
Learning Structured Weight Uncertainty in
Bayesian Neural Networks

Shengyang Sun Changyou ChenB Lawrence Carin
Tsinghua University Duke University Duke University

Abstract

Deep neural networks (DNNs) are increas-
ingly popular in modern machine learn-
ing. Bayesian learning affords the oppor-
tunity to quantify posterior uncertainty on
DNN model parameters. Most existing work
adopts independent Gaussian priors on the
model weights, ignoring possible structural
information. In this paper, we consider the
matrix variate Gaussian (MVG) distribution
to model structured correlations within the
weights of a DNN. To make posterior infer-
ence feasible, a reparametrization is proposed
for the MVG prior, simplifying the complex
MVG-based model to an equivalent yet sim-
pler model with independent Gaussian priors
on the transformed weights. Consequently,
we develop a scalable Bayesian online infer-
ence algorithm by adopting the recently pro-
posed probabilistic backpropagation frame-
work. Experiments on several synthetic and
real datasets indicate the superiority of our
model, achieving competitive performance in
terms of model likelihood and predictive root
mean square error. Importantly, it also yields
faster convergence speed compared to related
Bayesian DNN models.

1 Introduction

Modern machine learning has witnessed significant
success with deep neural networks (DNNs), obtain-
ing state-of-the-art results on various real-world tasks,
such as image classification (Krizhevsky et al., 2012;
He et al., 2016), machine translation (Sutskever et al.,
2014; Wu et al., 2016), image captioning (Xu et al.,

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

2015; Pu et al., 2016) and game playing (Silver et al.,
2016). DNNs are typically trained with stochastic op-
timization algorithms (Bottou, 1998). Care must be
taken to prevent overfitting when training. Bayesian
methods help mitigate this problem by imposing ap-
propriate priors on network weights to model weight
uncertainty, while performing model averaging based
on posterior samples when testing (for MCMC-based
methods).

In many DNNs, data are given as input-output pairs,
with the output a sample drawn from an output proba-
bility distribution based on a forward nonlinear trans-
formation of the input. In Bayesian neural networks,
priors are imposed on the global weights of the network
to capture weight uncertainty. Posterior inference is
often performed by variational inference, to model
multiclass-output probability distributions (for classi-
fication) (Blundell et al., 2015; Gal and Ghahramani,
2016) and continuous-output distributions (for regres-
sion) (Louizos and Welling, 2016). Variants such as
probabilistic backpropagation (PBP) have been con-
sidered for general output distributions (Hernández-
Lobato and Adams, 2015; Ghosh et al., 2016). Another
line of research for posterior inference uses stochastic
gradient Markov Chain Monte Carlo (SG-MCMC) (Li
et al., 2016; Lu et al., 2016). Although competitive
performance has been obtained by SG-MCMC for clas-
sification, the nature of MCMC hinders its practical
use for fast testing in real applications. Consequently,
we build our model based on the PBP framework.

For most existing work, weight uncertainty is mod-
eled with independent Gaussian priors Blundell et al.
(2015); Hernández-Lobato and Adams (2015); Li et al.
(2016), ignoring the structural information associated
with the weights. This is somewhat counter-intuitive
because the weights, represented as matrices, may be
best considered as a whole. In this paper, we adopt
a structured prior on matrices, called the matrix vari-
ate Gaussian (MVG) distribution (Gupta and Nagar,
1999), to model both row and column correlations for
a weight matrix in a DNN. The MVG distribution is
flexible in modeling matrix-valued random variables.

mailto:cchangyou@gmail.com

Learning Structured Weight Uncertainty in BNN

However, posterior inference becomes difficult when
applying it to model a DNN. To remedy this problem,
we first propose a reparameterization of the MVG, to
decompose an MVG-distributed random variable to
the product of two deterministic matrices (related to
the hyperparameters of a MVG distribution), and a
transformed weight matrix with independent Gaussian
priors. This reparameterization conveniently trans-
forms our MVG-based model to a simpler yet more
tractable model, such that assumed density filtering
(Minka, 2001) (ADF) can be applied via the PBP
framework (Hernández-Lobato and Adams, 2015) for
efficient posterior inference. We compare our model
with recently proposed Bayesian DNN models on a
number of datasets, obtaining superior performance,
in terms of either prediction accuracy or convergence
speed.

