
Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis

Andrew Stevens Yunchen Pu Yannan Sun Gregory Spell Lawrence Carin
PNNL & Duke U. Duke Univ. PNNL Duke Univ. Duke Univ.

Abstract

A multi-way factor analysis model is intro-
duced for tensor-variate data of any order.
Each data item is represented as a (sparse)
sum of Kruskal decompositions, a Kruskal-
factor analysis (KFA). KFA is nonparametric
and can infer both the tensor-rank of each
dictionary atom and the number of dictio-
nary atoms. The model is adapted for online
learning, which allows dictionary learning on
large data sets. After KFA is introduced,
the model is extended to a deep convolu-
tional tensor-factor analysis, supervised by
a Bayesian SVM. The experiments section
demonstrates the improvement of KFA over
vectorized approaches (e.g., BPFA), tensor
decompositions, and convolutional neural net-
works (CNN) in multi-way denoising, blind
inpainting, and image classification. The im-
provement in PSNR for the inpainting results
over other methods exceeds 1dB in several
cases and we achieve state of the art results
on Caltech101 image classification.

1 Introduction

The first data analysis applications of tensors saw the
development of the Tucker and canonical decomposi-
tion (CANDECOMP) in chemometrics and the parallel
factor model (PARAFAC) in linguistics; the CANDE-
COMP/PARAFAC is also called the Kruskal decom-
position (KD). Most recently, tensor methods have
been applied in signal/image processing and machine
learning (Cichocki et al., 2015).

Tensor decompositions are limited in their represen-
tation size, and the number of atoms/factor-loadings
can be at most the rank of the tensor (i.e., they are

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copyright
2017 by the author(s).

not overcomplete). Following on the success of the
K-SVD dictionary learning algorithm (Aharon et al.,
2006), several tensor-dictionary learning approaches
have been proposed, e.g. (Hawe et al., 2013). The goal
of overcomplete dictionary learning is to find a set of
atoms that can represent each data item as a weighted
sum of a small subset of those atoms. A dictionary
is called overcomplete when the number of atoms K
is greater than the dimension P of each data item,
this is closely related to frame theory (Christensen,
2008). Overcompleteness is desirable because it offers
robustness to noise, increased sparsity, and improved
interpretability (Lewicki and Sejnowski, 2000). An
overview of non-tensor dictionary learning approaches
can be found in (Mairal et al., 2014).

Previous work in overcomplete tensor-dictionary learn-
ing has focused on separable models (Sironi et al., 2015;
Hawe et al., 2013; Gribonval et al., 2015). Imposing
separable structure means that each atom is a rank-1
tensor. Moreover, they consider only “shallow” repre-
sentations and are limited to 3-way data. In this paper
we develop Bayesian nonparametric models for tensor-
variate data with tensor-variate dictionary atoms and
learn the rank of each atom.

The concept of overcompleteness becomes unclear when
we move to high-order data. Vectors can be represented
as a sum of basis elements, so an overcomplete dictio-
nary gives more elements than needed to represent a
vector. In contrast, Matrices (2-way tensors) can be
represented as a sum of rank-1 matrices (i.e., SVD).
If a particular matrix is m1 × m2, an overcomplete
vectorized representation will have more than m1m2

atoms, but a “rank-overcomplete” representation only
needs more than min{m1,m2} atoms.

To address the limitations of current (tensor) dictio-
nary learning approaches, we propose a nonparametric
tensor-factor analysis model. The proposed Kruskal-
factor analysis (KFA) is compatible with tensors of
any order and capable of performing blind inpainting.
Moreover, we provide extensions to deep convolutional
learning and implement a minibatch learning approach.
Finally, experimental results on image processing and
classification tasks are shown with state of the art re-

Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis

sults for 2D & 3D inpainting and Caltech 101, and
evidence that rank is an important aspect of overcom-
plete modeling.

2 Preliminaries

Dictionary learning: Formally, dictionary learning
is a factorization of a data tensor X . If the data are
column vectors we have X = DW + E, where the N
data vectors are combined into the matrix X ∈ RP×N ,
the dictionary D ∈ RP×K , the weight matrix W ∈
RK×N , and E is the residual/noise. When K > P
it is necessary to impose that W is sparse to ensure
identifiability.

Beta-process factor analysis (BPFA) is a Bayesian non-
parametric model for dictionary learning (Paisley and
Carin, 2009). In BPFA we assume that the noise is
Gaussian and impose sparsity using a truncated beta-
Bernoulli process. The BPFA model is specified as

xn ∼ N (Dwn, γ
−1
ε IP), wn = sn ◦ zn

dk ∼ N (0, P−1IP), sn ∼ N (0, γ−1
s IK)

zkn ∼ Bernoulli(πk), πk ∼ Beta (aπ/K, bπ(K − 1)/K)

(1)

where γε, γs have noninformative gamma priors with
all hyperparameters set to 10−6, the prior for πk is
nearly uniform with aπ = K, bπ = 1, and ◦ is the
Hadamard elementwise product. The probabilities πk
determine how likely an atom is to be used and their
hyperparameters directly affect sparsity. Other priors
for the weights have been proposed in (Wang and Carin,
2012; Yuan et al., 2014; Zhang et al., 2011, 2016).
Gaussian process atoms were used in (Xing et al., 2012).

