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Abstract

We revisit compressed least squares (CLS)
regression as originally analyzed in Maillard
and Munos (2009) and later on in Kaban
(2014) with some refinements. Given a set
of high-dimensional inputs, CLS applies a
random projection and then performs least
squares regression based on the projected in-
puts of lower dimension. This approach can
be beneficial with regard to both computa-
tion (yielding a smaller least squares prob-
lem) and statistical performance (reducing
the estimation error). We will argue be-
low that the outcome of previous analysis of
the procedure is not meaningful in typical
situations, yielding a bound on the predic-
tion error that is inferior to ordinary least
squares while requiring the dimension of the
projected data to be of the same order as the
original dimension. As a fix, we subsequently
present a modified analysis with meaningful
implications that much better reflects empir-
ical results with simulated and real data.

1 Introduction

We consider a common setup of regression given data
(yi, xi), with yi taking values in R and xi taking val-
ues in Rd, i ∈ [n], where for a positive integer m, we
write [m] := {1, . . . ,m}. The inputs xi are considered
as fixed, and yi = fi+ ξi, with fi = E[yi|xi] and ξi fol-
lowing a distribution with mean zero and variance σ2,
i ∈ [n]. Moreover, the {ξi}ni=1 are assumed to be un-
correlated. More concisely, we write y = f + ξ, where
y = (yi)

n
i=1, etc.

The most basic approach to regression modelling is
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that of linear regression, in which one approximates
y ≈ Xw for a suitable vector of coefficients w ∈ Rd,
and X is the real n-by-d matrix having the {xi}ni=1

as its rows. The optimal linear predictor Xw∗ of y
given X with respect to squared loss is defined by the
optimization problem

min
w∈Rd

E
[
‖y −Xw‖22/n

]
,

where the expectation is with respect to the noise ξ.
Note that any minimizer w∗ of the above problem sat-
isfies Xw∗ = PXf , where for a matrix A whose column
space is a subspace of Rn, we write PA for the projec-
tion operator onto that subspace; if there are multiple
such w∗ we choose the one with the smallest `2-norm.
Accordingly, we define the excess risk of an estimator
θ̂ = θ̂(X, y) of w∗ by

E(θ̂) = E[‖Xw∗ −Xθ̂‖22/n],

where the expectation is now taken with respect to
θ̂. If the linear model holds exactly (i.e., PXf = f),

E(θ̂) equals the in-sample mean squared prediction er-

ror that measures how well the {x>i θ̂}ni=1 predict the
’denoised’ observations {x>i w∗}ni=1 on average.

An ordinary least squares (OLS) estimator ŵ satisfies
Xŵ = PXy. It is not hard to show that

E(ŵ) = σ2rank(X)/n. (1)

In this paper, we are interested in a high-dimensional
setup in which rank(X) is of the same order of mag-
nitude as n. To keep matters simple, we assume that
X has full rank d ∧ n unless otherwise stated. In a
high-dimensional setup, OLS does not yield satisfac-
tory statistical performance. In particular, E(ŵ) does
not tend to zero as n grows which can be regarded
as a basic consistency requirement. Moreover, if both
n and d are large, obtaining ŵ or making predictions
based on ŵ becomes computationally costly.

In light of these issues, it makes sense to consider al-
ternatives that aim at leveraging some sort of low-
dimensional structure. Scenarios in which w∗ exhibits
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one of various forms of sparsity are dominating in the
literature, see the monograph of Hastie et al. (2015)
for an overview. In the present paper, we follow an-
other direction in which the inputs {xi}ni=1 are lin-
early mapped into a lower-dimensional space, and lin-
ear least squares regression is then performed based
on the subspace obtained in this way. Put differently,
one considers a new design matrix XR = XR with R
being a d-by-k matrix, k � p. On the statistical side,
while yielding an increase of the approximation error
(bias), one achieves a substantial reduction in estima-
tion error. On the computational side, solving the OLS
problem in the reduced space is less expensive. How-
ever, the success of this approach eventually depends
on whether it is possible to find a suitable matrix R
that keeps the bias in check for low k.

The traditional choice of XR is based on the r-
truncated SVD of X which yields XR = UrΣr, where
Ur is the matrix of the top k = r left singular vectors,
Σr is a diagonal matrix containing the corresponding
singular values, and R = Vr, where Vr ∈ Rd×r contains
the top r right singular vectors of X. When combined
with subsequent least squares regression, the proce-
dure is well-known under the name principal com-
ponents regression (PCR) in the statistics literature
(Kendall, 1957; Artemiou and Li, 2009).

