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Abstract

Super-resolution microscopy methods have
become essential tools in biology, opening up
a variety of new questions that were pre-
viously inaccessible with standard light mi-
croscopy methods. In this paper we de-
velop new Bayesian image processing meth-
ods that extend the reach of super-resolution
microscopy even further. Our method cou-
ples variational inference techniques with a
data summarization based on Laplace ap-
proximation to ensure computational scala-
bility. Our formulation makes it straightfor-
ward to incorporate prior information about
the underlying sample to further improve ac-
curacy. The proposed method obtains dra-
matic resolution improvements over previ-
ous methods while retaining computational
tractability.

Introduction

Super-resolution microscopy techniques, such as
STORM [1], PALM [2], or fPALM [3] imaging have
quickly become essential tools in biology. These meth-
ods overcome the light diffraction barrier of traditional
microscopy, thus enabling researchers to ask questions
previously considered inaccessible (as a measure of im-
pact, developers of these methods were awarded the
Nobel prize in Chemistry in 2014). Given a sample
treated with a fluorescent dye, the basic strategy is
to stochastically activate fluorophores at a low rate,
guaranteeing that only a sparse subset are activated
at a given time. By repeatedly imaging the sample
we obtain a movie wherein each frame reflects a ran-
dom, sparse set of fluorophore activations. Then we
exploit the sparsity of activations within each frame
to localize the positions of the activated fluorophores;
aggregating a long sequence of such point localizations
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then yields a super-resolved image (Fig. .

Many methods have been proposed to expand upon
this basic idea, focusing upon improving localization
performance within each individual frame [4]. For
sparse recovery of a single frame, several modern tech-
niques take a compressed sensing approach that ex-
ploits the true sparsity of the underlying fluorophore
activations; these techniques result in a formulation as
a sparse deconvolution problem [5, [6], providing scal-
able, fairly accurate reconstructions.

The critical message of this paper is that such stan-
dard approaches are sub-optimal because each frame
is reconstructed independently, thereby discarding in-
formation that should be shared across frames. Intu-
itively, given N — 1 reconstructed frames, we should
have a good deal of prior information about the loca-
tions of fluorophores on the N-th frame, and ignoring
this information will in general lead to highly subop-
timal estimates. (This basic point has been made pre-
viously, e.g. by [7l [8]; we will discuss this work further
below.)

Here, we propose a scalable Bayesian approach that
properly pools information across frames and can also
incorporate prior information about the image, lead-
ing to dramatic resolution improvements over previous
methods while retaining computational tractability.

Model

At each frame i we observe an L x L fluorescence image
Y, € RiXL, and collect the sequences of N observed
frames into the movie Y = {Y;:i e {1,...,N}}. We
model each observed frame Y; as a noisy, blurred, low-
resolution image,

Y; ~ Poisson(AL); (1)

here A is a matrix implementing convolution with a
known point-spread function (PSF), scaling by the
mean photon emission rate per fluorophore, and spa-
tial downsampling; the high-resolution image I; €
Rf *D s a sparse matrix, zero except at the locations
of fluorophores activated on frame . In this appli-
cation L < D. Below we will use the sparse repre-
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Figure 1: Overview of standard super-resolution microscopy. Column 1: The true fluorophore density matrix
®. Column 2: I, indicates the sparse subset of fluorophores (yellow circles) activated on frame i from @,
which is also plotted as background (black dots); two independent sample frames shown here (top and bottom).
Column 3: Y; are the observed camera images on these two frames, formed by blurring and downsampling

the corresponding I; and adding Poisson noise. Column 4: I; indicate the estimated locations of the active
fluorophores on each frame, with the true I; shown for comparison. The FALCON method [5] was used to
compute the estimates here; note that estimator performance decreases in regions where the “bumps” in Y;
overlap significantly. Column 5: The standard approach to estimate p® is to simply average over multiple

. = N 7
inferred frames, I = % Yoo L

sentation (mg, F;) for I;: m; denotes the number of
active fluorophores in I; and F; € R?>™ denotes the
vector of xy positions of these fluorophores. Note that
multiple fluorophores can be active at the same loca-
tion, so the entries of I; are nonnegative integers; it is
straightforward to extend our methods to the case that
I; can take arbitrary nonnegative real values, but we
will suppress this case here for notational simplicity.