Tensor decomposition: A tensor is a mathematical
object describing linear transformation rules, and once
we fix a basis we can represent a tensor as a multi-
dimensional array of numbers. In data analysis, it is
common to call a multidimensional array a tensor. An
entry of a T -way or order-T tensor X ∈ Rm1×···×mT is
indicated by a position vector i = [i1, . . . , iT], where it
is an integer on [1,mt]; we denote the ith entry of the
tensor X as xi. We use ⊗ to represent the Kronecker
product. We also use the mapping x = vec(X), defined
by xi = vec(X)i1+i2m1+···+iTm1···mT−1

.

If we consider a matrix X ∈ Rm1×m2 we can write
it as X =

∑m1∧m2
r=1 λru

(1)
r u

(2)>
r , where λr ∈ R, u(1)

r ∈
Rm1 , u

(2)
r ∈ Rm2 . This is the SVD. A generalization of

the SVD to a T -way tensor X is called the canonical
polyadic decomposition (PD). The canonical PD is
written as X =

∑RM
r=1 λr

⊗T
t=1 u

(t)
r , where RM is the

maximum rank of tensors in Rm1×···×mT , u(t)
r ∈ Rmt .

The rank of a tensor is the number of nonzero λr.

Recently, the multiplicative gamma process CANDE-
COMP/PARAFAC (MGP-CP) (Rai et al., 2014), a

Bayesian nonparametric KD, was proposed. MGP-CP
can additionally infer the rank of a tensor. In MGP-CP,
the MGP (Bhattacharya and Dunson, 2011) imposes
that the singular values should shrink in absolute value
as r increases. The MGP shrinks the variance of a zero
mean Gaussian (the prior for λr), so that for large r the
singular value will be near zero with high probability.
When a singular value shrinks enough (e.g., λr < 10−6)
we assume it is zero. The numerical rank is given by the
number of nonzero λr after thresholding. The MGP-
CP is described entrywise, xi =

∑R
r=1 λr

∏T
t=1 u

(t)
itr

+ εi is
the ith entry of X , R is the maximum desired rank and
εi is Gaussian noise. The MGP-CP is specified as

xi ∼ N
(

R∑
r=1

λr
T∏
t=1

u
(t)
itr
, τ−1
ε

)
, u(t)

r ∼ N (0, ω−1
rt Imt)

λr ∼ N (0, τ−1
kr), τkr =

r∏
i=1

δi, δi ∼ Gamma(α, 1)

(2)

and τε, ωrt have noninformative gamma priors with all
hyperparameters set to 10−6. The shape parameter α
for the MGP is usually set to 2 or 3. If α > 1, the error
in
∑R
r=1 λr

∏T
t=1 u

(t)
itr

converges to zero exponentially fast
as R→∞ (Rai et al., 2014).

Tensor Rank: The maximum rank RM is usually
not mintmt like the matrix case. Finding the canonical
PD of a tensor is a difficult computational problem. It
is possible to find PD with a preset R (that could be
different from the actual rank), these are called KD.

A useful characterization of tensors is balance, which
we use to set R for KFA. Assuming mT is the largest
dimension, a tensor is balanced when mT ≤

∏T−1
t=1 mt −∑T−1

t=1 (mt−1) and unbalanced whenmT ≥ 1+
∏T−1
t=1 mt−∑T−1

t=1 (mt − 1). An unbalanced tensor has generic rank
RG = min{mT ,

∏T−1
t=1 mt} ≤ RM , similar to matrices.

Balanced tensors are expected to have generic rank
RE=

⌈∏
tmt

/ (∑
tmt − T + 1

)⌉
≤RM (Abo et al., 2009).

With the notions of tensor rank introduced we can
define rank-overcomplete. A tensor factorization is
rank-overcomplete when the number of (tensor) atoms
is greater than the rank of the tensor. We note that
this definition also applies to slices of tensors, e.g. data
items that have been stacked into a larger tensor. For
example, in 2D X =

∑K
k=1 λku

(1)
k u

(2)>
k , is an overcom-

plete decomposition if K > min{m1,m2}.

3 Kruskal Factor Analysis

The most natural generalization of dictionary learn-
ing to tensors is to model the data as the product
of a dictionary tensor and a weight matrix along the
(T + 1)st dimension of the dictionary. We define the
mode-t tensor product ×t with an example: the mode-3
product of a tensor D ∈ Rm1×m2×K and a matrix
W ∈ RK×N yields X = D ×3 W ∈ Rm1×m2×N with

A Stevens, Y Pu, Y Sun, G Spell, L Carin

= = + … +

Figure 1: An illustration of the KFA Model for 2-way data. The left equation shows the mode-3 tensor product
generalization of dictionary learning. The right equation shows the representation of dictionary atom k using the KD,
for 2-way data this is the SVD. The illustration clearly shows the reduction in the number of parameters compared to a
non-decomposed dictionary. Each atom in a non-decomposed dictionary will have

∏
mt parameters, while our approach

has R(1 +
∑
mt). The ability to specify R gives our model greater flexibility. Moreover, by applying shrinkage on λr and

learning the shrinkage rate α, our model automatically adjusts model complexity during learning.

xi1 i2 i3 =
∑K
k=1 di1 i2kwki3 . The factorization of X is illus-

trated for 2-way data in Figure 1.