A second approach that is in the focus of present pa-
per is to choose R as a Johnson-Lindenstrauss trans-
form (Johnson and Lindenstrauss, 1984; DasGupta,
2003; Vempala, 2005; Ailon and Chazelle, 2006; Ma-
tousek, 2008) which is realized by drawing the entries
of R from a suitable distribution. Regression based
on the thus obtained design matrix XR is analyzed in
Maillard and Munos (2009) who coined the term ’com-
pressed least squares’ (CLS) regression, and in a later
paper by Kaban (2014). Another random mechanism
for generating R based on b-bit minwise hashing (Li
and König, 2011) that is suitable for sparse X is pro-
posed in Shah and Meinshausen (2016). Selecting a
subset of columns of X, either in a random or a sys-
tematic fashion, constitutes one more approach that
falls into the same category.

In the present paper, we revisit the analysis of CLS
in Maillard and Munos (2009) and Kaban (2014). At
this point, we point out that the notion of ’compressed
regression’ in those two as well as in the present pa-
per needs to be distinguished from that in Zhou et al.
(2009) in which the reduced design matrix is given by
RX, i.e. R is multiplied from the left, and R is applied
to the response y as well. This setup which is typically
referred to as ’sketched regression’ is studied in a sub-
stantial body of literature with major contributions
from researchers in numerical linear algebra, theoret-
ical computer science, and machine learning (Sarlos,

2006; Pilanci and Wainwright, 2015; Raskutti and Ma-
honey, 2015; Drineas and Mahoney, 2016). Sketched
regression predominantly concerns the case of large n,
but can also be motivated from privacy considerations
(Zhou et al., 2009). By contrast, CLS is motivated by
large d. Furthermore, sketched regression retains re-
gression coefficients at the level of the original inputs,
which can be beneficial for estimation and interpre-
tation, and may be one of the reasons why CLS has
received comparatively less attention.

The present paper is motivated by the observation that
the existing analysis of CLS in Maillard and Munos
(2009) and Kaban (2014) yields bounds on the excess
risk that are too crude to be meaningful. Specifically,
we show that according to these bounds, the statistical
performance of CLS would be inferior to OLS except
for specific low-signal situations as detailed below, and
that the optimal choice of the reduced dimension k
would have to be of the same order as d ∧ n. It turns
out that the reason for this outcome lies in the analysis
of the bias term. With a more careful estimation of the
bias in dependence of the rate of decay of the singular
values of X, we obtain a significantly improved (albeit
not entirely sharp) bound according to which CLS can
achieve a considerably lower excess risk than OLS even
with small k. Our analysis comes with a side-by-side
comparison of CLS to principal components regression
(PCR). Subsequently, we outline a computationally fa-
vorable aproach for obtaining guidance regarding the
choice of k in practice, before providing empirical re-
sults that illustrate central aspects of this work. We
conclude with a brief discussion.

2 Existing excess risk bounds for CLS

For fixed R ∈ Rp×k, consider the excess risk of CLS

E(R) := E(RŵR) = E
[
‖Xw∗ −XRŵR‖22/n

]
,

where ŵR is a least squares solution based on the re-
duced design matrix XR, i.e., ŵR satisfies XRŵR =
PXR

y, and the expectation is with respect to ŵR.
Straightforward calculations show that E(R) can be
decomposed into a bias and a variance term:

E(R) = ‖(I − PXR
)Xw∗‖22/n︸ ︷︷ ︸

Bias

+σ2rank(XR)/n︸ ︷︷ ︸
Variance

. (2)

We commonly have rank(XR) = k. The choice of k
determines the trade-off between bias and variance. If
k can be chosen significantly smaller than d ∧ n while
at the same time the magnitude of the bias can be
controlled, a substantially better excess risk than that
of OLS in (1) is obtained.