At each high-resolution pixel position (z,y), we model
the activation of fluorophores by an inhomogeneous
Poisson process with rate A

Ty
I; 3y ~ Poisson(Ag,), (2)
>\zy = pq)zya (3)

and p is a scalar (typically under at least partial ex-
perimental control) that sets the fluorophore emission
rate. The matrix ® € Rf *P specifies the density of
fluorophores at each pixel location, and is the main ob-
ject we aim to estimate; since A and ¢ are related by
a constant (p), we will develop the inference methods
below in terms of A, as this leads to slightly simpler
algebra.

This model can be extended to 3D [9, [10] and/or mul-
tispectral imaging [I1], but for simplicity here we focus
on 2D single-color imaging.

The above definitions lead to the joint probability dis-

tribution
N
P, Fom, ) o T PO ) PO ) b POV

(4)

where m and F' collect the N scalars m; and vectors
F;, respectively; P()) is a prior distribution on \;

CHp Al [Ali]?'zy
P(Yi|Fyymi) = POi|I) = [ [] e i 50—,
z=1y=1 HTY”

()

where we have used the equivalence between I; and
(my, F}), and

P(F;,mi|A) = P(Fi|A,mqi) P(mi|A) (6)
mi o\
-1

where Ff denotes the xy position of the j-th active flu-
orophore in frame 4, A, is the value of the 2D function

F
171 } Poisson(m;|n),  (7)

A at location FZJ , and we have abbreviated the normal-
. D D
izerp=>,_1> y—1 Azy-

Inference

Now that the model and likelihoods have been defined,
we can proceed to develop our estimator for the under-
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lying fluorophore density image A\. We take a Bayesian
approach, which requires that we approximate the pos-
terior distributions of the unknown quantities (m;, F;)
given the observed data Y;. (Approximation methods
are required here since this is a non-conjugate latent
variable model; we cannot analytically integrate out
the I; variables.) A number of such approximation
methods are available; for example, [12] recently devel-
oped MCMC methods to perform Bayesian inference
in a similar model. However, these methods do not
scale to the cases of interest here, where the number
of frames N and pixels (D? and L?) are often quite
large.

Therefore we have developed a variational expectation-
maximization (vVEM) [I3] approximate inference ap-
proach. As is standard, we need to choose a vari-
ational family of distributions ¢ (these distributions
will be used to approximate the true posterior), then
write down the “evidence lower bound” (ELBO; this is
a function of ¢ and other model parameters), and then
develop methods for tractably ascending the ELBO.

The most standard choice of ¢ here (a fully factorized
distribution over all latent variables, i.e., the activa-
tions I; together with A) does not lead to a scalable
inference method, due to the very high dimensional-
ity of {I;}; in addition, this vanilla variational ap-
proximation is poor here because of strong posterior
correlations between adjacent pixels in the I; images.
Instead, we exploit the sparse representation (m;, F)
for I;: a more effective approach for approximating
p(F,m|Y,\) was to use a simple point estimate for m
(discussed below) and then, conditionally on m, a fac-
torized (“mean-field”) approximation for p(F|m, Y, A).
Thus we approximate

N m;

PENY.m) ~ o) = [[[[ o). ®)

We have factorized across frames i and active fluo-
rophores j within each frame; here each ¢;; € Rf xD
is a probability density on the D x D grid that sum-
marizes our approximate posterior beliefs about the
fluorophore location F}. In practice each ¢;; will be
extremely sparse, with very compact support, as we
will discuss further below (Fig[2E).
The ELBO is given by:
P(F,\,Y|m)
L, q(F :/qF In —2"~ =
(v aF) = [ gt ==

Our goal is to maximize L£(A, ¢(F')) with respect to the
distributions ¢;; and image .

dF  (9)

We will use a coordinate-ascent approach in which we
update one g;; or A at a time; as discussed below, af-
ter one more approximation each update step can be

computed cheaply (and parallelizes easily), and empir-
ically only a few coordinate sweeps are necessary for
convergence to a local optimum.