Note a recent work of Louizos and Welling (2016)
also introduces MVG priors for the weights of an
DNN. Posterior inference is performed by standard
variational inference, as well as using the reparam-
eterization trick introduced by Kingma and Welling
(2014) to approximate the infeasible expectation in
the variational bound with samples. Compared to
their method, the proposed reparameterization of an
MVG distribution makes our model naturally fit into
the PBP framework, requiring fewer approximations
and converging faster than variational inference.

2 Preliminaries

We briefly review basic definitions of the DNN, then
introduce the MVG distribution and list some of its
properties. Notation will be introduced throughout
the paper where necessary, for ease of understanding.
We denote vectors as bold lower-case letters, and ma-
trices as bold upper-case letters.

2.1 Deep neural networks

We focus on DNNs with L layers. Starting from the
input data, each layer ` is represented as a nonlin-
ear transformation, denoted as gW`

: RV`−1 7−→ RV` ,
where V` is the number of neurons in layer∗ `, and W`

represents the corresponding model parameters. For
simplicity, we drop the parameter W and rewrite gW`

as g` in the following. As a result, an L-layer DNN
with input, x ∈ RV0 , can be represented as a set of
nonlinear function compositions (MacKay, 1992), i.e.,
the output of the top layer, zL, is the result of com-
posing L nonlinear functions:

zL = gL ◦ gL−1 ◦ · · · ◦ g1(x) , (1)

∗For conciseness, we use V0 to represent the input (data)
dimension.

where ◦ represents function composition, i.e., A ◦ B
meansA is evaluated on the output of B. On top of zL,
a probability distribution is often imposed to model
the output data, e.g., in many DNNs, a multinomial
distribution parameterized by the softmax output of
zL is used to model the output label y.

We consider the feedforward neural network† (FNN),
such that W` ∈ RV`−1×V` , and g` takes the form:

g`(x) , ReLU
(
WT

` x +b`

)
,

where b` ∈ R` is the bias term, ReLU(x) , max(0, x)
is the Rectified Linear Unit (ReLU) activation function
(Glorot et al., 2011). Note that b` can be absorbed
into W` by augmenting the input with an additional
dimension with value one, thus we will ignore the term
b` and write g`(x) , ReLU(WT

` x) in the following.

2.2 Matrix variate Gaussian distributions

The matrix variate Gaussian (MVG) distribution is
a three-parameter distribution describing the proba-
bility of a random matrix W ∈ Rl1×l2 , with density
function:

p(W) ,MN (W; M,U,V) (2)

=
exp

(
− 1

2 tr
[
V−1(W−M)T U−1(W−M)

])
(2π)l1l2/2|V |l1/2|U |l2/2

,

where M ∈ Rl1×l2 is the mean of the distribution, U ∈
Rl1×l1 and V ∈ Rl2×l2 encode covariance information
of the rows and columns of W, respectively, and are
invertible.

Lemma 1. Let W follows the MVG distribution in
(2), then

vec(W) ∼ N (vec(M),V⊗U) ,

where vec(M) is the vectorization of M by stacking the
columns of M, and ⊗ denotes the standard Kronecker
product (Henderson and Searle, 1980).

Lemma 2. Let W follows the MVG distribution in
(2), A ∈ Rl0×l1 , C ∈ Rl2×l3 , then

B , A W ∼MN (B; A M,AT U A,V)

B , W C ∼MN (B; M C,U,CT V C) .

Lemma 1 indicates that an MVG distribution is a
structured Gaussian distribution, with covariance ma-
trix V⊗U; Lemma 2 reveals the distribution property
of a linear transformed MVG random variable, useful
in deriving our reparametrization for the MVG below.