Kaban (2014) considers random R whose entries are
drawn i.i.d. from a zero-mean symmetric distribution
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with variance 1/k and finite fourth moment, and de-
rives a bound on E[E(R)], where the expectation is
with respect to R. Letting Σ = X>X/n denote the
Gram matrix of the inputs, Q = tr(Σ)I + Σ, and re-
calling that w∗ contains the regression coefficients of
the optimal linear predictor, her final result is of the
form

E[E(R)] ≤ ‖w∗‖2Q/k + σ2k/n, (3)

where for v ∈ Rd, ‖v‖Q = (v>Qv)1/2. Minimizing this
bound with respect to k, the optimal value of k results
as k∗ =

√
n‖w∗‖Q/σ. Back-substitution into (3) yields

E[E(R)] ≤ 2σ‖w∗‖Q/
√
n. (4)

Maillard and Munos (2009) obtain a rather similar re-
sult for random X when R is a Johnson-Lindenstrauss
transform, a smaller class of matrices as the one con-
sidered in Kaban (2014). The corresponding exces risk
is qualitatively bounded as

O
(
σ‖w∗‖2

(
E[‖x1‖22]

)1/2√
log(n)/n

)
(5)

for k = Θ(
√
n log n‖w∗‖2 E[‖x1‖2]1/2/σ). Comparing

the terms in (4) and (5), we note that for random
design, E[‖x1‖22] = E[tr(Σ)]. Moreover, for 1 ≤ c ≤ 2,

‖w∗‖2Q = tr(Σ)‖w∗‖22 + (w∗)>Σw∗ = c · tr(Σ)‖w∗‖22,

We conclude that (4) and (5) only differ by an
O(
√

log n) term as does the underlying choice of k.

At first glance, (4) and (5) do no longer depend on
d, which indicates that the approach has some merits
in a high-dimensional setup even though the rate of
decay n−1/2 is slower than the usual n−1 rate, and
the requirement k = Ω(n1/2) may be troubling as
one may have hoped for stronger dimension reduc-
tion. However, closer inspection reveals that treating
‖w∗‖Q respectively E[‖x1‖22]1/2 as O(1) terms is not
appropriate. In fact, for fixed design it is common to
assume that the columns {Xj}dj=1 of X are scaled such

that ‖Xj‖22 = n, whereas for standard random designs,
e.g. X with i.i.d. rows from a zero-mean Gaussian dis-
tribution with unit variances, this scaling holds in ex-
pectation. In this case, tr(Σ) respectively E[‖x1‖22]
evaluate as d which makes the bounds (4) and (5) of
rather limited use. The bound (4) becomes

E[E(R)] ≤ 2σ‖w∗‖2
√
d/n (6)

for k =
√
nd‖w∗‖2/σ, which is of the same order (or

may even exceed) d∧n, while the bound on the excess
risk becomes inferior to that of OLS except for a low-
signal situation as outlined below.

(1) n ≥ d: the excess risk of OLS becomes σ2d/n,
which is superior to (6) whenever ‖w∗‖2 ≥ σ

√
d/n.

(2) n < d: the excess risk of OLS becomes σ2 which is
superior to (6) whenever ‖w∗‖2 ≥ σ

√
n/d.

In summary, we conclude that the existing analysis
of CLS fails to establish that the approach achieves
a reasonable statistical performance. This raises the
question whether this is intrinsic to the approach, or
an artifact of the analysis. From (3), we find that
the correct variance term σ2k/n is present. On the
other hand, the estimate of the bias term as ‖w∗‖2Q/k
deserves further investigation, as it can be seen from
(2) that for k = d∧n the bias is actually zero whenever
the entries of R are drawn i.i.d. from an absolutely
continuous distribution on the real line as in this case
the column space of XR coincides with the column
space of X with probability one.

3 Excess risk of Principal
Components Regression (PCR)

Our improved analysis of CLS presented below is mo-
tivated from an excess risk bound for PCR that is de-
rived in the sequel. Let X = UΣV > be the SVD of
X, where U ∈ Rn×d∧n, U>U = I, is the matrix of
left singular vectors, Σ ∈ Rd∧n×d∧n is the diagonal
matrix whose diagonal contains the decreasingly or-
dered sequence of singular values σ1 ≥ . . . ≥ σd∧n,
and V ∈ Rd×d∧n, V >V = I, is the matrix of right
singular vectors. For r ∈ {1, . . . , d ∧ n}, consider

U = [Ur Ur+], Σ =

[
Σr 0
0 Σr+

]
, V = [Vr Vr+], (7)

where Ur and Vr ∈ Rd×r contain the top r left re-
spectively right singular vectors, and Σr contains the
corresponding singular values. The remaining singu-
lar vectors respectively singular values are contained
in Ur+, Vr+ and Σr+. Letting R = Vr, we have

XR = XVr = (UrΣrV
>
r + Ur+Σr+V

>
r+)Vr = UrΣr.