Laplace Approximation

Computing each ¢;; update directly requires the com-
putation of an L x L sum over the observed data image
Y; and several D x D sums over the other factors g¢;;-,
and since we have to compute these updates repeat-
edly, it is important to reduce the computation time
in this inner loop. We have found that we can effec-
tively summarize the data in each frame by using a
conditional Laplace approximation to the likelihood.
Specifically, we approximate

P(Yi|Fi,m;) o< N(F|Fi, 5), (10)

where the left hand side is the Poisson likelihood from
eq. p| and the right hand side denotes a multivariate
normal density over F; € R?>™, with mean

F, = argm;LXP(E|Fi,m¢) (11)

and covariance inverse to the Fisher information .J;,

S =[BT = [-VEWP(Yi|F;, my)] (12)

[y
Fi=F;
This Gaussian approximation to the Poisson likelihood
is well-known to be accurate in the high-information
regime where a sufficient number of photons are ob-
served; see [14] for further discussion, and supplemen-
tary Fig. [§for empirical evaluations of this approxima-
tion in the context of our simulations. (However, note
that this Laplace approximation is not equivalent to
assuming a Gaussian noise model with constant vari-
ance for Y;; the Poisson noise model used here is signif-
icantly more accurate and consistent with the physics
of shot noise.)

As we will see in the next subsection, this approx-
imation allows us to replace the expensive sums
noted above with evaluations of a much simpler 2m;-
dimensional quadratic form. Fi and fl,» serve as ap-
proximate sufficient statistics for Y;, drastically reduc-
ing the size of the data that needs to be touched per
iteration. In fact, the observed Fisher information ma-
trix J; is sparse - if fluorophores j and j’ are sufficiently
distant (more than a couple PSF widths apart) then
Ji (.5 = 0, and this can be used to further speed up
the computation. In practice, we compute J; via au-
tomatic differentiation [I5] and locally optimize eq.
numerically using an efficient initializer discussed fur-
ther below.

The Laplace approximation also provides a convenient
initialization for the g;;’s: we simply set each ¢;; to be
the marginal (Gaussian) density of F} in eq. 10} with
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Figure 2: Updating the factors ¢;; in the E step. (A) A single simulated observation frame Y;. (B) 8
superimposed initial ¢;; distributions for frame i, computed via Laplace approximations with means 13‘2] . True
active fluorophores in I; are labeled as red circles; true A indicated by black dots; numbers indicate each sz
(ordering is arbitrary). Fluorophores 1,2,7, and 8 are relatively spatially isolated, with correspondingly large
Fisher information (see supplementary Fig. |8) and so their initial ¢ distributions are highly concentrated (and
cannot even be seen beneath the red circles). In contrast, the closely overlapping PSF’s of fluorophores 3,4,5,
and 6 lead to broad initializations of ¢. (C) Zoom of yellow region outlined in B. (D) Final ¢;;’s estimated
by the vEM algorithm (same region as in panel B). Note that these have converged onto the region of positive
A (despite not having access to the ground truth \), and the four original estimated fluorophore distributions
have essentially converged near the 3 true active fluorophores in this region. (E) Further zoom showing details
of each g;; in D. The locations of other 13’1-3 ’s are indicated by white numbers. Left column: initial g;;’s; right
column: final ¢;;’s. Again, the numbers indicate the Ff locations, which correspond to the peaks of the initial
gi;'s. Note the significant differences between the initial and final g;;’s.

gi; set to zero for all pixels sufficiently distant from

E7.
N
In P(F,\,Y|m) ~ {m N (F|F;, %)
mi )\Fj
+1n H £ + In Poisson(m; |17)}
i

Variational EM Algorithm J

+ In P(X\) + const. (13)

Now we can put the pieces together and derive our The vEM algorithm alternates between an E step (in
vEM algorithm. The first step is to expand the ELBO which we optimize the ELBO wrt each ¢;;, with A and
eq[9] plugging in our factorized ¢, the Laplace approx- all the other ¢’s held fixed), and an M step (in which we
imation eq[I0} and the likelihood eq[7] to arrive at optimize the ELBO wrt A with all the ¢’s held fixed).
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M step:
A = arg max L(X\q(F)) (14)
= arg m}.’fmx E,[In P(F, A\, Y|m)] (15)
N 1,
:argm}z\%x;;%j ©InA—Nn+Inp(A), (16)

with ® denoting pointwise multiplication. If we use a
flat prior for A, the p(A) term can be dropped, and if

we abbreviate ) = va E;’“ gi;j, we have the solution

A= Q/N. (Recall that X\, \, and Q € REXD.) This is
a natural generalization of the MLE for a discretized
inhomogeneous Poisson process.

