
’Compressed Least Squares Regression revisited’:

Appendix

A Preparations

We here recall some notation from the paper and introduce additional notation
as far its is required in the proof sections following below.

Let us recall that for X ∈ Rn×d with rank(X) = d ∧ n, the singular value
decomposition of X is given by

X = UΣV >

with U ∈ Rn×d∧n, U>U = I, Σ ∈ Rd∧n×d∧n, V ∈ Rd×d∧n, V >V = I.
For r ∈ {1, . . . , d ∧ n}, consider

U = [Ur Ur+], Σ =

[
Σr 0
0 Σr+

]
, V = [Vr Vr+],

where Ur and Vr ∈ Rd×r contain the top r left respectively right singular vectors,
and Σr contains the corresponding singular values. The remaining singular
vectors respectively singular values are contained in Ur+, Vr+ and Σr+.

We also define
Tr(X) = UrΣrV

>
r ,

the best rank-r approximation of X with respect to the Frobenius norm. We
write ∆r = X − Tr(X) for the ’residual’.

In general, Tr(M) wil be used to denote the best rank-r approximation of a
matrix M .

Further, PM denotes the orthogonal projection on the subspace spanned by
the columns of M , and we write M− for the Moore-Penrose pseudoinverse of a
matrix M . The i-th column of M is denoted by M:,i.

B Proof of Theorem 1

Condition (C1)
Let r ∈ [d ∧ n] and let Vr ⊂ Rd denote the column space of Vr. For some
δ ∈ (0, 1), it then holds that (1− δ)‖v‖22 ≤ ‖R>v‖22 ≤ (1 + δ)‖v‖22 for all v ∈ Vr.

Condition (C2)
For ε ∈ (0, 1), R> is an ε/

√
r-Johnson-Lindenstrauss transform w.r.t. a fixed

set of vectors S ⊂ Rd of cardinality 2n · r, i.e. it holds that (1 − ε/
√
r)‖v‖22 ≤

‖v‖22 ≤ (1 + ε/
√
r)‖v‖22 for all v ∈ S.
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Theorem 1. Let R> satisfy condition (C1) and (C2). We then have

‖(I − PXR
)X‖2F ≤

(
1 +

ε2

(1− δ)2

)
‖∆r‖2F .

Proof. The idea of the proof is taken from the proof of Theorem 14 in [6]. It
can be partitioned into three basic steps.

Step 1

We start by observing that

‖X − PXR
X‖2F ≤ ‖X − Tr(PXR

X)‖2F , (1)

which holds as PXR
X is the best approximation of X by the column space of

XR: we have
PXR

X = XRB
∗

where B∗ ∈ Rk×d is given by

min
B∈Rk×d

‖X −XRB‖2F . (2)

On the other hand, Tr(PXR
X) = XRB

∗Mr, where Mr ∈ Rd×r contains the
top r right singular values of XRB

∗. Since B∗Mr is a feasible solution for the
minimization problem (2), we conclude (1). The right hand side of (1) can in
turn be bounded as follows:

‖X − Tr(PXR
X)‖2F ≤ ‖X −ΠX‖2F , (3)

where Π is the orthogonal projection on the subspace spanned by the columns
of PXR

Tr(X), i.e.
Π = PPXR

Tr(X). (4)

To see that (3) holds, consider the following optimization problem:

min
rank(B)≤r

‖X −XRB‖2F .

Then any minimizer B∗ of the above problem satisfies XRB
∗ = Tr(PXR

X) (see
Propostion 1 and Lemma 14 in [2]). Noting that Π = XRM for some matrix
M ∈ Rk×d with with rank(M) ≤ r (as Tr(X) has rank no more than r), M is
feasible for the above optimization problem, and we conclude (3).

Step 2

In the second step, we decompose ‖X − ΠX‖2F into one parts: one ’easy part’
and one more delicate part that requires sophisticated analysis.
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‖X −ΠX‖2F = ‖UΣV > −ΠUΣV >‖2F
= ‖UΣ−ΠUΣ‖2F
= ‖UrΣr −ΠUrΣr‖2F + ‖Ur+Σr+ −ΠUr+Σr+‖2F
= ‖UrΣr −ΠUrΣr‖2F + ‖(I −Π)Ur+Σr+‖2F
≤ ‖UrΣr −ΠUrΣr‖2F + ‖Ur+Σr+‖2F
= ‖UrΣr −ΠUrΣr‖2F︸ ︷︷ ︸

part requiring special treatment

+ ‖X − Tr(X)‖2F︸ ︷︷ ︸
part that we need (up to constant)

(5)

where the inequality follows from the fact that I−Π is an orthogonal projection.