The corresponding projection operator is given by
PXR

= UrU
>
r and the bias term in (2) results from

(I − PXR
)Xw∗ = (I − UrU>r )Xw∗ = Ur+Σr+V

>
r+w

∗.

Denote α∗ = V >w∗ ∈ Rd∧n, and partition α∗ =
[(α∗r)

> (α∗r+)>] as in (7). We then have

E(Vr) = ‖Ur+Σr+V
>
r+w

∗‖22/n+ σ2r/n

= ‖Σr+α∗r+‖22/n+ σ2r/n

=
1

n

d∧n∑
j=r+1

σ2
j (α∗j )

2 + σ2 r

n
(8)

≤ ‖α∗r+‖2∞
1

n

d∧n∑
j=r+1

σ2
j + σ2 r

n

= ‖α∗r+‖2∞‖X − Tr(X)‖2F /n+ σ2r/n, (9)



Compressed Least Squares Regression revisited

where Tr(X) = UrΣrV
>
r denotes the best rank r-

approximation of X w.r.t. the Frobenius norm ‖·‖F .

From (8) respectively (9), we see that the excess risk
of PCR behaves favorably if (i) the tail of the squared
singular values at truncation level r is small (i.e., X
can be well approximated by a matrix of rank r) and
(ii) if there are no large coefficients in α∗ outside the
its top r entries corresponding to the leading singular
vectors. Condition (ii) constitutes the main source of
criticism of PCR as there is often no good reason to
assume that α∗ is well-aligned with the leading singu-
lar values of X; see Artemiou and Li (2009) and the
references therein. In the sequel, we disregard this is-
sue and focus on condition (i), assuming that α∗ is
dense in the sense that maxj |α∗j |/minj |α∗j | ≤ β for
some positive universal constant β, in which case we
do not lose much by working with the bound

E(Vr) ≤ ‖α∗‖2∞‖∆r‖2F /n+σ2r/n, ∆r := X−Tr(X),
(10)

in place of (8)/(9). Depending on the rate of decay
of the singular values, we can determine the optimal
choice of r and the resulting excess risk. For what
follows, we assume that X is scaled such that ‖X‖2F =∑d∧n
j=1 σ

2
j = n · d (or equivalently, tr(Σ) = d).

Scenario (F): perfectly flat spectrum

For n ≥ d, this means that the columns of X are or-
thogonal with σj =

√
n, j ∈ [d], and according to

(10), E(Vr) ≤ ‖α∗‖2∞(d − r) + σ2r/n. The optimal
value of r is given by r∗ = d if ‖α∗‖∞ > σ/

√
n and

r∗ = 0 else. In the first case, we recover the OLS
solution. For n < d, σj =

√
d, j ∈ [n], so that

E(Vr) ≤ (d/n) · (n − r)‖α∗‖2∞ + σ2r/n and r∗ = d
if ‖α∗‖∞ > σ/

√
d and r∗ = 0 else.

In summary, except for low-signal situations, we do not
gain anything compared to OLS, which is expected, as
for a flat spectrum dimension reduction by means of a
truncated SVD is not effective.

Next, we consider the situation in which the sequence
of singular values decays at certain rates. To this end,
for 1 ≤ s ≤ d ∧ n, let us define γ(s) =

∑s
j=1 σ

2
j and

τ(s) = {γ(d ∧ n)− γ(s)}/γ(d ∧ n). We then have

‖∆r‖2F /n = {γ(d ∧ n)− γ(r)}/n
= τ(r)γ(d ∧ n)/n

= τ(r) · d,

recalling that γ(d ∧ n) =
∑d∧n
j=1 σ

2
j = ‖X‖2F = n · d.

Scenario (P): polynomial decay

Suppose that σ2
j = C · j−q, j ∈ [d], for q ≥ 2 ar-

bitrary and a constant C > 0. By comparing se-
ries and integrals, one shows that γ(d ∧ n) − γ(r) ≤

C(r−(q−1) − (d ∧ n)−(q−1)) and γ(d ∧ n) ≥ C, so that
τ(r) ≤ r−(q−1). It follows that

E(Vr) ≤ r−(q−1) · d · ‖α∗‖2∞ + σ2r/n.

Minimizing the right hand side w.r.t. r, we obtain

r∗ =
{

(q − 1)‖α∗‖2∞(n · d)
/
σ2
}1/q

E(Vr∗) ≤ 2(q − 1)1/q
(
d‖α∗‖2∞

)1/q (
σ2/n

)(q−1)/q
.