We extend dictionary learning to arbitrary order ten-
sors by inferring the “singular” vectors/values of each
atom via KD. The Kruskal representation for each
atom is used in the likelihood. It is important to note
that when we learn the model we are not replacing
the dictionary with a low-rank approximation. The
singular vectors/values are drawn from their posteriors,
thus they are directly affected by the data; if the data
requires full-rank atoms they will be learned. We call
this new model Kruskal-factor analysis (KFA). The
model is specified as follows:

Xn ∼ N (vec[D ×
T+1

(sn ◦ zn)], γ−1
ε I), dik =

R∑
r=1

λrk
T∏
t=1

u
(kt)
itr

u
(kt)
itr
∼ N (0,m−1

t), λkr ∼ N (0, τ−1
kr), τkr =

r∏
i=1

δki

skn ∼ N (0, γ−1
s), zkn ∼ Bernoulli(πk)

πk ∼ Beta (aπ/K, bπ(K − 1)/K) , δki ∼ Gam(α, 1)

(3)

where Xn ∈ Rm1×···×mT is the nth data item and dik is
the i = [i1, . . . , iT] element of the kth atom. The hyper-
parameters for γε, γs are set to 10−6 to give a noninfor-
mative prior and aπ = K, bπ = 1. The shape parameter
α for singular value shrinkage is inferred, this is dis-
cussed below. Note that the negative log-likelihood is
simply ‖X − D×

T+1
(S ◦ Z)‖2F , the atom decompositions

impose tensor structure and the priors correspond to
regularizers. By design, our model is fully locally con-
jugate and can be implemented efficiently as a Gibbs
sampler. A Gibbs sampler produces a Markov chain
whose stationary distribution is the joint distribution
of the model, and the mode of a set of samples (from
the chain) is a maximum a posteriori (MAP) solution
to the corresponding regularized optimization problem.

In order to gain intuition about the model, consider
the case when we fix R = 1. Every atom Dk will be
rank 1, so each data item is a sum of rank 1 tensors.
This is a KD where the rank 1 tensors are selected
from a dictionary. The rank of the output tensor is

determined by the number of nonzero entries in zn
(min{nnz(zn), RM}), with sn acting as singular val-
ues. Increasing R yields: Xn =

∑
k,r snkznkλrk

⊗
t u

(kt)
r ,

which is a KD using rescaled singular values and snkznk.

Dictionary updates: With a careful derivation we
have found an update procedure that seamlessly con-
verts BPFA into a tensor model. The naive approach,
specifying the likelihood elementwise, as in MGP-CP,
is poorly suited to computation, since the singular val-
ues/vectors must be updated for every entry of the
data tensor—making the dictionary update complexity
O
(
NKT 2R(1 +

∑
mt)

∏
mt

)
for a single Gibbs iteration

(without including the expensive residual computation).
In our implementation, entire atoms are updated at
once. Moreover, the atom-wise updates clearly show
the overhead of the KD. The first step in the update is
to compute the mean and covariance just as in BPFA,
these are then used to sample all of the atom parame-
ters. With the following reparameterizations

dik = λrk
∏
t′ 6=t

u
(kt′)
it′r

u
(kt)
itr

+
∑
r′ 6=r

λr′k
T∏
t=1

u
(kt)
itr′

= aitu
(kt)
itr

+ bit

=
T∏
t=1

u
(kt)
itr

λrk +
∑
r′ 6=r

λr′k
T∏
t=1

u
(kt)
itr′

= fiλrk + gi,

(4)

we derive closed form updates for dictionary atoms:

u
(kt)
itr
∼ N (µ̂, ω̂−1)

ω̂ = mt +
∑

i:it=m

γDkitk
(ait)

2

µ̂ =
1

ω̂

∑
i:it=m

(
µDkitk
− bit

)
ait

λkr ∼ N (ν̂, τ̂−1)

τ̂ = τkr + γε
∑
n,i

(fiskn)
2

ν̂ =
γε
τ̂

∑
n,i

(hin − giskn) fiskn,

(5)

where γDkitk
, µ
Dk
itk

are the BPFA updates for the precision
and mean (without multiplying the covaraince) and
H = X −D×

T+1
(S ◦Z) is the current residual.

The complexity for sampling D in BPFA is
O(KM2∑n2

k) (with inpainting (Zhou et al., 2012)),
where M =

∏
mt and nk is the number of data items

using atom k. This arises from the residual updates
(which includes an elementwise matrix product and

Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis

an outer product of matrices), which dominate. For
a T -way tensor KFA adds O(KT 2R(1 +

∑
mt)) opera-

tions, so the complexity for sampling Dk in KFA is the
same as BPFA (since M2∑n2

k � T 2R(1 +
∑
mt), for

practical N). The weight matrices S and Z have the
same updates in BPFA and KFA, so the complexity of
one Gibbs iteration of KFA is the same as BPFA.

Learning the shape parameter α: The shape
parameter is critical to model quality because it de-
termines the shrinkage rate for the singular values.
We found that fixing α produces suboptimal results.
Updating α while the model is learned is important be-
cause it adjusts the complexity of the dictionary. Note
that a similar approach was taken in (Rai et al., 2014),
where the rank of the tensor was increased or decreased
ad hoc depending on whether the singular values are
larger than or smaller than preset thresholds.

KFA specifies a prior for α, which connects the dic-
tionary atoms. The conjugate prior for a gamma
distribution with known rate β = 1 is given by
p(α; a, b) ∝ aα−1

Γ(α)b
, so the posterior distribution is

p(α|{δki}, a, b) = Gamma(δki;α, 1)p(α; a, b)

∝
(
a
∏
k,iδki

)α−1
Γ(α)−b−RK .

