e for alli € [l + 1], W(t) recov-
ered by Algomthm 1 satisfies,

W(t) _ WH < m(261 + 362)

P2

(29)

; P2
if €1,62 < £2.

P7’00f. Let VAv(t):,(ifl)m:imfl and W:,(ifl)m:imfl be
denoted by W; (t) and W, respectively. Similarly we
denote A(t)g(),. and Agg. by A;(t) and A; respec-
tively. Then following identities hold,
A;W; =M,
Ai(Wi(t) = My (t) (30)
Note that A; has full-column rank. Let the left-inverse

of A, be A7. It is easy to see that,
m

A7 le1 < —- (31)
P2

From (30) we have,

(I + A*(Ai(t) — A)) Wilt) = Wi + A (ML (1) — M)

Wi(t)

(I FAIA() - A)) (Wit ATNL() - M)
Wi(t)
(I — AL (A1) — AT+ A (A1) — A9))) (Wi
+ AI(NL(H) - M)
We can simplify further to yield,
Wi(t) — Wi = A7 (M;(t) — M)

R R 2
- (Af(Ai(t) —A)W,; + (Af(Ai(t) - Ai)) Wz)
A7 (Ai(t) — A AT (MG () — M)

(2

+

\
/N 7N

AL(Ai(D) - A9) ATV - M)
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Therefore by triangle inequality we have,

Hwi(t) -W;

I L HORS VS

| (rhar (i)

+[|(Ar(Ait) - A) ATV (1) - M)

K2

= (Ar(A0 - A0) AT - M)

Hoo,l

Now we will bound each of the terms seperately as
follows,

AL - Mo)|| < AT ||V~ M|
_me
P2
Similarly we have,
. R 2
(At - agw. + (aai0 - 20) W)
oo,1
S A loo,r A+ ATl 1 €)1 [[Will g oo
< 2meq
P2
Finally the third term can be bounded as,
| (Ar(Ast) - A A; (NI () — M)
* /A 2 * (N
+(A1(A0 - 49)" Ar0L0 - My )|
oo,1
2m€2

2 3
< (1A le) ez + (A7) oo <

Therefore we have,

< m(261 + 362)

sz(t) -W; <
oo,1 P2

We can repeat the same analysis for all ¢ € [l + 1] to
arrive at the required result. O

A.10 Putting it together: Online Analysis

In this section we prove Theorem 8, which provides
a parameter dependent upper bound on the regret
of Algorithm 1 if W and A satisfy the ¢;-WStRIP
and fo-WStRIP. The regret bound provided here
is in the parameter dependent regime, that is we
assume a constant gap between the best arm and
the rest for each context. More precisely let A =
minge(z) (u*(s) — MAXp, Lo (s) USk) be a fixed constant
not scaling with L, K or ¢. This falls under the purview
of the random generative model because we allow for
O(K/m) deterministic rewards for each of the latent

context. These conditions are expected to hold in real
world data as each latent contexts are expected to have
some unique arms which are significantly different from
the others. In the said regime we reduce the regret
bound of O (LK log(t)) for general contextual bandit

00,1 t0 only an O (Lpoly(m,log(K))log(T)) dependence.

Theorem 8. In a contertual bandit setting suppose
the reward matriz has the form U = AW and each
contexts s arrives independently with probability Bs for
all s € [L]. Assume that L = Q(Klog(K)). If the
problem parameters satisfy the following assumptions,

e 3= min, B = Q(1/L).

e W c R"*K gqtisfies £1-WStRIP with parameters
(6, p1,2m")

e A € [0,1]L%™ satisfies lo-WStRIP with parame-
ters (6/L, p2,2m’) and is separable [33].

then with probability atleast 1 — &, Algorithm 1 with

€; = min (1, G(Zmﬁi':rrn)) and ~(t) = max (%, %) has

regret,

O(m + 2m’)log(T)
g

oly(m,m’
=0 (pr(N) logT)

5 2
-0 <LmlOgK10gT>

R(T) <

A2

2
2m’ ((16+A)p2+32m) 15
where 0 > 4max ( Apips , pl(l—A)) .
Before we proceed to the proof of our theorem, we need
to introduce a few useful lemmas. The next lemma
connects the chance of making an error in the exploit
phase with the estimation errors in the system.

Lemma 9. Suppose at time t, |F(t) — FH <e€(t)
00,00

and HMAt) — MZH < €(t) for alli € [l +1]. If the

following condition?hold,

: Ap1pa p1(1—2X)
€1(t) < min <2m’((16 +A)ps +32m)° 15 >
Aps
Gg(t) S %
E(t) =0 (32)

then k(t) = k*(s¢), that is the optimal arm for the
context is scheduled in the exploit phase.