(11)

Let q = 2. For a dense unit vector α∗, we have
‖α∗‖2∞ = O(1/d) in which case (11) yields r∗ =
O(n1/2) and E(Vr∗) ≤ O(1/

√
n). Recall that this is

the result claimed by Maillard and Munos (2009) and
Kaban (2014) for CLS, without making any assump-
tion on the singular values of X, which is one more
indication that their claims cannot be valid in gen-
eral. From (11), we also find that as q grows, r∗ essen-
tially becomes O(1) and E(Vr) becomes proportional
to σ2/n.

Scenario (E): exponential decay

Suppose that σ2
j = C0θ

j for θ ∈ (0, 1). Then, τ(r) ≤
C0

θ
1−θ θ

r = C1 exp(−cr), say. The optimal choice of
r∗ and the corresponding bound on E(Vr∗) result as

r∗ =
1

c
log
(
C2‖α∗‖2∞ nd

/
σ2
)

E(Vr∗) ≤ 2

c
log
(
C2‖α∗‖2∞ nd

/
σ2
)
σ2/n.

(12)

Scenarios (P) and (E) tell us that PCR may improve
significantly over OLS in terms of excess risk. The key
condition for this to happen is a decaying spectrum of
the design matrix X.

4 Improved analysis of CLS

We have seen in Section 2 that the reason for the ex-
isting analysis of CLS not to yield a particularly useful
result lies in the bias term. In Kaban (2014), the ex-
pected bias (w.r.t. R) is bounded as

E[‖(I − PXR
)Xw∗‖22/n] = E

[
min
v∈Rk
‖Xw∗ −XRv‖22/n

]
≤ E[‖Xw∗ −XRR>w∗‖22/n]

It turns out that replacing the minimizing v by R>w∗

is too crude, and makes it impossible to exploit poten-
tial decay in the sequence of singular values, which is
the starting point of our analysis.

The main observation is the following: it is known from
the literature on randomized numerical linear algebra
(see e.g. Sarlos (2006); Mahoney (2011); Halko et al.
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(2011)) that if R is a Johnson-Lindenstrauss trans-
form, the subspace spanned by the top r singular vec-
tors of XR is close to that of the leading r singular
vectors of X, provided k is large enough (in fact, k
can be chosen proportional to r, modulo logarithmic
factor). This suggests that for CLS, one should be able
to obtain excess risk bounds not far from those of PCR
in the previous section. This is the route taken in the
sequel.

Let us reconsider the bias term in (2):

‖(I − PXR
)Xw∗‖22/n ≤ ‖(I − PXR

)X‖22/n · ‖w∗‖22,
≤ ‖(I − PXR

)X‖2F /n · ‖w∗‖22,

where ‖M‖2 denotes the operator norm of a matrix
M . For R with i.i.d. entries from a standard Gaus-
sian distribution, Halko et al. (2011) provide bounds
on both E[‖(I − PXR

)X‖22] and E[‖(I − PXR
)X‖2F ].

Regarding the latter, for r ∈ [d∧n] and k ≥ r+ 2, the
following result is obtained:

E[‖(I − PXR
)X‖2F ] ≤

(
1 +

r

k − r − 1

)
‖∆r‖2F . (13)

In particular, for k = 2r + 1, the approximation er-
ror in Frobenius norm is within a factor two of what
is attained by the r-truncated SVD. The bound on
E[‖(I − PXR

)X‖22] in Halko et al. (2011) does not im-
prove much over the Frobenius norm bound (13) as
it still depends on ‖∆r‖2F (albeit with a better pre-
factor). Below, we state a result of a similar flavor
that holds for a broader class of matrices that satisfy
the following two conditions:

(C1) Let r ∈ [d ∧ n] and let Vr ⊂ Rd denote the
column space of Vr. For some δ ∈ (0, 1), it then holds
that (1−δ)‖v‖22 ≤ ‖R>v‖22 ≤ (1+δ)‖v‖22 for all v ∈ Vr.

This is a restricted isometry-type condition as it ap-
pears on the literature on sparse estimation, with the
difference that the condition is milder in the sense that
approximate norm preservation is required only for a
single subspace (as opposed to the union over sub-
spaces of r-sparse vectors).