(6)

Although this prior gives straightforward updates, it
is not a standard distribution to sample from. We use
numerical integration to perform inverse-CDF sampling.
Using the conditional MAP solution for α also works
well and is simpler. The MAP solution is closed form:
ψ−1

(
log(a)+

∑
k,i δki

b+RK

)
, where ψ−1 is the inverse digamma

function.

We choose the hyperparameters a = 106, b = 10−6

and set the initial value for α = 106. This causes the
model to gradually increase from rank 1 atoms up to
the inferred minimal rank. Without sampling α, the
parameters R and α must be selected manually. In our
approach we set R = RE−1 or R = RG−1, depending
on whether each data item is balanced or not, and let
the model learn α. We reduce the rank by 1 to prevent
overfitting.

Scalability: We use the Bayesian conditional density
filter (BCDF) (Guhaniyogi et al., 2014) to allow our
model to scale to large datasets. Essentially, BCDF
allows MCMC models to be trained online or by iter-
ating over subsets of training data. This application of
BCDF is not the same as the original authors intended.
In their work, only one epoch was used. Our BCDF
approach removes the need to load an entire dataset
into memory. The details are given in the supplement.

4 Deep Convolutional KFA

Instead of matrix-vector multiplication between the
atoms and the sparse weights we can use convolution.
This will imbue the model with translational invariance;
specializing BPFA with a convolutional likelihood is
called convolutional factor analysis (CFA) (Chen et al.,
2011). In the setting of images we use the 2D (spa-
tial) convolution, and for multi-channel images the
convolution is applied separately to each channel. The
likelihood for CFA is Xn ∼ N

(∑
kDk ∗Wkn, γ

−1
ε IP

)
,

which can be converted into a tensor model by ap-
plying KD to Dk and applying the same priors as
KFA. Note that the weights Wkn are matrices and
the data Xn ∈ RMx×My×Mc and dictionary atoms
Dk ∈ Rmx×my×Mc are tensors (e.g., Mc = 3 for RGB
images). Usually, the dimensions of the dictionary
atoms are much smaller than the image dimensions
(mx � Mx and my � My). The spatially-dependent
activation weights for dictionary atom k, image n, are
Wkn ∈ R(Mx−mx+1)×(My−my+1). More details can be
found in Chen et al. (2011); Pu et al. (2014, 2016b).
The dictionary atoms in CFA, although they are ten-
sors, are sampled from a multivariate Gaussian.

In a deep architecture, the set of weights {Wkn}Kk=1

for image n are represented in terms of (different) con-
volutional dictionary atoms. When an L-layer deep
model is built, the input of the `th layer is usually
composed of a pooled version of the output of the layer
below, the (`− 1)st layer. We can formulate this deep
deconvolutional model via these two contiguous layers:

X(`−1)
n =

K`−1∑
k=1

D
(`−1)
k ∗W (`−1)

kn , X(`)
n =

K∑̀
k=1

D
(`)
k ∗W

(`)
kn , (7)

W
(`−1)
kn := unpool(X

(`)
kn). (8)

The weight matrices W
(`)
kn in the `th-layer become the

inputs to the (`+ 1)st-layer after pooling. The input
tensor X

(`+1)
n is constituted by stacking the K` spa-

tially aligned X
(`+1)
kn . The (` + 1)st-layer inputs are

tensors with the third-dimension of size K`, the dictio-
nary size in the `th-layer. This is deep CFA. When a
stochastic unpooling process is employed in (8), and ap-
propriate priors are imposed on dictionary and feature
parameters, the model developed in (7) constitutes a
generative model for images called the deep generative
deconvolutional network (DGDN) (Pu et al., 2016b).

Within each layer of the deep CFA and DGDN model
we employ KFA, resulting in deep CKFA and Kruskal
DGDN. A major difference from multiplicative KFA is
that both the weights and the dictionary are tensors.
Kruskal DGDN can be supervised by connecting a
Bayesian SVM (Polson and Scott, 2011) to the top
layer weights WL

kn (Pu et al., 2016b).

A Stevens, Y Pu, Y Sun, G Spell, L Carin

5 Related Work

KFA is different from K-SVD and BPFA, since their
atoms are vectors, and thus atom-rank is not defined.
Moreover, in the experiments we found that BPFA
prefers full-rank atoms (determined by first reshaping),
while KFA prefers reduced-rank atoms. In addition,
the posterior distribution for a vectorized atom in KFA
will have a Kronecker structured covariance (with off-
diagonal interactions), whereas BPFA atoms have a
diagonal posterior covariance.

The main difference of KFA and any Tucker-like decom-
position, e.g. sparse Bayesian Tucker decomposition
(sBTD) (Zhao et al., 2015), TenSR (Qi et al., 2016),
Tensor Analyzers (Tang et al., 2013), or MGP-CP, is
that KFA is rank-overcomplete , but Tucker-like de-
compositions can have at most RM (a similar condition
holds for multilinear-rank). Another difference from
decompositions is that KFA infers several tensors si-
multaneously (the atoms). Further, we learn the rank
and sparsity simultaneously. We also extend MGP-CP
by learning the shrinkage rate. Without inferring α,
KFA performance suffers. MGP-CP is very sensitive to
this parameter—techniques are proposed in (Rai et al.,
2014) for tuning α. Moreover, the rank being inferred
is different (atoms vs. data tensor), and the atoms
could be balanced or unbalanced, but for N ≥M the
data tensor is usually unbalanced.

