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Supplementary materials

Details of algorithmic comparisons

All parameters of the methods compared here are
tuned for best performance.

FALCON [5]: We set the sparsity parameter (the `1
weights ) κ to 3. The threshold above which the sup-
port is defined is set as 10% of the maximum intensity.

SPIDER [17]: We set the sparsity parameter, the
weights of `0 regulation, κ = 250.

deconSTORM [7]: In our simulations accuracy con-
tinued to improve even after 5000 iterations, so we
used 5000 iterations in our comparisons. Note compu-
tation time is proportional to the number of iterations,
so this method could be sped up at the cost of some
accuracy.

3B [8]: As mentioned in the Discussion, we were not
able to obtain reasonable results using this method,
even after > 1 day of computation, for data sets with
e.g. 2000 observed frames. In personal communica-
tions with the developers of this method, it was em-
phasized that this approach is better suited for smaller
images and smaller values of N , since the speed of this
method decreases more or less with the square of the
size of the PSF (in pixels), the size of the image area
being analyzed, and the number of frames observed.
Therefore we did not pursue further quantitative com-
parisons against this method.

Evaluation: Identified fluorophores are defined as es-
timates within some fixed distance from the true fluo-
rophores. The cutoff radius we used was 50 nm. FAL-
CON returns a list of fluorophore locations, whereas
vEM, deconSTORM, and SPIDER return images of
the estimated fluorophore density. To quantify flu-
orophore estimate accuracy for these methods we
thresholded these images and took local weighted av-
erages to obtain the estimated fluorophore locations.

Experimental details

Simulation: To validate our analysis method, we sim-
ulated grid data on a 32-by-32 pixel map with an image
pixel size of 100 nm. The final resolved image sits on
a 3x finer grid with super resolution pixel size of 33
nm. Unless stated otherwise, each frame has an emis-
sion rate of 0.04, corresponding to an average molecule
density of 6.8 µm−2. The average photon number is
1,000 per fluorophore with PSF width 150 nm in stan-
dard deviation or 353 nm in FWHM. To test the per-

formance of our method under different practical sit-
uations, we varied critical parameters, including the
number of frames, molecule density, and PSF width.
In those simulations, we replace the above parameters
with a range stated in the corresponding figure caption
and keep other parameters unchanged.

Real data: We reconstruct a patch of tubulins on a
32-by-32 pixel image map with 5000 real experimental
frames. The final resolved image sits on a 4x finer grid.
We modeled the PSF as a Gaussian blur with width
of 183 nm in standard deviation; this parameter was
estimated by fitting observations of non-overlapping
fluorophores to a 2D Gaussian function, following [19].
The dataset is provided as Tubulin ConjAL647 on the
Single Molecule Localization Microscope website [4].

Markov model

In the main text, we focus on a model in which fluo-
rophores become active according to a Poisson process
with rate λ. The active fluorophores in one frame are
conditionally independent from those in other frames,
given λ. In this section, we incorporate the phe-
nomenon that some fluorophores do not quench im-
mediately, i.e. there is a probability that an ac-
tive fluorophore will remain active in the following
frames. Thus the active fluorophores in one frame
consist of two groups: “newborn” fluorophores that
activate from the dark state with rate λ (the same as
before), plus fluorophores remaining active from the
previous frame, each with probability α. Under this
assumption, the active fluorophores in one frame are
dependent on those in the frame before and after, so
we denote the new model as the “Markov model” and
the original model as the “non-Markov model.”

The Markov model incorporates the positions of ac-
tive fluorophores in neighboring frames i+1 and i−1,
which can potentially be useful to help pinpoint the
positions of active fluorophores in each frame i. Thus
we would expect the Markov model to outperform
the non-Markov in localizing individual fluorophores.
(Similar neighboring-frame effects are incorporated in
[7] and [8].) In this section, we will first introduce
the Markov model, and then show results comparing
the effectiveness of the Markov model versus the non-
Markov model.
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Figure 8: Accuracy of the Laplace approximation. We use the same frame as in Figure 2 in the main text

as an illustration. (A) Yi. (B) Red circles are true positions; blue stars are
ˆ
F ji . (C) Fisher information matrix

Ji. Xj indicates x coordinates of fluorophore j, and Yj the y coordinates. FALCON inferred 8 fluorophores in
this frame, so we have 16 total coordinates. Note that the blocks of Ji corresponding to fluorophores 3,4,5,6
have smaller values, indicating reduced estimation accuracy due to overlapping PSF bumps. Panels (D), (E),
(F) indicate the accuracy of the Laplace approximation for the Poisson likelihood. Since the likelihood w.r.t.
Fi is a 16-dimensional function, we can only display slices of this function. We choose slices in the direction
of eigenvectors of Ji — the principal components of the Laplace approximation. (Directions appear in bottom
panels.) The red (Poisson likelihood) and blue (Laplace approximation) curves align very closely in each of the
three directional slices shown here.