(C2) For ε ∈ (0, 1), R> is an ε/
√
r-Johnson-

Lindenstrauss transform w.r.t. a fixed set of vec-
tors S ⊂ Rd of cardinality 2n · r, i.e. it holds that
(1 − ε/

√
r)‖v‖22 ≤ ‖R>v‖22 ≤ (1 + ε/

√
r)‖v‖22 for all

v ∈ S.

Conditions (C1) and (C2) are naturally satisfied with
high probability for sub-Gaussian matrices.

Proposition 1. Let R have entries drawn i.i.d. from
a zero-mean sub-Gaussian distribution and variance
1/k. If k = Ω(ε−2r{log(r) + log(n)}+ δ−2 log(δ−1)r),
then R> satisfies conditions (C1), (C2) with proba-
bility at least 1−exp(−c log(δ−1)r)−exp(−c′ log(n r))
for absolute constants c, c′ > 0.

The merits of conditions (C1) and (C2) can be seen
from the following result.

Theorem 1. Let R> satisfy condition (C1) and
(C2). We then have

‖(I − PXR
)X‖2F ≤

(
1 +

ε2

(1− δ)2

)
‖∆r‖2F .

An implication for CLS is then as follows.

Corollary 1. Under the condition of Theorem 1, the
excess risk of CLS can be bounded as

E(R) ≤
(

1 +
ε2

(1− δ)2

)
‖w∗‖22

‖∆r‖2F
n

+ σ2 k

n
.

In particular, if k can be chosen proportional to r, the
conclusions for PCR with polynomial (11) and expo-
nential (12) decay continue to hold, up to a constant
factor and with ‖α∗‖2∞ replaced by ‖w∗‖22.

Regarding the second part of the corollary, Proposi-
tion 1 requires k to be chosen slightly larger than pro-
portional to r. The extra log factor is likely to be an
artifact of our analysis as is indicated by the result (13)
in Halko et al. (2011) for Gaussian matrices. Putting
this issue aside, the conclusion is that CLS can roughly
match the excess risk of PCR even though there is a
slack between ‖α∗‖2∞ on one side and ‖w∗‖22 on the
other which may be of the order of d. In light of (11)
and (12) this may not have much of an effect as long
as the spectrum of X exhibits strong decay.

In the worst case, however, the ratio of the excess risk
of PCR and CLS can be arbitrarily large as can be seen
from the finer bound (9): if α∗ happens to be perfectly
aligned with the top r singular values so that α∗r+ = 0,
we have E(Vr) = 0. On the other hand, the column
space of XR does not contain that of Ur unless k =
d∧n, hence in this rather specific case CLS falls short
of PCR. It remains an open question whether there
are scenarios in which CLS can substantially improve
over PCR.

From a computational perspective, CLS avoids compu-
tation of the truncated SVD of X. Obtaining XR only
requires a single a matrix-matrix multiplication, an op-
eration that amounts to O(ndr) flops and that is triv-
ially parallelizable. On the other hand, as discussed
in Halko et al. (2011), state-of-the-art algorithms for
computing the r-truncated SVD also require O(ndr)
flops on average, with a worse complexity for some
problem instances.

5 Estimation of the bias term

The choice of the dimension k is a crucial issue in prac-
tice. In order to get an idea of the bias of CLS, it makes
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sense to evaluate the quantity δ2R = ‖(I − PXR
)X‖2F .

We have PXR
= UU> for U ∈ Rn×k unitary which

can be computed from an SVD of XR using O(nk2)
flops. However, forming PXR

X = UU>X requires
O(ndk) flops which is as expensive as computing XR.
Hence, we would like to circumvent this operation.
We here propose an approach based on randomiza-
tion that delivers a reasonably accurate estimate of δ2R
while achieving a reduction to O(nd) flops.

Proposition 2. Consider a collection of L i.i.d. d-
dimensional standard Gaussian random vectors
{ωl}Ll=1 independent of R and the estimator

δ̂2R =
1

L

L∑
l=1

‖Xωl − PXR
Xωl‖22.

Then, for any c ∈ (0, 1) and any C > 1, as long as

L ≥ max

{
16

(1− c)2
,

144

(C − 1)2

}
it holds that P

(
cδ2R ≤ δ̂2R ≤ Cδ2R

)
≥ 0.96.

For example, setting C = 3, c = 1/3, we would need
L = 36 to estimate δ2R within a multiplicative fac-
tor of 3 with probability near 1. The constants here
may not necessarily be optimal. Note that computing
PXR

Xωl = U(U>(Xωl)) for a single l only amounts
to O(nd) flops. Proposition 2 is of independent inter-
est as it provides a general scheme for estimating the
Frobenius norm of a product of matrices.