Some recent work has been done using a separable (R =
1) tensor structure for the dictionary. One approach,
separable dictionary learning (Hawe et al., 2013), con-
sidered two-way data (grayscale image patches) and
claimed generalizing to higher order data was straight-
forward, but did not show any results in this direction.
Their optimization algorithm is significantly more com-
plicated than the separable convolution approach in
(Sironi et al., 2015) and for grayscale denoising the
performance is not as good as BPFA. The separable
multiplicative structure is also considered in (Gribonval
et al., 2015), where the sample complexity for various
dictionary learning approaches is considered.

A separate line of work is concerned with high-order
cumulant decomposition, which is used in, e.g. indepen-
dant component analysis (Comon, 1994). Cumulants
are symmetric, so all of the factor matrices are identical
(Comon et al., 2008). This is very different from direct
analysis of tensor data.

6 Experiments

In this section we show that maintaining the tensor
structure of the data is beneficial in several tasks. We
compare against vectorized factor analysis to show
that keeping structure can boost performance. All

experiments use the default parameters discussed above
and none of the parameters were tuned or optimized.
We implemented our models in Matlab. All latent
parameters are initialized randomly, except α which is
set to 106 to initialize an essentially separable model.
In the tables, bold represents the best result.

6.1 Image denoising and inpainting

Image denoising is a standard image processing task,
and BPFA has been shown to produce very good de-
noising results without a priori knowledge of the noise
level. Inpainting is another image processing task, and
is a special case of compressive sensing. The goal in the
inpainting task is to impute missing pixels. Simultane-
ous inpainting and denoising has become an important
step in scientific imaging (Stevens et al., 2014; Kovarik
et al., 2016). The model details for inpainting and
compressive sensing are given in (Zhou et al., 2012).
Finally, while we do not give direct comparisons to
K-SVD Aharon et al. (2006), BPFA has been shown
to be, in general, superior to K-SVD for denoising.

All of the image processing methods are patch-based.
The dataset X ∈ RB×B×C×N is extracted from the
image on a regular grid where the corner of each patch
is separated from the other patches by (∆,∆) pixels
(B is patch width/height, C is the number of colors).
In these experiments 150 samples are obtained, with
the first 40 used as burn-in. The remaining samples
are reconstructed as an image, and then averaged to
give the final reconstruction. This reconstruction ap-
proach is a type of Bayesian model averaging, we do
not compute a MAP or mean-field solution. For the
our stochastic learning approach, termed CDF-KFA,
we use 10 epochs with 5 for burn-in, a batch size of
5000, and we update all of the local parameters one
time after the first epoch. The time for a single epoch
is about 3 times the iteration time for KFA on the
full dataset (CDF-KFA has 3× more updates). For
inpainting, the sensing mask pixels are drawn iid from
a Bernoulli distribution and the same mask is used for
the different algorithms. We measure reconstruction
error using peak signal to noise ratio (PSNR).

Grayscale: The grayscale experiments use a 256×256
Barbara image. The image was chosen so that a direct
comparison can be made with published BPFA results.
The patch size is 8× 8 in these experiments.

We first examine the performance of KFA by varying
the complexity (via dictionary size K) and robustness
to small sample sizes. The results of the complexity
experiment are shown in Figure 2; the dictionary size
ranges from 1 to 256, ∆ = 1, and for KFA R = 1.
We see that KFA, with much fewer parameters, out-
performs BPFA. The number of parameters for the

Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis

 16*82 64*82 100*82 144*82 196*82 256*82

Number of dictionary parameters

24

28

32

36

40

44
PS

N
R

 (d
B)

KFA
BPFA

16 36 64 100 144 196 256
Number of dictionary elements (K)

24

28

32

36

40

44

PS
N

R
 (d

B)

KFA
BPFA

Figure 2: Reconstruction quality for varying model complexity. The same data is shown with different x-axis scalings:
reconstruction PSNR as a function of the number of parameters (left) and as a function of the number of atoms (right).

KFA dictionary is KR(1 +
∑
mt) = 17K and BPFA has

K
∏
mt = 64K. KFA also has a sizable jump in perfor-

mance just above K = RM = 8, but before K =
∏
mt,

indicating that rank-overcompleteness is beneficial. For
robustness to small sample sizes we train on datasets
with ∆ = 1, 2, 4, 8, corresponding to 100%, 25%, 6.25%,
and 1.56% of the patches; results are shown in Table 1
each entry is the mean of 10 runs; the standard devi-
ation for KFA and BPFA was 0.1, for MGP-CP 1.2
and for CDF-KFA 0.6. We also compare to MGP-CP
(using patches) with R = RG = 64 and our new update
for α using the same number of samples as KFA. KFA
performs substantially better than BPFA and KFA is
more consistent for smaller datasets. We also find that
the MGP-CP, performs better than BPFA.