The model

We begin by writing down the Markov model for the
time series of activations of fluorophores I:,xy at loca-
tion xy across all N frames:

p(I:,xy|λxy, α) = p(I1,xy)

N∏
i>1

p(Ii,xy|Ii−1,xy, λxy, α)

(22)

(As usual, fluorophores in different locations xy acti-
vate conditionally independently given λ.) The tran-

sition matrix is given by
P (Ii,xy = 1|Ii−1,xy = 0, λ, α) = λ

P (Ii,xy = 0|Ii−1,xy = 0, λ, α) = 1− λ
P (Ii,xy = 1|Ii−1,xy = 1, λ, α) = α+ λ

P (Ii,xy = 0|Ii−1,xy = 1, λ, α) = 1− α− λ,

(23)

where α is the probability that an active fluorophore
remains active in the next frame, and λ is defined in
eq. 2, 3; note that the probability of a new fluorophore
activating in any frame is typically fairly low (to guar-
antee that each image Ii is sparse), so λ� 1, while the
probability of remaining active may be non-negligible.
We are most interested here in the case that α is signif-
icantly greater than 0, implying λ � α. Finally, note
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Figure 9: Evaluation of vEM in comparison with
FALCON [5], deconSTORM [7], and SPIDER
[17] as a function of PSF width. Panel layout as
in Fig. 5. 2000 frames were used here.

that we use a Bernoulli emission model here instead
of the Poisson emission model used in the main text
(eq. 5); this simplifies the derivations below. Of course
the Poisson and Bernoulli models are identical in the
limit of small λ.

After the Laplace approximation our full approximate
loglikelihood is

ln p(I, Y |λ, α) =

N∑
i=1

{ D∑
x

D∑
y

ln p(Ii,xy|Ii−1,xy, λxy, α)

+ lnN (Fi|F̂i, Σ̂i)
}

(24)

where in eq. 24 we define I0 as all zeros.

Variational EM Algorithm

Now we proceed as before and maximize the ELBO
(eq. 9) to obtain the E and M steps. We will assume
that α is known. In reality, of course, α is unknown
and needs to be estimated along with λ. It is straight-
forward to derive EM iterations for α as well, but we
do not pursue this here. Instead, in the Results section
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Figure 10: Evaluation of vEM in comparison
with FALCON [5], deconSTORM [7], and SPI-
DER [17] as a function of fluorophore density
p. Panel layout as in Figures 5 and 9. We found
that deconSTORM tends to have an inflated false pos-
itive rate (i.e., lower precision) for small values of p in
panel (A). Also note that vEM is relatively cheaper
computationally for small p, where there are fewer flu-
orophores to iterate over in the Laplace approximation
and vEM steps. 2000 frames were used here.

we will simulate data from the Markov model and es-
timate λ using a known value of α, to give the Markov
approach the best possible chance of improving over
the results of the non-Markov model.

M step

λ̂ = arg max
λ
L(λ, q(F )) (25)

= arg max
λ

Eq[P (I, Y |m,λ, α)] (26)

= arg max
λ

Eq[
N∑
i

ln p(Ii|Ii−1, λ, α)] (27)

= arg max
λ

Eq[
N∑
i

(1− Ii−1) ln
[
λIi(1− λ)1−Ii

]
+ (Ii−1) ln

[
(α+ λ)Ii(1− α− λ)1−Ii

]
]; (28)
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eq. 28 combines the cases in eq. 23 and uses the prop-
erty that Ii can only take values of 0 or 1. We have
dropped the pixel subscript xy to simplify notation;
the maximization problem is separable over locations
xy and therefore we can optimize for each pixel inde-
pendently in parallel.

Setting the derivative w.r.t. λ to zero, we obtain

Q1,N

λ̂
−
Q′1,N

λ̂
− N −Q1,N

1− λ̂
+
Q0,N−1 −Q′1,N

1− λ̂

+
Q′1,N

α+ λ̂
−
Q0,N−1 −Q′1,N

1− α− λ̂
= 0, (29)

where we define Q ∈ RD×D+ and Q′ ∈ RD×D+ :

QS,N =

N∑
i=S

E(Ii) =

N∑
i=S

mi∑
j

qij(Fij) (30)

Q′S,N =

N∑
i=S

E(Ii)� E(I(i−1)) (31)

=

N∑
i=S

{ mi∑
j=1

qij(Fij)

}
�
{m(i−1)∑

k=1

qik(Fik)

}
.