6 Experiments

In this section, we present the results of experiments
with synthetic and real data in order to support the
main observations made in the previous sections.

6.1 Synthetic data

We start by generating a random n-by-d matrix X0

with n = 1000, d = 500, where the entries of X0 are
drawn i.i.d. from the standard Gaussian distribution.
The SVD of X0 is given by

X0 = U0Σ0V
>
0 , U0 ∈ Rn×d, Σ0 ∈ Rd×d, V0 ∈ Rd×d.

We then replace Σ0 by a diagonal matrix Σ whose di-
agonal elements {σj}dj=1 are chosen in a deterministic
fashion according to one of the following regimes:

constant : σj ∝ 1, j ∈ [d],

polynomial : σj ∝ j−q, q ∈
{

1

2
,

3

4
, 1,

3

2
, 2, 4

}
, j ∈ [d],

exponential : σj ∝ 0.9j , j ∈ [d],

where the constant of proportionality is determined
by the scaling

∑d
j=1 σ

2
j = n · d. We subsequently work

with X = U0ΣV >0 , generating data from the model

y = Xw∗ + σξ, (14)

where w∗ is drawn uniformly from the unit sphere in
Rd, σ ∈ 2p, p ∈ {−1,−0.5, . . . , 1}, and ξ has i.i.d. stan-
dard Gaussian entries.

Given data (X, y), we then perform PCR with ten dif-
ferent choices of r, using an equi-spaced grid of values
depending on the regime according to which X has
been generated. For CLS, R is chosen as a standard
d-by-k Gaussian matrix with k = αr, where the over-
sampling factor α ∈ {1, 1.2, 1.5, 2, 2.5, 3}. We conduct
100 independent replications for each regime. Our
main interest is in the bias and the prediction error
of PCR and CLS:

‖(I − PUr
)Xw∗‖22/n vs. ‖(I − PXR

)Xw∗‖22/n,
‖Xw∗ −XVrŵVr

‖22/n vs. ‖Xw∗ −XRŵR‖22/n,

where ŵVr and ŵR denote the least squares estimator
for data (XVr, y) and (XR, y), respectively.

A subset of the results involving the three different
regimes of decay is shown in Figure 1.

In the constant regime (top row), the performance of
CLS and PCR is not distinguishable. In fact, it can
be shown that under model (14) and Gaussian R, the
expected bias is the same for both approaches: for con-
stant spectrum, Xw∗ is uniformly distributed on the
d-dimensional subspace of Rn spanned by U0 inter-
sected with the sphere of radius

√
n, and the column

spaces of both XVr (PCR) and XR with k = r are
uniformly distributed on the Grassmanian Gr(r,Rn),
hence in both cases the expected bias is proportional
to the expected distance of a random point from the
sphere in Rd and a random element from Gr(r,Rd).

In the regime of polynomial decay (q = 1), we observe
that the bias of CLS is roughly proportional to that
of PCR (or alternatively, we need to choose k as a
suitable multiple of r to achieve the same bias). Ac-
cordingly, the dip in the prediction error curve occurs
for k = 2r∗ with r∗ = 40 yielding the smallest predic-
tion error for PCR. In both low and high noise settings,
PCR and CLS improve significantly over OLS in terms
of prediction error (≈0.02 and ≈0.04 vs. 0.125 and
≈ 0.1 and ≈ 0.15 vs. 2).

In the regime of exponential decay, the bias of CLS is
not quite proportional to that of PCR for small values
of r, but this improves once r reaches 20. Overall, the
results agree well with what is suggested by the theory.
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Figure 1: Results of the synthetic data experiment. From left to right: the bias ‖(I − PXR
)Xw∗‖22/n, and the

mean squared prediction error ‖Xw∗ −XRŵR‖22/n for σ = 1/2 (middle) and σ = 2 (right) in dependence of k
(horizontal axis) for CLS in relation to PCR. Solid curves are averages, dashed curves minima and maxima (only
CLS) over 100 replications. From top to bottom: constant spectrum, spectrum with polynomial decay (q = 1),
exponential decay. Note that for the latter, the bias is plotted on a log scale. For comparison, the mean squared
prediction error of OLS σ2d/n equals 1/8 = .125 for the middle column and 2 for the right column.