Table 1: Reconstruction PSNR (dB) for fractions of data.
∆ 1 2 4 8
MGP-CP 47.23 45.68 44.82 42.76
BPFA 42.48 41.43 40.21 36.88
CDF-KFA 44.56 41.14 40.83 39.01
KFA 50.36 49.71 47.84 44.26

The results for simultaneous denoising and inpainting
of the Barbara image are listed in Table 2 and exam-
ple reconstructions for 20% inpainting are in the SM.
We find that KFA generally outperforms BPFA. The
BPFA results were reported in (Zhou et al., 2012). The
dictionaries learned by each algorithm from the uncor-
rupted image are shown in Figure 3. Qualitatively, the
KFA dictionary has a larger variety of structures. The
rank (via SVD, with a threshold of 10−6) of the KFA
dictionary atoms is between 2 and 7 with 96% having
rank 4 or 5. In contrast, every BPFA atom has full
rank. KFA dictionaries for R = 1, 2, 4, 8 learned from
the uncorrupted image are shown in Figure 4. The
dictionaries clearly show that KFA enforces different
rank; in higher-rank dictionaries KFA learns both low-

and high-rank atoms.

The results for only inpainting are substantially better
than BPFA. KFA gains more than 1 dB in 3 of the
cases. For denoising cases KFA also produces superior
results. In combined denoising and inpainting KFA
performs better than BPFA in all but one case.

Color: In the color image experiment we use the
castle image. The patch size is 7× 7× 3, ∆ = 1, and
K = 512. Denoising and inpainting were performed
separately and the reconstruction PSNRs for the castle
image are shown in Table 3. The inpainting results
improve upon BPFA (reported by (Zhou et al., 2012)),
and the denoising results are comparable. We also
obtain a PSNR of 50.94 dB on the uncorrupted im-
age using non-overlapping patches. The dictionaries
learned by BPFA and KFA are shown in Figure 3.

Table 2: Reconstruction PSNR (dB) for the Barbara image
reduced pixel collection and additive noise. Top: BPFA,
Bottom: KFA, Subtable: CDF-KFA.
H

HHHHσ

Pixels
10% 20% 30% 50% 100%

0 23.47 26.87 29.83 35.60 42.94
24.24 27.92 30.90 36.03 50.43

5 23.34 26.73 29.27 33.61 37.70
24.11 27.43 30.08 33.51 38.22

10 23.16 26.07 28.17 31.17 34.31
23.51 27.18 28.54 31.24 34.44

15 22.66 25.17 26.82 29.31 32.14
23.09 25.43 27.92 29.36 32.18

20 22.17 24.27 25.62 27.90 30.55
22.47 24.57 26.09 28.72 30.71

25 21.68 23.49 24.72 26.79 29.30
21.91 23.96 25.09 27.02 30.17

Pixels 10% 20% 30% 50% 100%
σ 0 5 10 15 20

23.51 26.80 27.92 28.72 30.17

A Stevens, Y Pu, Y Sun, G Spell, L Carin

Figure 3: Dictionaries from clean images. Left to right: Barbara KFA, BPFA; Castle KFA, BPFA. Zoom for detail.

Figure 4: Barbara KFA dictionaries: from left to right R = 1, 2, 4, 8. For R = 1 KFA learns a very DCT-like dictionary.
As the rank increases diagonal structures are added. For R = 8, most atoms have rank less than 5, and none are full-rank.

Table 3: Reconstruction PSNR (dB) for the castle image.

Pixel% 20 30 50 80
BPFA 29.12 32.02 36.45 41.51
CDF-KFA 28.95 31.87 37.18 44.60
KFA 29.59 32.46 38.40 49.08

σ 5 10 15 25
BPFA 40.37 36.24 33.98 31.19
CDF-KFA 39.94 35.63 33.52 30.60
KFA 40.58 36.20 33.73 30.54

3-way data: Here we show the superior inpainting
performance of KFA on two 3-way data sets. The first
is the amino acids fluorescence data (5×201×61) (Bro,
1998), with 5× 50× 4 patches, ∆ = 1, K = 256, and
R = RG = 20. We compare to BPFA, MGP-CP (no
patches), and sBTD (Zhao et al., 2015). The second is
the brainweb, a 3D MRI image (Collins et al., 1998),
where we use 8 × 8 × 8 patches, ∆ = 4, K = 512,
and R = RE = 24. For the brainweb data, we com-
pare to BPFA, and sBTD. We also show comparable
performance to BM4D for denoising (Maggioni et al.,
2013). The results are shown in Tables 4–5. We re-
port PSNR and relative residual square error (RRSE):
‖X̂ − X‖F /‖X‖F .

After reviewing the results for grayscale and color im-
age inpainting, the substantial performance gain by
KFA over the other tensor methods is not surprising
and is due primarily to the fact that we are performing
tensor dictionary learning, not tensor decomposition—

in fact, BPFA is comparable to tensor decomposition.
For 20% pixels, KFA obtains a PSNR of 27.92, 29.58,
and 30.46 dB, for gray, color, and MRI data. The rea-
son inpainting performance increases as the dimension
grows is that the number of sensed pixels in a patch
increases with dimension (about 13 pixels for 8 × 8,
and 102 for 8 × 8 × 8). We further note that for the
amino experiment, KFA is rank-overcomplete, but not
overcomplete (RG < K <

∏
mt).

Table 4: Reconstruction quality for amino 10% pixels.

sBTD MGP-CP BPFA KFA
RRSE 0.026 0.02542 0.02752 0.01099
PSNR 45.40 45.60 44.91 52.88

Table 5: Reconstruction PSNR (dB) for 3D MRI.

sBTD BM4D BPFA KFA
σ = 19% — 29.70 29.26 29.67
20% pixels 22.33 — 30.21 30.46

6.2 Deep learning

In the next two experiments we test deep CKFA and
Kruskal DGDN. The rank for these experiments was
set to R = 1 to minimize training time. Even with
such a strong restriction the proposed tensor models
outperform the non-tensor models. The hyperparame-
ters for our deep models are set as in (Pu et al., 2016a);
no tuning or optimization was performed. All of our
deep models are rank-overcomplete (each layer).

Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis

Caltech 101: We resize the images to 128 × 128,
followed by local contrast normalization Jarrett et al.
(2009). The network in this example has 3 layers. The
dictionary sizes for each layer are set to K1 = 64,
K2 = 125 and K3 = 128, and the dictionary atom
sizes are set to 16 × 16, 9 × 9 and 5 × 5. The size of
the pooling regions are 4× 4 (layer 1 to layer 2) and
2× 2 (layer 2 to layer 3). For classification, we follow
the setup in Yang et al. (2009), selecting 15 and 30
images per category for training, and up to 50 images
per category for testing. The training for the CFA
and CKFA models is unsupervised, and the top layer
features are used to train an SVM after training the
deep model.

Table 6: Caltech 101 classification accuracy (%).
Method 15 images 30 images
HBP-CFA layer-1 53.6 62.5
CKFA layer-1 55.7 63.2
Deep CFA 43.24 53.57
HBP-CFA layer-1+2 58.0 65.7
CKFA layer-2 57.4 64.5
CKFA layer-3 61.2 69.9
DGDN 75.4 87.8
Kruskal DGDN 76.1 88.3

We compare to the hierarchical beta process CFA (HBP-
CFA) (Chen et al., 2011), the pretrained DGDN (i.e.,
deep CFA), and the DGDN (Pu et al., 2016a). The
DGDN models have 3-layers. Other deep CNN models
outperform our results in this experiment. However,
we are simply showing that using a tensor structured
dictionary can improve performance. The results for
Caltech 101 are shown in Table 6. The one layer CKFA
significantly outperforms Deep CFA and is also better
than the single layer HBP-CFA. We also find that the
2-layer deep CKFA achieves comparable performance
to the deep HBP-CFA using only the top-layer features.
The 2-layer HBP-CFA uses both layers of features in the
SVM. We also train a 3-layer CKFA and see that the
deeper model continues to extract more discriminative
features as layers are added. Kruskal DGDN provides
state of the art accuracy among models not pretrained
on ImageNet (Deng et al., 2009).

MNIST: A two layer model is used with dictionary
size 8×8 in the first layer and 6×6 in the second layer;
the pooling size is 3× 3 and the number of dictionary
atoms in layers 1 and 2 are K1 = 36 and K2 = 152.
These numbers of dictionary atoms are obtained by
setting the initial number of atoms to a large value
(K1 = 50, K2 = 200), then removing low-use atoms.

The results for MNIST are shown in Table 7. The
state of the art MCDNN is shown as a reference point,
MCDNN uses a committee of 35 convnets, elastic dis-
tortions, and width normalization. In contrast, we train
a single 2-layer model using the original training data.

103 104 105

of Training cases

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

%
 E

rro
r

Stochastic Pooling
DGDN
Kruskal DGDN

Figure 5: MNIST classification error varying training size.

The separable Kruskal DGDN outperforms DGDN. We
also test the robustness of Kruskal DGDN to small data
sets. The results are shown in Figure 5. We compare
to the first stochastic pooling work (Zeiler and Fergus,
2013) and DGDN. Kruskal DGDN is consistently better
than DGDN.

Table 7: MNIST classification error on test-set.
Method Error %
35-CNN (Ciresan et al., 2012) 0.23
6-layer CNN (Ciresan et al., 2011) 0.35
4-layer CNN (Li et al.) 0.37
2-layer DGDN (Pu et al., 2016a) 0.37
2-layer Kruskal DGDN 0.35

7 Conclusion

This paper presented a doubly nonparametric tensor-
variate factor analysis model. To the best of our knowl-
edge, this is the first factor analysis model capable of
preserving the structure of arbitrary order tensor data.
KFA is fully locally conjugate, by design, and can be
implemented as a Gibbs sampler. The concept of rank-
overcompleteness was also introduced. We showed that
rank has a role in the interaction between sparsity and
overcompleteness, but the interplay of these three prop-
erties requires further study. We also explored several
extensions of KFA: online learning with BCDF, con-
volutional factor analysis, deep CFA, and supervised
deep CFA using the Bayesian SVM. The performance
of KFA and Kruskal DGDN is promising and has im-
proved state of the art in inpainting and on the Caltech
101 image classification benchmark.

Acknowledgments: Supported by the Chemical
Imaging, Signature Discovery, and Analytics in Motion
Initiatives at PNNL and by ARO, DARPA, DOE, NGA,
ONR and NSF. PNNL is operated by Battelle Memorial
Inst. for the US DOE; contract DE-AC05-76RL01830.

A Stevens, Y Pu, Y Sun, G Spell, L Carin

References
H. Abo, G. Ottaviani, and C. Peterson. Induction for secant

varieties of segre varieties. Transactions of the American
Mathematical Society, 2009.

M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse
representation. IEEE T Signal Process., 2006.

A. Bhattacharya and D. Dunson. Sparse Bayesian infinite
factor models. Biometrika, 2011.

R. Bro. Multi-way analysis in the food industry: models,
algorithms, and applications. PhD thesis, Københavns
Universitet, 1998.