†More complex network structures such as the convo-
lutional neural network can also be adapted to our frame-
work.

Shengyang Sun, Changyou ChenB , Lawrence Carin

3 Deep Neural Networks with Matrix
Variate Gaussian Priors

We consider a Bayesian DNN model, assigning MVG
priors on the weights, and model the top-layer out-
put with a multivariate Gaussian random variable. To
make model inference tractable, we first simplify the
model by introducing a reparametrization of the MVG
distribution.

Denote all the weight parameters as W , {W`}L`=1.
To explicitly write out the dependency of the DNN
output zL in (1) with W, we rewrite it as f(x,W) ,
zL. Following Hernández-Lobato and Adams (2015),
we consider the final output of a DNN to be a Gaussian
random variable‡ y with mean f(x,W) and covariance
matrix σ−1 IVL

, where In denotes an identity matrix
of size n × n. Furthermore, we assign an MVG prior
for each of the weights in W, i.e., for ` = 1, · · · , L:

y |x,W, γ ∼ N
(
y; f(x,W), γ−1 IVL

)
, (3)

W` |M`,U`,V` ∼MN (W`; M`,U`,V`) ,

For layer ` of the DNN, following Hernández-
Lobato and Adams (2015), we rescale the corre-
sponding inputs from the layer below by factor
1/
√
V`−1 + 1, i.e., g`(z`−1) is defined as: g`(z`−1) ,

ReLU
(
WT

` z`−1 /
√
V`−1 + 1

)
. This makes the scale

of the input to each neuron independent of the number
of incoming connections.

Note from (3) that if we assume each element of W` to
be independent Gaussian distributed with mean 0 and
variance λ−1, we recover the Gaussian DNN model
proposed in (Hernández-Lobato and Adams, 2015).
The MVG priors for W allows one to model corre-
lations between the elements in each weight matrix,
making the model more flexible and robust. However,
it brings significant challenges for posterior inference,
especially in a big-data setting.

3.1 Reparameterization of the MVG

Since U` and V` are positive-definite matrices, we
write their orthogonal decomposition as:

U` = P` Λ
(1)
` PT

` , V` = Q` Λ
(2)
` QT

` ,

where P` and Q` are the corresponding orthogonal

matrices, Λ
(1)
` and Λ

(2)
` are diagonal matrices with

positive diagonal elements. Defining B` , PT
` W` Q`,

by applying Lemma 2, we have that

B` ∼MN
(
B`; P

T
` M` Q`,Λ

(1)
` ,Λ

(2)
`

)
, (4)

‡Other output distributions such as the Poisson distri-
bution for count-valued output can be similarly dealt with
by adopting techniques from Ghosh et al. (2016).

or equivalently (by Lemma 1):

vec(B`) ∼ N
(

vec(B`); vec(PT
` M` Q`),Λ

(1)
` ⊗Λ

(2)
`

)
,

where Λ
(1)
` ⊗Λ

(2)
` is a diagonal matrix. This makes all

the elements of B` independent of each other. Conse-
quently, we conclude that modeling W` with an MVG
prior is equivalent to modeling B` with independent
Gaussian priors for each element, and then transform-
ing B` with two orthogonal matrices related to the
distribution of W`, as illustrated in Figure 1.

!" #"$"%"

Figure 1: Equivalence between a DNN with an MVG
prior on its weights and a DNN with two rotations
via P` and Q` (related to the hyperparameters of the
MVG distribution) and independent Gaussian priors
on the new weights B`.