(32)

Now set

k1 = Q1,N −Q′1,N (33)

k2 = N −Q1,N −Q0,N−1 +Q′1,N (34)

k3 =
Q′1,N

α+ λ̂
−
Q0,N−1 −Q′1,N

1− α− λ̂
(35)

≈
Q′1,N
α
−
Q0,N−1 −Q′1,N

1− α
(36)

where in eq. 36, we used λ << α. Therefore, eq. 29
becomes

k1

λ̂
− k2

1− λ̂
+ k3 = 0, (37)

which reduces to a simple quadratic equation in λ̂. We
select the valid solution λ̂ ∈ (0, 1).

Similarly as in the non-Markov model, we can perform
soft-thresholding on the obtained value to increase the
sparsity of λ̂.

Finally, note that if we set α = 0, eq. 29 becomes

Q

λ̂
− N −Q

1− λ̂
= 0; (38)

this leads to λ̂ = Q/N , which corresponds to the M
step in the non-Markov model (description under eq.
16), as desired.

E step:

qij(F
j
i ) = arg max

qij
L(λ̂, q(F )) (39)

∝ exp

{
Eq\ij

[
lnP (I, Y |m, λ̂, α)

]}
(40)

∝ exp

{
Eq\ij

[
ln p(Ii|Ii−1, λ̂, α)

+ ln p(Ii+1|Ii, λ̂, α)

+ lnN (Fi|F̂i, Σ̂i)
]}

(41)

∝ exp

{

+

(
Eq\ij

[
Ii−1

]
ln
[(1− λ̂

λ̂

)( α+ λ̂

1− α− λ̂
)]

+ ln
λ̂

1− λ̂

)
F j

i︸ ︷︷ ︸
effect of Ii−1

(42)

+

(
Eq\ij

[
Ii+1

]
ln
[(1− λ̂

λ̂

)( α+ λ̂

1− α− λ̂
)]

+ ln
1− α− λ̂

1− λ̂

)
F j

i︸ ︷︷ ︸
effect of Ii+1

(43)

−1

2
(F ji − F̂

j
i )TJjji (F ji − F̂

j
i )−

mi∑
k 6=j

(F ji − F̂
j
i )TJjki (µik − F̂ ki )︸ ︷︷ ︸

Laplace approx

(44)}
,

where the operator ()F j
i

is the value of the 2D function

of the variable in the parentheses at location F ji .

Note that if α = 0 and λ� 1, then

eq.42 + eq.43 ≈ lnλ;

therefore, we recover the E step in the non-Markov
model (eq.20), as desired.

Results

To quantify the benefits of including the Markov terms
in the model, we generate data from the Markov model
with a range of parameters and perform inference with
both the Markov and non-Markov models. Note that
the non-Markov model is mis-specified in these simu-
lations, while the Markov model is given the “unfair”
advantage of knowing the true value of α. Nonethe-
less, somewhat surprisingly, our basic conclusion is
that incorporating the Markov effects has only a small
effect on inference performance. Fig. 11 shows that
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the estimation accuracy on individual fluorophores is
improved modestly if the Markov terms are included,
once α is sufficiently large. However, in Fig. 12 we see
that the Markov terms lead to negligible improvement
in the overall estimate of λ, which is the main ob-
ject of interest in many super-resolution imaging stud-
ies. Thus we conclude that the “local” information
encoded by the Markov terms in the model is mostly
redundant with the “global” information encoded by
our estimate λ̂, which is shared across frames to im-
prove our estimate of each Ii.
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Figure 11: Evaluation of Markov and non-Markov models as a function of α (First column), Scale
(Second column), and PSF (Third column), with and without soft threholding. The performance
is quantified using the same measures as in the main text. Scale is the average number of photons per active
fluorophore. We use N = 2000 frames. Emission rate p is 0.01. When not indicated otherwise, α, Scale, and
PSF are set to be 0.7, 1000 photons, and 353.25 nm respectively. Note that this is rather large value of α; as
seen in the left panel, smaller differences between the Markov and non-Markov models are seen when smaller
values of α are used.
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Figure 12: Estimates of Markov and non-Markov model as a function of α with soft-thresholding..
The final resolved images of Fig. 11 (First column). The test image was the same grid used in the main
text. Recall that α influences the number of active fluorophores (with large α corresponding to more persistent
fluorophores and therefore higher fluorophore density); the average fluorophore densities in the four columns
shown here are 1.90, 2.55, 3.44, and 5.75µm−2 (left to right). We use N = 2000 frames. Emission rate p is 0.01,
with an average of 1000 photons per fluorophore. PSF is 353.25 nm. Note that no major differences are seen
between the Markov and non-Markov estimates. Similar results were obtained over a wide range of parameters
(not shown).