E step:

¢ij = argmax E(S\, q) (17)

qij

ocexp{

X exp { i {i::
N mn
DI (19)

n k=1

, [In P(F, A Y|m)]} (18)

(F, — BT I (F, — E)

l\D\»—t

A 1 . Ny
X Aps exp{ 5(F — FNTJP(F] - FY)

- SO B - £ (20)
k#j

here we have abbreviated ¢\;; = ¢/¢i;, J} " is the 2 x 2
block of J; corresponding to ﬂuorophores 7 and k, and
pir = Eg,, FF. Note that in the end, due to the Laplace
approximation, the g;;’s only enter the update above
via their means, and that the updated g¢;; is simply

proportional to a Gaussian factor multiplied by A.

Finally, note that the effective support of each g;;
tends to shrink compared to the initialization (and this
increasing sparsity can be readily exploited computa-
tionally); this makes sense, because our initialization
(from the Laplace approximation) is based only on the
likelihood of a single frame Y; — when we incorporate
the information from other frames (via A) the approxi-
mate posterior g;; tends to become more concentrated.
See Fig. [2| for an illustration.

Extensions and further details

In the developments above we have deferred several
questions. How do we estimate m;, the number of ac-
tive fluorophores in each frame? How do we initialize

the optimization problem eq[I1]in the Laplace approx-
imation for the likelihood? How do we make use of
prior information P()) in the M-step?

For the first two tasks mentioned above we exploit pre-
existing solutions. Specifically, we have found that the
FALCON [5] method provides fairly good preliminary
estimates of both the number and the location of flu-
orophores in each frame i; the former is used as m;
and the latter are used to initialize the optimization

in eq. [[]

One of the major benefits of a Bayesian approach is
that we can easily incorporate prior information about
parameters of interest - in this case, A. In principle it
is possible to incorporate various sources of prior infor-
mation about A, but here we restrict our attention to
the simplest case: in many cases the true underlying
A is known to be sparse, and we can exploit this fact
to improve our estimates significantly. (Note that this
sparsity constraint on A is in addition to the fact that
the images I; are sparse, a fact that we have already
exploited repeatedly. Also note that standard super-
resolution approaches exploit the sparsity of each I;
— but since they simply average over the estimated I;
to obtain 3\, previous approaches have not attempted
to further exploit the sparsity of A\.) An effective and
computationally trivial approach is to apply the stan-
dard L1 “soft threshold” operator [16] to @ in the M-

step (eq:
N m; .
— QN =5 S wE| N @

where we define S.[z] = max(z — ¢,0); the threshold
c can easily be chosen to achieve an a desired level
of sparsity (typically set by prior knowledge, though
cross-validation could be used here instead).

When active fluorophores are well-isolated in the im-
age (i.e., the “bumps” corresponding to each active
fluorophore are sufficiently distinguishable) then FAL-
CON’s estimates are typically accurate, and the cor-
responding entries of the Fisher information matrix
J; are large. However, when the bumps overlap then
the Fisher information can decrease significantly (see
supplementary Fig. [§] I for an illustration) and the ac-
curacy of m; and the nearby fluorophore estimates F J
decrease. In this case we can achieve significantly im-
proved accuracy by exploiting information from other
frames, via the estimated A

Thus the full algorithm proceeds as follows. To ini-
tialize we run FALCON on each frame and compute
the Laplace approximation, then run vEM (restricting
attention to the ~ 50% of frames on which fluorophore
activation was sparsest, to improve localization accu-
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FALCON