Proof. 1f €1(t) < %57’\), then by Lemma 6 we have,

A(t) - AHOO < B’ (1) (33)

~ p1—2mle(t)

+4(L+ K + 1)m'log(T) + o(1)
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Since we have,

mp1
< —
61()—2m/(4p2+m)
P2
t) < —
et) <

it is easy to verify that the conditions of Lemma 8 are
satisfied. Therefore we have,

m( 16m/ €1 (t)
p2 \ p1 —2m/e1 (1)

W@‘W@me + 3ea(t)

(34)
Therefore we have,

Hfj(t) . UHOO,OO - HAW - A(t)VAV(t)HOO’OO

< 1Al [W = W)

+la-aw]_, ol

m 16m’eq (t 8m'eq (¢
< — (1() + 362(t>> + 71()
P2 P1 — 2m 61(t) P1 — 2m El(t)

< _Smal) (1 + 2m> L gmeeld)

T opr—2mle(t) p2 p2

Now, under the conditions of the lemma in (32), we
have

8m’e1(t) ( Qm) A
— " 1+ )<=
P1— 2m/61(t) P2 4
3m62(t) < A
P2 4
This further implies that,
. A
[ow-vl <3

This guarantees that we select the optimal arm at
time-step t. O

The following lemma we prove that each entry of the
matrices F(t) and M;(¢) for all i € [l + 1] are sampled
sufficient number of times. Let T;;(¢) denote the the
number of samples obtained for the entry F(t)y;. Simi-
larly we define NV (t); as the number of sampled for
the enrty M;(t)s;.

(m+2m’)0

Lemma 10. Suppose ¢, = Bt

ming Bs. Algorithm 1 ensures that,

where =

0 1
P (Tsj(t) < 2Ht> < W
P NO(t)y < Om) <1
)si 9t ) = 30/12

and where H, =S . 1 ~ log(n)

i=17

Proof. Let S; denote the random variable describing
the context at time ¢t. Let C; denote the random
variable denoting the the column of G(0) to be sampled
provide E(t) = 1 and H; = 1. Note that,

M~

E[Ts;#®)] > ) P(Si=sE(1)=1H =1,C=j)

~

1

M-
~|

> =0H,

~

1

Now, a straight forward application of Chernoft-
Hoeffding’s inequality yields,

2
P(T(0) < (1= DB (L)) < oxp (-G EIT,0)])

52
< exp <39Ht)

We can set § = 1/2 to get the required result. The same
analysis works for N@(t),;. The corresponding entry
is sampled if S; = s5(7). Let C] denote the column
of G(i) to be sampled when E(t) = 1,5; = s5(¢) and
Ht =0.

M-~

e [0, >

1

(-
—~l

> — 9H,

I
-

O

The same concentration inequality as before applies.

Lemma 11. Under the conditions of Lemma 10 we
have,

P (HF@) - FHOO,OO > el(t)>

e1(t)? 0log(t) ) 2Lm/

$0/12

< ALm’ —
< mexp( 5 5

Proof. The proof of this lemma is an application of
Chernofl’s bound to the samples observed. Note that

E [F(t)} — F. We have,
B(IB(t)ss — Fyl > a1(1))

<P (F(t)sj —Fgy| > e(t)

T5(0) > 311

0
_e1(®)? glog(t) 1
2 2 [
- $0/12

where the last inequality if due to lemma 10. Now, we
can apply an union bound over all s € [L] and j € [m]
to obtain the required result. O

P(E(t) = 1,5 = ss(i), H; = 0,C] = j)
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Similarly we can bound the errors in estimating IM;’s
as in the lemma below.

Lemma 12. Under the conditions of Lemma 10 we

have,
P (Uie[l-'rl] {Hl\A/L;(t) - M; oo 62(’5)})
€ (t)? Hlog(t)) 2(K +1)m’

< ! —
< A(K +1)m’exp ( 5 5 e

Proof. The proof of this lemma is analogous to that of
Lemma 11. We have the following chain,

P (|Mi(t)sj ~ M| > el(t))

<P (|Mz-<t>sj Ml > al)

7,50 > )

+P (Tsj(t) < gHt>

e ()2 9log(t) 1
2 2

S 2e” W

We can apply union bound over all the entries of all
the [ + 1 matrices to get the result. O

Now, we are at a position to prove our main theorem.

Proof of Theorem 8. We have ¢, = erﬁzitm’)e where we
set,

0 > 4max

(2m’((16+A)p2 +32m) 15 )2
Ap1p2 Tp1(1 =)
(35)

By virtue of the ¢;-WStRIP property of W, the set S
is p1-simplical with probability at least 1 —§. Similarly,
by Lemma 7 all the sets S(i) are good with probability
at least 1 — §. In what follows, we will assume that
the above high probability conditions hold. Note that
according to Lemmas 11 and 12 we have,

P (HF@) - FHOO,OO > j@)

_ALm! (1
=7 T%e

P (Uie[l+1] {HMi(t) M| ” \35}>
<A (1) )

= t 2
As U € [0, 1]E%K the regret till time 7' can be bounded
as follows,

R(T) < S E[L{E(®) = 1}]