Step 3

It remains to bound

‖UrΣr −ΠUrΣr‖2F = ‖Tr(X)−ΠTr(X)‖2F .

Write C∗ = X−R and C̃ = (Tr(X)R)−. Note that for any matrix M of appropri-
ate dimension, we have

‖M−PXR
M‖2F = min

C∈Rk×n
‖M−XRC‖2F = ‖M−XRC

∗‖2F ≤ ‖M−XRC̃‖2F . (6)

Moreover, observe that according to the defintion of Π in (4)

ΠTr(X) = PPXR
Tr(X)Tr(X) = PXR

Tr(X). (7)

Using (6) and (7), we obtain that

‖Tr(X)−ΠTr(X)‖2F = ‖Tr(X)−XR(XR)−Tr(X)‖2F
≤ ‖Tr(X)−XR{Tr(X)R}−Tr(X)‖2F
= ‖Tr(X)> − Tr(X)>{R>Tr(X)}−R>X>‖2F (8)

Define

bi = (X>):,i ∈ Rd, i ∈ [n], (9)

A = Tr(X)> ∈ Rd×n, (10)

and consider the least squares problems

min
λi

‖bi −Aλi‖22

with minimizer λ∗i , i = 1, . . . , n, and the corresponding sketched regression prob-
lems with sketching matrix R>:

min
λi

‖R>bi −R>Aλi‖22.
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with minimizer λ̃i, i = 1, . . . , n.
It is straightforward to show that

Aλ∗i = (Tr(X)>):,i, i ∈ [n].

Observe that for the sketched regressions problems, an optimal set of coefficients
is given by

λ̃i = {R>Tr(X)}−R>(X>):,i, i ∈ [n],

so that
Aλ̃i = Tr(X)>{R>Tr(X)}−R>(X>):,i, i ∈ [n].

Identifying terms, we see that the right hand side in (8) can be written as

‖Tr(X)> − Tr(X)>{R>Tr(X)}−R>X>‖2F

=

n∑
i=1

‖(Tr(X)>),i − Tr(X)>{R>Tr(X)}−R>(X>):,i‖22

=

n∑
i=1

‖A(λ∗i − λ̃i)‖22

=

n∑
i=1

‖βi‖22, βi = A(λ∗i − λ̃i), i ∈ [n].

(11)

Consider the residuals

wi = bi −Aλ∗i = (X>):,i − (Tr(X)>):,i. (12)

By analyzing the structure of (general) sketched regression problems, it can be
shown that

V >r RR
>Vrβi = V >r RR

>wi. (13)

The analysis leading to property (13) will be given at the end of this proof. In
the sequel, we use this property in combination with conditions (C1) and (C2)
to deduce the final result. We will first derive a lower bound on the l.h.s. of
(13) with the help of (C1), and then we derive an upper bound on the r.h.s. by
means of (C2). Combining both, we obtain an upper bound on

∑n
i=1‖βi‖22 and

in turn on the quantity ‖Tr(X)−ΠTr(X)‖2F that we eventually need to bound.

Note that Vrβi ⊂ Vr, and ‖Vrβi‖22 = ‖βi‖22. By (C1), it holds that

‖R>Vrβi‖22 ≥ (1− δ)‖βi‖22, i = 1, . . . , n.

Or equivalently, λmin(Γ) ≥ 1 − δ, where Γ = V >r RR
>Vr, and λmin(·) denotes

the smallest eigenvalue. Now observe that

‖V >r RR>Vrβi‖22 = β>i Γ2βi

≥ λmin(Γ2)‖βi‖22
≥ (1− δ)2‖βi‖22

(14)
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Next, observe that V >:,jwi = 0, j = 1, . . . , r, i = 1, . . . , n as follows immediately
from the definition of the {wi}ni=1 in (12). We now use (C2) for the following
set of vectors:

S = {V:,j + w̃i, V:,j − w̃i, i = 1, . . . , n, j = 1, . . . , r},

where w̃i = wi/‖wi‖2, i = 1, . . . , n. Note that |S| = 2rn. In the next step, we
will establish that the inner products between V >:,jwi, are preserved up to an
additive term of ε′‖wi‖2, j = 1, . . . , r, i = 1, . . . , n, where ε′ = ε/

√
r according

to (C2).
Recall that for arbitrary x, y, it holds that 〈x, y〉 = 1

4

(
‖x+ y‖22 − ‖x− y‖22

)
.