6.2 Real data

We analyze a subset of the Twitter social media
buzz dataset available from the UCI machine learn-
ing repository, in a way that is similar to the analysis
in Lu and Foster (2014). This is a regression prob-
lem in which the goal is to predict the popularity of
topics as quantified by its mean number of active dis-
cussions given 77 predictor variables such as number
of authors contributing to the topic over time, average
discussion lengths, number of interactions between au-
thors etc. We here only work with the first 8000 ob-
servations. Several of the original predictor variables

as well as the response variable are log-transformed
prior to analysis. Following Lu and Foster (2014),
we add quadratic interactions which yields d = 3080
predictors in total. We consider 50 random parti-
tions into a training set of size 6000 and a test set
of size 2000 which is used to evaluate the prediction
error. Training and test set are centered so that the
response and predictors have zero mean, and the pre-
dictors are scaled to unit norm. We compare the mean
squared prediction error on the test set of PCR with
r ∈ {5, 10, . . . , 50, 60, . . . , 100, 120, . . . , 200} and CLS
with k = rα, where the grid for the factor α is as for
the synthetic data. For CLS, we take R as a Gaussian
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matrix. For each training set, we obtain 10 i.i.d. copies
of R and perform regression with each of the result-
ing matrices XR. The main results are summarized in
Figure 2. Looking at the top panel, we find that the
decay of the singular values is noticeable in the sense
that the input matrices X can be well-approximated
by a truncated SVD of small to moderate rank, but
the rate of decay is still rather polynomial than ex-
ponential when compared to the bottom left panel of
Figure 1. As already seen for the synthetic data ex-
periments, CLS requires only a moderate amount of
of oversampling to achieve the approximation error of
PCR. Turning to the bottom part, we see that PCR
with r = 20 achieves the lowest test error of about 2.3.
The performance of CLS is not far off, with an optimal
test error achieved for k about 40. From the point of
view of computation, CLS is on average faster by a
factor of about 50 when using the vanilla svd function
in MATLAB for PCR.

While the example confirms that PCR and CLS
achieve comparable performance, it turns out that
both are not competitive for the given problem, be-
ing outperformed by the lasso by a margin (with an
average test error that is smaller by a factor of 10 for
an optimal choice of the regularization parameter).

7 Conclusion

Linear dimension reduction by means of a Johnson-
Lindenstrauss transform is commonly used in many
standard machine learning problems (DasGupta, 2000;
Bingham and Mannila, 2001; Fradkin and Madigan,
2003; Vempala, 2005). In linear regression, this ap-
proach is typically used by applying the transform to
both the inputs and the responses, in which case one
speaks of sketched regression. There a several recent
and thorough analyses of sketched regression as men-
tioned in the introduction. By contrast, in this paper
we have considered the situation in which the trans-
form is only applied to the inputs while maintaining
the original responses, for which Maillard and Munos
(2009) coined the term compressed regression. Prior
analysis in the latter work and in Kaban (2014) seems
to suggest that the approach achieves a O(1/

√
n)

bound on the excess risk without any assumptions on
the design matrix, which is also referenced in recent
work by Shah and Meinshausen (2016).

The analysis in the present paper is not affirma-
tive. Instead, we show herein that the statistical per-
formance of CLS can roughly match that of tradi-
tional PCR which can be reasonable even in a high-
dimensional setup if the design matrix is approxi-
mately of low rank and if the regression coefficients are
dense or at least not misaligned with the leading sub-
space. It is an open question whether there are inter-
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Figure 2: Top: Average approximation errors log(‖X−
PUr

X‖2F ) (PCR) respectively log(‖X − PXR
X‖2F )

(CLS) over the 50 training sets from the Twitter data
in dependence of r (or k). Bottom: Average test errors
vs. r or k. For CLS, we plot both the mean and the
maximum over then 10 realizations of R per iteration.
For the top panel, the max curve essentially overlaps
with the mean curve.

esting scenarios in which CLS substantially improves
over PCR. CLS seems to have merits from the com-
putational rather than the statistical side by achieving
a reduction to a linear model of potentially small di-
mension without requiring an SVD or non-linear opti-
mization as do approaches based on sparsity.

Regarding future work, exploring the statistical per-
formance limit of compressed regression with choices
of R different from Johnson-Lindenstrauss transforms
(Shi et al., 2009; Shah and Meinshausen, 2016) under
different assumptions on X like sparsity appears to be
a worthwhile endeavor.

Supplement.

The supplement contains the proofs of Theorem 1 and
Propositions 1 and 2.
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