T

+Y E[L{E®) = 0}P(k(t) # Kk (s:))  (37)

t=1

By Lemma 9 we have that,

P (k(t) # k*(s1)) <P <HF(“ - FHm,oo ~ 5§>

e V5))

We can combine this with (37) to get,

+ P <Ui€[l+l] {HMZ(t) —M;

R(r) < 2 272/) 8(T) | 4(L+ K + 1)m' log(T) + o(1)
= O (Lpoly(m,m’) log(T))
if we assume that 1/ = O(L). O

A.11 Lower Bound for a-consistent Policies

In this section we provide a problem dependent lower
bound for the contextual bandit problem with latent
contexts. The lower bound is established for a particu-
lar class of data-matrix U and for a-consistent policies.
For, any z; € Z we define C(z;) as,

C(z):={s€S:as,#0}

Theorem 9. Consider a problem instance (U, A, W)
such that Bs = 1/L for all s € S and |C(z;)| = L/m
(assume that m divides L) for all z; € Z. Further, we
assume that C(z;) N C(z;) = 0, for all z; # zj. Then
the regret of any a-consistent policy is lower-bounded
as follows,

R(T) > (K — )mD(U) (1 - )(log(T/2m) — log(L/m))

—log(4KC))

for any T > 7, where C, T are universal constants inde-
pendent of problem parameters and D(U) is a constant
that depends on the entries of U and is independent of
L,K and m.

In order to prove Theorem 9 we introduce an inequality
from the hypothesis testing literature.

Lemma 13 ([38]). Consider two probability measures
P and Q, both absolutely continuous with respect to a
given measure. Then for any event A we have:

PA) + QUA%) > J exp{— min(KL(P||Q), KL(Q||P)))

Proof of Theorem 9. Note that the conditions in the
theorem imply that there are m distinct latent contexts
and there are L/m — 1 copies for each of them. For
any z; € Z let us define T'(z;) = Zthl 1{S; €C(z)}.
With some abuse of notation we also define k*(z;) as
the index of the optimal arm and A(z;) as the gap
between the optimal and second optimal arm for all
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contexts in C(z;). By the assumptions in the theorem
we have,

T
E[T(z)] = -
Let E; be the event {% <T(z) < %} Let E¢ =
{U.,ezEf}. By asimple application of Chernoff bound
we have,
P (U Ef) < 2me” T/120<1)
zi €254 T2
Fix a z; € Z and let k be the index of an arm that is not
optimal for any of the contexts that belong to C(z;). Let
us create another system with parameter (U’, A, W)
where we make the entry Wy, = A = M where
Unnaxr = maxg , Ugk, while everything else remains the
same including the coefficients of the convex combi-
nations relating the observed contexts to the latent
contexts. Note that this implies that in the second
system arm k is optimal for all s € C(z;). Let A be the
event defined as follows,

=ty

{t:S:€C(z;)}

_ 1'(z:)
L{X; =k} > —

Now, in the system with parameter U for any s € C(z;)
we have,

E| Y 1{X;=k} <CI(s)*
{t:S1=s}

if T(s) > 7, since the policy in consideration is a-
consistent. Here, 7, C' are universal constants. By an
application of Jensen’s inequality we have,

El D,

{t:S:€C(2;:)}

1{X; =k}| <C|C(z)|" T ()"

Let ]P’ITJ and ]P’%}/ be the distributions corresponding
to the chosen arms and rewards obtained for T plays
for the two instances under a fixed a-consistent policy.
Now we can apply Markov’s inequality to conclude
that,

2C|C(z; l—a
Po(A) < T'(Z(i)fla
2(K — 1)C|C(2)|t
T(z)—

Py (A9 < (38)

Now from Lemma 13 we have,
KL (PG, PE)

> (1 — ) (log(T'(z:)) — log(L/m)) — log(4KC)

Using standard methods from the bandit literature it
can be shown that,

KL (PG.PG) = Y > KL(Ua, M) Eu [1{X; = k}]
s€C(z;) {t:S1=s}

Let us define the regret incurred during the time-steps
where Sy € C(z;) as R(T'(z;)). We can follow the same
procedure for all the sub-optimal arms which yields the
following bound,

RT(z)>A(z) > Y. > Eu[{X,=k}
k#k*(z;) s€C(z;) {t:S¢=s}
> (angin S =G ) (1= ) (7 ) = og(2/m)

—log(4K(C))

Let D(U) = (argmmzl & %) Now, we have

T)=> E[R(T(z

z€Z
K- DEY (1 - a) (log(T(x)) — log(L/m))
z€Z
—log(4KC))

Now, using the fact that T'(z;) > 5= given E, we have

=Y E[R(T())]

=Y E[R(T(2))|E|P(E) + E[R(T(2:))| E] P(E*)
z€Z
= D(U)(K = 1)m ((1 — o) (log(T'/2m) — log(L/m)) —
log(4KC)) + o(1)
O