Figure 3: Illustrating the algorithm steps on a
simulated example. Upper left: FALCON estimate
given 5000 frames of data. Upper right: output after
first run of vEM, based on the 2000 sparsest frames.
This estimate is used to constrain FALCON to obtain
a more accurate preliminary estimate F and m, with
all 5000 frames (lower left), and our final estimate us-
ing all 5000 frames after a second vEM run is shown
in the lower right. The grid shape of the true underly-
ing simulated image (red dots) is recovered essentially
perfectly in the lower right; estimation noise (averaged
over frames) blurs the true grid shape significantly in
the left panels.

racy). Then we rerun FALCON incorporating infor-
mation from the preliminary \ estimate to improve the
estimates F and 7. FALCON uses an L1-penalized re-
gression approach to obtain preliminary estimates of
I; from Yj; it is straightforward to include a weighted
L1 term where the weight is inversely proportional to
A to encourage the FALCON output to localize near
regions of high A (and to eliminate some spurious lo-
cation estimates). Then we can use the resulting up-
dated A-constrained FALCON estimates of the fluo-
rophore locations to re-initialize eq. [IT] on the subset
of frames where the preliminary FALCON and vEM
results disagree (updating these m,; as well), and pro-
ceed with further vEM iterations. This procedure can
in principle be iterated, though we find in practice
that one outer iteration typically suffices. In the inner
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Figure 4: Evaluating performance of each algo-
rithm step. (A) Estimates of active fluorophore lo-
cations in a single frame. Dotted black line indicates
location of remaining (inactive) fluorophores. Note
that vEM-2 estimates are more accurate than FAL-
CON estimates. Algorithm steps and all simulation
details follow Fig. except in the vEM-1 step we
compute results over all 5000 frames (not just 2000
frames, as in Fig. [3| upper right), for apples-to-apples
comparison against the vEM-2 results here. Inset: ob-
served data Y; for this frame. (B) The percentage of
\ contained within the true support after each algo-
rithm step. Note that vEM leads to significant im-
provements over FALCON; applying soft-thresholding
in the M-step also provides significant improvements.
(C) Reecall, Precision and F-measure of identified flu-
orophores (solid: soft-thresholded; dashed: no soft-
thresholding), and (D) mean absolute error of flu-
orophore location estimates. In both cases, similar
trends as in (B) are visible.

loop, we found that just 5 vEM iterations were suffi-
cient. See Fig. 3] for an illustration of each algorithm
step’s output.

Results

Figures detail simulated comparisons between
FALCON, a state-of-the-art super-resolution algo-
rithm [5], and the vEM algorithm developed here. The

VEM-2

Const FAL VEM-2
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simulated image was a simple grid pattern; full simu-
lation details are given in the Appendix. In Fig. [J]it is
clear that the variational EM algorithm recovers the
true grid support in this simulated example more accu-
rately than does the FALCON algorithm. Fig. 4] quan-
tifies the performance of the new proposed algorithm
following each step illustrated in Fig. Specifically,
we examine the proportion of fluorophores whose esti-
mated positions were recovered on the correct support
of the true underlying grid image (panel B); the frame-
by-frame precision and recall (and F measure, defined
as the harmonic mean of precision and recall) of indi-
vidual fluorophore estimates (panel C); and the frame-
by-frame absolute error of individual fluorophore esti-
mates (panel D). In each panel, we see that vEM leads
to significant improvements over FALCON; applying
soft-thresholding in the M-step also leads to signifi-
cant improvements.

Figure[5] quantifies these results further, and adds com-
parisons to other competitive algorithms in the litera-
ture. Again the conclusion is that the vEM approach
provides significantly more accurate estimates at little
computational cost. Supplementary Figures [J] and
in the appendix show that this conclusion holds fairly
uniformly over a wide range of PSF widths and average
fluorophore densities, respectively.