In virtue of the fact that R> is a Johnson-Lindenstrauss transform for S, we
therefore have

4
〈
R>V:,j , R

>w̃i
〉

= ‖R>V:,j +R>w̃i‖22 − ‖R>V:,j −R>w̃i‖22
≥ (1− ε′)‖V:,j + w̃i‖22 − (1 + ε′)‖V:,j − w̃i‖22
= 4 〈V:,j , w̃i〉 − 2ε′

(
‖V:,j‖22 + ‖w̃i‖22

)
= 4 〈V:,j , w̃i〉 − 4ε′.

It follows that
〈
R>V:,j , R

>w̃i
〉
≥ 〈V:,j , w̃i〉−ε′ and in turn also

〈
R>V:,j , R

>wi
〉
≥

〈V:,j , wi〉 − ε′‖wi‖2 by homogeneity.
Regarding the upper bound, we argue analogously:

4
〈
R>V:,j , R

>w̃i
〉

= ‖R>V:,j +R>w̃i‖22 − ‖R>V:,j −R>w̃i‖22
≤ (1 + ε′)‖V:,j + w̃i‖22 − (1− ε′)‖V:,j − w̃i‖22
= 4 〈V:,j , w̃i〉+ 2ε′

(
‖V:,j‖22 + ‖w̃i‖22

)
= 4 〈V:,j , w̃i〉+ 4ε′.

and thus
〈
R>V:,j , R

>w̃i
〉
≤ 〈V:,j , w̃i〉+ε′ and in turn

〈
R>V:,j , R

>wi
〉
≤ 〈V:,j , wi〉+

ε′‖wi‖2.
We now use this result as follows (recall that 〈V:,j , wi〉 = 0, j ∈ [r], i ∈ [n]):

n∑
i=1

‖V >r RR>wi‖22 =

n∑
i=1

r∑
j=1

〈
R>V:,j , R

>wi
〉2

≤
n∑
i=1

r∑
j=1

(ε′)2‖wi‖22

= r(ε′)2
n∑
i=1

‖wi‖22

= ε2‖X − Tr(X)‖2F

(15)

where the last line is immediate from the definition of the {wi}ni=1 in (12).
Combining (5), (8), (11), (14), (15), the assertion of the theorem follows.

In order to finish the proof, it remains to establish (13) as is done below.
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For A ∈ Rd×n, b ∈ Rd, consider the least squares problem of the form

min
λ∈Rn

‖Aλ− b‖22

and the corresponding sketched regression problem with sketching matrix R>

min
λ
‖R>Aλ−R>b‖22,

Let λ∗ denote a minimizer of the original least squares problem and let λ̃ denote
the minimizer of the sketched least squares problem. Furthermore, we write U
for the matrix of left singular vectors of A.

We then have the following properties:

(P1) Aλ∗ = Uα,

(P2) b = Aλ∗ + w, with w orthogonal to U .

(P3) Aλ̃−Aλ∗ = Uβ,

for certain vectors α and β.
We now decompose the least squares error when using λ̃:

‖b−Aλ̃‖22 = ‖b−Aλ∗ +A(λ∗ − λ̃)‖22
= ‖b−Aλ∗‖22 + ‖A(λ∗ − λ̃)‖22
= ‖w‖22 + ‖Uβ‖22
= ‖w‖22 + ‖β‖22

Bringing the sketching matrix R> into play, we have

R>U(α+ β) = R>Aλ∗ +R>(Aλ̃−Aλ∗)

= R>Aλ̃

= PR>AR
>b

= PR>UR
>b.

Furthermore, we have

PR>UR
>b = PR>UR

>(Uα+ w)

= R>Uα+ PR>UR
>w.

Combining the previous displays, we obtain that

R>U(α+ β) = R>Uα+ PR>UR
>w

and thus
R>Uβ = PR>UR

>w.
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Multiplying both sides with U>R, this implies

U>RR>Uβ = U>RPR>UR>w
= U>RR>w.

(16)

Note that (16) has the form as claimed in (13) with Vr playing the role of U :
according to (9), this is as it should be since Vr contains the left singular vectors
of Tr(X)>. The proof is thus complete.

C Proof of Proposition 1

Proposition 1. Let R have entries drawn i.i.d. from a zero-mean sub-Gaussian
distribution and variance k−1. If k = Ω(ε−2r{log(r) + log(n)}+ δ−2 log(δ−1)r),
then R> satisfies conditions (C1), (C2) with probability at least 1−exp(−c log(δ−1)r)−
exp(−c′ log(n r)) for absolute constants c, c′ > 0.