B. Chen, G. Polatkan, G. Sapiro, D. Dunson, and L. Carin.
The hierarchical beta process for convolutional factor
analysis and deep learning. In ICML, 2011.

O. Christensen. Frames and bases: An introductory course.
Springer, 2008.

A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao,
C. Caiafa, and H. A. Phan. Tensor decompositions for
signal processing applications: From two-way to multiway
component analysis. IEEE Signal Proc. Mag., 2015.

D. Ciresan, J. Meier, U.and Masci, L. Maria Gambardella,
and J. Schmidhuber. Flexible, high performance convolu-
tional neural networks for image classification. In IJCAI,
2011.

D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In CVPR,
2012.

D. Collins, A. Zijdenbos, V. Kollokian, J. Sled, N. Kabani,
C. Holmes, and A. Evans. Design and construction of a
realistic digital brain phantom. IEEE T Med. Imaging,
1998.

P. Comon. Independent component analysis, a new concept?
Signal processing, 36(3), 1994.

P. Comon, G. Golub, L. Lim, and B. Mourrain. Symmetric
tensors and symmetric tensor rank. SIAM J Matrix Anal.
A, 30(3), 2008.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li.
Imagenet: A large-scale hierarchical image database. In
CVPR, 2009.

R. Gribonval, R. Jenatton, F. Bach, M. Kleinsteuber, and
M. Seibert. Sample complexity of dictionary learning
and other matrix factorizations. IEEE T Inform. Theory,
2015.

R. Guhaniyogi, S. Qamar, and D. B. Dunson. Bayesian
conditional density filtering. arXiv:1401.3632, 2014.

S. Hawe, M. Seibert, and M. Kleinsteuber. Separable dic-
tionary learning. In CVPR, 2013.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.
What is the best multi-stage architecture for object recog-
nition? In ICCV, 2009.

L. Kovarik, A. Stevens, A. Liyu, and N. Browning. Imple-
menting an accurate and rapid sparse sampling approach
for low-dose atomic resolution STEM imaging. Appl.
Phys. Lett., 109(16), 2016.

M. S. Lewicki and T. J. Sejnowski. Learning overcomplete
representations. Neural computation, 2000.

C. Li, A. Stevens, C. Chen, Y. Pu, Z. Gan, and L. Carin.
Learning weight uncertainty with stochastic gradient
MCMC for shape classification. In CVPR.

M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi.
Nonlocal transform-domain filter for volumetric data
denoising and reconstruction. IEEE T Image Process.,
2013.

J. Mairal, F. Bach, and J. Ponce. Sparse modeling for image
and vision processing. arXiv:1411.3230, 2014.

J. Paisley and L. Carin. Nonparametric factor analysis with
beta process priors. In ICML, 2009.

N. Polson and S. Scott. Data augmentation for support
vector machines. Bayesian Analysis, 2011.

Y. Pu, X. Yuan, and L. Carin. Generative deep deconvolu-
tional learning. arXiv:1412.6039, 2014.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and
L. Carin. Variational autoencoder for deep learning of
images, labels and captions. In NIPS, 2016a.

Y. Pu, X. Yuan, A. Stevens, C. Li, and L. Carin. A deep
generative deconvolutional image model. In AISTATS,
2016b.

N. Qi, Y. Shi, X. Sun, and B. Yin. TenSR: Multi-
dimensional tensor sparse representation. In CVPR, 2016.

P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, and L. Carin.
Scalable bayesian low-rank decomposition of incomplete
multiway tensors. In ICML, 2014.

A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, and P. Fua.
Learning separable filters. IEEE T Pattern Anal., 2015.

A. Stevens, H. Yang, L. Carin, I. Arslan, and N. Browning.
The potential for Bayesian compressive sensing to sig-
nificantly reduce electron dose in high-resolution STEM
images. Microscopy, 63(1), 2014.

Y. Tang, R. Salakhutdinov, and G. Hinton. Tensor analyzers.
In ICML, 2013.

Y. Wang and L. Carin. Levy measure decompositions for
the beta and gamma processes. In ICML, 2012.

Z. Xing, M. Zhou, A. Castrodad, G. Sapiro, and L. Carin.
Dictionary learning for noisy and incomplete hyperspec-
tral images. SIAM J. Imag. Sci., 2012.

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-
mid matching using sparse coding for image classification.
In CVPR, 2009.

X. Yuan, V. Rao, S. Han, and L. Carin. Hierarchical
infinite divisibility for multiscale shrinkage. IEEE T
Signal Process., 2014.

M. Zeiler and R. Fergus. Stochastic pooling for regular-
ization of deep convolutional neural networks. In ICLR,
2013.

X. Zhang, D. Dunson, and L. Carin. Tree-structured infinite
sparse factor model. In ICML, 2011.

Y. Zhang, R. Henao, C. Li, and L. Carin. Bayesian dictio-
nary learning with gaussian processes and sigmoid belief
networks. In IJCAI, 2016.

Q. Zhao, L. Zhang, and A. Cichocki. Bayesian sparse Tucker
models for dimension reduction and tensor completion.
arXiv:1505.02343, 2015.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing,
D. Dunson, G. Sapiro, and L. Carin. Nonparametric
Bayesian dictionary learning for analysis of noisy and
incomplete images. IEEE T Image Process., 2012.

	Introduction
	Preliminaries
	Kruskal Factor Analysis
	Deep Convolutional KFA
	Related Work
	Experiments
	Image denoising and inpainting
	Deep learning

	Conclusion