We also must address the orthogonal matrices P` and
Q`, such that standard priors can be imposed for
them. Fortunately, a basic argument from linear al-
gebra (Golub and Van Loan, 1996) shows that there

exists vectors v
(1)
` and v

(2)
` of lengths V` and V`−1,

respectively, such that:

P` = IV`
−2 v

(1)
` v

(1)
`

T
/

(
v
(1)
`

T
v
(1)
`

)
,

Q` = IV`−1
−2 v

(2)
` v

(2)
`

T
/

(
v
(2)
`

T
v
(2)
`

)
. (5)

This allows a reparameterization of P` and Q` with

v
(1)
` and v

(2)
` . The correctness of this reparameteri-

zation can be proved by verifying that P` P`
T = IV`

and Q` Q`
T = IV`−1

. Using this reparameterization,
the orthogonality constraints in P` and Q` can be re-
moved, and standard priors such as a Gaussian prior
can be adopted in the model.

To increase model capacity, we can replace the orthog-
onal matrices above with a product of orthogonal ma-
trices, e.g., P = P1 P2 · · ·Pn, where Pi is in the same
form of (5). Similar strategy applies for Q. In our
implementation, we use n = 1 for simplicity

3.2 The full model

Let B , {B`}L`=1, V(1) , {v(1)
` }L`=1, V(2) ,

{v(2)
` }L`=1. As shown above, the model defined in

mailto:cchangyou@gmail.com

Learning Structured Weight Uncertainty in BNN

(3) can be equivalently modeled with parameters

{B,V(1),V(2)} by the reparameterizations in (4) and
(5). We further impose hierarchical priors for the hy-
perparameters {M`,U`,V`} in (3). When choosing
independent Gaussian priors for these hyperparame-
ters, it is equivalent to imposing independent Gaus-
sian priors for {B,V(1),V(2)}. As a result, the full
Bayesian DNN model is defined as§:

p(yn |xn,B, γ) = N
(
yn; f(xn,PL BL QT

L), γ−1 IVL

)
,

p(B |λ) =

L∏
`=1

V∏̀
i=1

V`−1∏
j=1

N
(
(B`)ij ; 0, λ−1

)
,

p(V(1) |φ) =

L∏
`=1

N
(
v
(1)
` ; 0, φ−1 IV`

)
, (6)

p(V(2) |ψ) =

L∏
`=1

N
(
v
(2)
` ; 0, ψ−1 IV`+1

)
,

γ, λ, φ, ψ ∼ Gamma(x;αx0 , β
x
0) ,

for n = 1, · · · , N , and x ∈ {γ, λ, φ, ψ}. Letting R ,
{B,V(1),V(2), γ, λ, φ, ψ} represent all model parame-
ters, the task is to compute the posterior p(R |X,y),
for given data {X,y} = (xn,yn)Nn=1.

4 Approximate Posterior Inference
with Probabilistic Backpropagation

Following Hernández-Lobato and Adams (2015), we
adopt the assumed density filtering method (ADF)
(Opper, 1998) for approximate posterior inference. In
ADF, we use a set of variational distributions to ap-
proximate the true posterior distribution. We propose

q(B) =

L∏
`=1

V∏̀
i=1

V`−1∏
j=1

N
(

(B`)ij ;mij`, λ
−1
ij`

)

q(V(1)) =

L∏
`=1

N
(
v
(1)
` ; m

(1)
` ,Σ

(1)
`

)
(7)

q(V(2)) =

L∏
`=1

N
(
v
(2)
` ; m

(2)
` ,Σ

(2)
`

)
γ, λ, φ, ψ ∼ Gamma(x;αx, βx)

The posterior of output {yn}Nn=1 and local hidden ran-
dom variables {zn`} are approximated with Gaussian
variational distributions as:

q(yn) = N (yn; mznL
,diag(vznL

)) ,

q(zn`) = N (zn`; mzn`
,diag(vzn`

)) , (8)

§Since now we have multiple training data, the local
parameters (e.g., yn) will be indexed by n in the following.

with vznL
∈ RVL

+ . We will refer to vznL
as variance

vector in the following.

4.1 Online posterior inference with ADF

Assumed density filtering is an online inference algo-
rithm that incrementally updates the variational dis-
tributions for model parameters after observing new
evidence (data)¶ (Minka, 2001). Generally, this is
done by iteratively replacing one term from the true
posterior (called a factor) with the corresponding term
from the variational distribution, to form a new ap-
proximate posterior. The approximate posterior is
then projected back to the variational distribution for
an update.