Proof. Regarding (C1), it follows from the reasoning in [1] (cf. Lemma 5.1
therein) that for any fixed subspace X of dimension r in in Rd, r < k,

(1− δ)‖x‖22 ≤ ‖R>x‖22 ≤ (1 + δ)‖x‖22 for all x ∈ X ,

with probability at least

1− 2(12/δ)r exp(−c0δ2k) = 1− exp
(
−c0δ2k + r log(12/δ) + log(2)

)
,

for some absolute constant c0 > 0. Hence, for k = Ω(δ−2 log(δ−1)r), (C1) holds
with probability at least 1− exp(−c log(δ−1)r).

Turning to (C2), in [5] (see Theorem 3.1 and the proof therein) it is shown
that for any fixed v ∈ Rd and ε′ ∈ (0, 1)

P
(
(1− ε′)‖v‖22 ≤ ‖R>v‖22 ≤ (1 + ε′)‖v‖22

)
≤ 2 exp(−c0(ε′)2k).

It hence follows from the union bound that for any set S of vectors in Rd,
|S| = 2n · r,

P
(
∀v ∈ S : (1− ε′)‖v‖22 ≤ ‖R>v‖22 ≤ (1 + ε′)‖v‖22

)
≤ exp(−c0(ε′)2k+log(4nr)).

Setting ε′ = ε/
√
r for ε ∈ (0, 1), it follows that for k = Ω(ε−2r log(nr)), condi-

tion (C2) holds with probability at least 1 − exp(−c′ log(nr)). This concludes
the proof of the proposition.

D Proof of Proposition 2

Proposition 2. Consider a collection of L i.i.d. d-dimensional standard Gaus-
sian random vectors {ωl}Ll=1 independent of R and the estimator

δ̂2R =
1

L

L∑
l=1

‖Xωl − PXR
Xωl‖22.
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Then, for any c ∈ (0, 1) and any C > 1, as long as

L ≥ max

{
16

(1− c)2
,

144

(C − 1)2

}
it holds that P

(
cδ2R ≤ δ̂2R ≤ Cδ2R

)
≥ 0.96.

Proof. we first verify that ‖Xωl − PXR
Xωl‖22 is an unbiased estimator of δ2R,

l = 1, . . . , L. We have

E[‖Xωl − PXR
Xωl‖22] = E[‖(I − PXR

)Xωl‖22]

= E[tr(ω>l X
>(I − PXR

)Xωl)]

= tr(X>(I − PXR
)X E[ωlω

>
l ])

= tr(X>(I − PXR
)X)

= ‖X − PXR
X‖2F .

Concentration. We now establish concentration for the estimator δ̂2R by invoking
results in [3, 4]. Let ω ∈ Rd·L be the vector one obtains when stacking ω1, . . . , ωL
vertically. Let us also introduce Ψ = X>(I − PXR

)X and let Ψ = 1
LIL ⊗ Ψ,

where ⊗ denotes the Kronecker product. Then δ̂2R can be re-written in the
following way:

ω>Ψω = ω>
1

L



Ψ 0 . . . . . . 0
0 Ψ . . . . . . 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 Ψ

ω

=
1

L

L∑
l=1

ω>l Ψωl

=
1

L

L∑
l=1

ω>l X
>(I − PXR

)Xωl

=
1

L

L∑
l=1

‖(I − PXR
)Xωl‖22

= δ̂2R.

In other words, δ̂2R can be expressed as a quadratic form in a Gaussian random
vector of dimension dL and a positive definite matrix. We can thus use the
following tail inequalities [3, 4]

P(ω>Ψω > tr(Ψ) + 2
√
t tr(Ψ2) + 2‖Ψ‖2t) ≤ exp(−t), t > 0.

P(ω>Ψω < tr(Ψ)− 2
√
t tr(Ψ2)) ≤ exp(−t), t > 0.
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This can be re-written using the following relations:

tr(Ψ) = tr(Ψ) = E[δ̂2R] = δ2R,
√

tr(Ψ2) = ‖Ψ‖F =
‖Ψ‖F√
L
≤ tr(Ψ)√

L
,

‖Ψ‖2 ≤ ‖Ψ‖F ≤ tr(Ψ),

P

(
δ̂2R > δ2R

(
1 +

2(t+
√
t)√

L

))
≤ exp(−t),

P

(
δ̂2R < δ2R

(
1− 2

√
t√
L

))
≤ exp(−t),

Setting t = 4

P

((
1− 4√

L

)
δ2R ≤ δ̂2R ≤ δ2R

(
1 +

12√
L

))
≥ 1− 2 exp(−4) ≥ 0.96.

As a result, for any 0 < c < 1 and any C > 1, as long as

L ≥ max

{
16

(1− c)2
,

144

(C − 1)2

}
it holds that

P
(
cδ2R ≤ δ̂2R ≤ Cδ2R

)
≥ 1− 2 exp(−4) ≥ 0.96.
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