Figure [6] provides a visual summary of one of the crit-
ical points of this paper: as the number of observed
frames N increases, the vEM estimator continues to
improve, and by N = 5000 is able to recover the true
support of the underlying grid image with almost per-
fect accuracy. FALCON, on the other hand (as well
as other approaches that estimate each frame indepen-
dently), outputs estimates that appear blurry, due to
noise in the estimated fluorophore locations, averaged
over many frames — and this effective blur (and result-
ing loss of resolution) does not decrease asymptotically
as N increases, since unlike vEM, FALCON does not
exploit information from the (N — 1) other frames to
improve estimation of individual frames.

Finally, Figure [7] shows a comparison of FALCON vs
vEM applied to real data (see Appendix for full de-
tails). In this case the ground truth image is not avail-
able for comparison, but nonetheless the results are
consistent with the simulated results described above:
vEM leads to a sharper, better-resolved image than
does FALCON.

Discussion

We have introduced scalable Bayesian methods for
improved estimation in super-resolution microscopy.
By further extending the reach of these critical imag-
ing methods, our approach can significantly impact a

A
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Figure 5: Evaluation of vEM in comparison with
FALCON [5], deconSTORM [7], and SPIDER
[17] as a function of the number of observed
frames N. A-C: F-measure, mean absolute fluo-
rophore estimation error, and fraction of fluorophore
mass recovered correctly on the true underlying grid
computed as in Fig. The vEM approach outper-
forms the other state-of-the-art algorithms on all of
these metrics. D: Computational time of each algo-
rithm step. Our full algorithm runs FALCON (red
curve), computes the Laplace approximation (black
curve), then iterates vEM to convergence (blue curve),
then repeats the whole process on at least a subset
of frames, so overall speed is ~ 2x slower than FAL-
CON overall. The deconSTORM algorithm is rela-
tively much slower here.

variety of biological applications. The hybrid vEM
/ Laplace-approximation / sparse-representation ap-
proach developed here is more generally applicable
in other hierarchical sparse signal model applications
[12]. Our methods exploit the insight that sharing in-
formation across image frames significantly improves
accuracy — and this effect grows more powerful as
the number of frames IV increases.

Similar points have appeared previously in the super-
resolution microscopy literature, notably in [7] and [§].
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Figure 6: Estimates with varying number of observed frames N. Estimated A images output by FALCON
(upper panels) and vEM (lower panels) with 500, 1000, 2000, and 5000 simulated frames (with imaging parameters
such as PSF width and fluorophore density p held fixed over all frames). Red dots indicate the ground truth grid.
The grid recovery accuracy of the vEM algorithm continues to improve with N — recovering the underlying grid
structure nearly perfectly when N = 5000 — but the estimation noise-induced blur in the FALCON estimate

does not decrease with V.

The methods introduced in [§] are seldom used in prac-
tice on large-scale imaging data, due to prohibitive
computational expense. The vEM methods we have
introduced here are much more scalable (Fig. ); in-
deed, we were unable to obtain good results from the
method used in [§] in a reasonable amount of com-
putational time (> 1 day) and so we did not show
comparisons against this method here (see appendix
for further discussion).

The deconSTORM method described in [7] (see also
Fig. [5) attempts to improve upon simple Richardson-
Lucy deconvolution by incorporating local informa-
tion about the survival of active fluorophores from one
frame 4 to the next (¢ + 1). Our approach is orthogo-
nal: we share information between frames I; globally,
through M. As we discuss in the appendix (“Markov
model”), the vEM framework extends easily to handle
these local correlations between fluorophores at frames
i and 7 + 1. We observed that although incorporat-
ing these local correlations can slightly improve the
recovery of individual fluorophores (Fig, the local
Markov model does not significantly qualitatively im-
prove the accuracy of the final estimated \ (Fig{12).

A final interesting and important direction for future
work would be to extend some of the methods
developed here to the case where the fluorophores
are moving from frame to frame, in the context of

single-particle tracking experiments [18].

vEM code is available here: https://github.com/
SunRuoxi/vEM

Wide field

Figure 7: Analysis of real tubulin image data.
Final resolved images output by FALCON and vEM-
2 with 5000 frames. Wide field image, with all flu-
orophores turned on simultaneously, is given in first
panel. Note that FALCON image is blurrier than the
vEM-2 image, especially in areas of high fluorophore
density, e.g., where multiple tubulin branches are close
together, as noted by white arrows.
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