Take the update on (B`)ij as an example. Let

q((B`)ij |R(n−1)
−ij`) be the approximate poste-

rior (variational distribution) after seeing data

{(x1,y1), · · · , (xn−1,yn−1)}, where R
(n−1)
−ij` denotes

the current model parameters except (B`)ij . When
data (xn,yn) comes, the posterior of (B`)ij is updated
as:

q̃((B`)ij) =
1

Z
f̃((B`)ij)q((B`)ij |R(n−1)

−ij`) , (9)

where f̃((B`)ij) is a factor‖ related to (B`)ij , either
coming from a prior term or a likelihood term in (6),
with Z the normalizer. In general, the updated poste-
rior q̃((B`)ij) does not have a simple parametric form.
Thus it needs to be projected back to the proposed

variational distribution q((B`)ij |R(n)
−ij`). This is done

by updating q((B`)ij |R(n)
−ij`) such that it minimizes

the KL divergence KL
[
q̃((B`)ij)‖q((B`)ij |R(n)

−ij`)
]
.

In the following, we show how to update the global pa-
rameters (B,V(1),V(2), γ, λ, φ, ψ) with ADF when the
factor f̃ is chosen from the prior and the likelihood, re-
spectively; we also show how to approximate the local
parameters {zn`}, which is needed when f̃ is chosen
from the likelihood for global parameter updates.

When f̃ is chosen from the prior We first derive

update rules for (B,V(1),V(2)) with Gaussian varia-
tional distributions. The technique is similar to that
in (Hernández-Lobato and Adams, 2015). Again we

use q((B`)ij |R(n−1)
−ij`) as an example, which is Gaussian

with mean mij` and variance λ−1ij` , as defined in (7).

Based on (Minka, 2001), by minimizing the KL diver-

gence between q((B`)ij |R(n−1)
−ij`) and q̃((B`)ij) defined

above, we obtain the update equations for mij` and

¶which means data is coming in a sequential way.
‖We have dropped out the dependency of the factor to

other parameters for simplicity.

Shengyang Sun, Changyou ChenB , Lawrence Carin

λij`:

m
(n)
ij` = m

(n−1)
ij` + λ

(n−1)
ij` ∇mij` logZ (10)

λ
(n)
ij` = λ

(n−1)
ij` − (λ

(n−1)
ij`)2

[
(∇mij` logZ)2 − 2∇λij` logZ

]
where we have use the subscript “(n)” to denote the
parameter after seeing up to n data points, and the
normalizer Z can be computed approximately by using
similar approach as in (Hernández-Lobato and Adams,
2015). Details and update equations for other param-
eters are provided in Appendix A.

For parameters (γ, λ, φ, ψ) with Gamma variational
distributions, we must update the shape and rate pa-
rameters (αx, βx) in a Gamma distribution for x ∈
{γ, λ, φ, ψ}. Following the supplementary material
of Hernández-Lobato and Adams (2015), the update
equations are:

α(n)
x =

[
ZZ2Z

−2
1

α
(n−1)
x + 1

α
(n−1)
x

− 1

]−1
(11)

β(n)
x =

[
Z2Z

−1
1

α
(n−1)
x + 1

β
(n−1)
x

− Z1Z
−1α

(n−1)
x

β
(n−1)
x

]
,

where Z is the normalizer of q̃(x), similar to (9); Z1

and Z2 are the values of the normalizer when αx in
the variational distribution is increased by 1 and 2,
respectively.

When f̃ is chosen from the likelihood Again we
use (10) and (11) to update the global Gaussian and
Gamma parameters, as described above. When updat-
ing Gaussian distributions, the normalizer Z depends
on the local parameter znL. Specifically, Hernández-
Lobato and Adams (2015) show that Z is approxi-
mated by (details shown in Appendix B):

Z ≈ N (yn; mznL
, βγ/(αγ − 1) + vznL

) . (12)

Consequently, the task is to estimate mznL
and vznL

,
the mean and variance vector for yn. Following
(Hernández-Lobato and Adams, 2015), the idea is to
start from the data layer, propagate the distributions
forward through the neural network, and if necessary,
approximate the distribution of a hidden layer with
a Gaussian distribution. Note our technique here is
different from that used in (Hernández-Lobato and
Adams, 2015), because of the structured priors (MVG)
instead of the unstructured priors (Gaussian) imposed
on the weights.

Specifically, assume the output zn(`−1) of layer `−1 is
a diagonal Gaussian distribution with mean mzn(`−1)

and variance vector vzn(`−1)
defined in (8), our task is

to calculate mzn(`)
and vzn(`)

for the next layer. From
the definition, the output of layer ` is:

zn` = ReLU
(
P` B` QT

` zn(`−1) /
√
V`−1 + 1

)
.

To approximate the distribution of zn`, we decom-

pose zn` = ReLU
(
z
(3)
n`

)
, where z

(3)
n` , P` z

(2)
n` , z

(2)
n` ,

B` z
(1)
n` /

√
Vl−1 + 1, and z

(1)
n` , QT

` zn(`−1). As de-
tailed in Appendix B, we show that

z
(1)
n` ∼ N

(
m(1)

zn`
, diag(v(1)

zn`
)
)
, z

(2)
n` ∼ N

(
m(2)

zn`
, diag(v(2)

zn`
)
)

z
(3)
n` ∼ N

(
m(3)

zn`
, diag(v(3)

zn`
)
)
, (13)

where m
(1)
zn` =

(
IV`−1

−2E
v
(2)
` (v

(2)
`)T

(v
(2)
`)T v

(2)
`

)
mzn(`−1)

;

v
(1)
zn` = vzn(`−1)

; m
(2)
zn` = M` m

(1)
zn` /

√
V`−1 + 1; v

(2)
zn` =[

(M` ◦M`) v
(1)
zn` +Σ

(2)
` (m

(1)
zn` ◦m

(1)
zn`) + Σ

(2)
` v

(1)
zn`

]
/√

V`−1 + 1; m
(3)
zn` =

(
IV`
−2E

v
(1)
` (v

(1)
`)T

(v
(1)
`)T v

(1)
`

)
m

(2)
zn` ;

v
(3)
zn` = v

(2)
zn` . Here M` is a matrix such that (M`)ij ,

mij`, defined in (7). The expectations in the above
equations can be approximated by Monte Carlo inte-
gration, as detailed in Appendix B, efficiently com-
puted by incorporating the Cholesky decomposition.

Finally, by applying the ReLU operator on z
(3)
n` and fol-

lowing Hernández-Lobato and Adams (2015), zn` can
be approximated by a Gaussian distribution, which is
then propagated to the next layer. Details are pro-
vided in Appendix B.

4.2 Practical techniques

Computational complexity The computational
cost of our model mainly relies on sampling Gaus-
sian random variables, e.g., sampling the normalizer
Z in (12) to compute gradients with the reparam-
eterization trick described in (Kingma and Welling,
2014), as well as sampling the hidden local param-
eters in (13) with Monte Carlo approximation. For
the latter case, we adopt the Cholesky decomposi-
tion method (see Appendix B), which has complexity
O
(
D3
)

with D = max` V`. The naive implementa-
tion of the VMG model (without approximation when
sampling an MVG distribution) (Louizos and Welling,
2016) shares the same computational cost as our algo-
rithm. However, it is found in the experiments that
our algorithm converges much faster than VMG for
a given length of time while maintaining competitive
predictive performance.

To speedup the sampling efficiency, we can either
adopt the method in (Louizos and Welling, 2016)
to approximate the covariance matrix of a Gaus-
sian distribution with its diagonal elements, or treat
{P`,Q`} as hyperparameters (do not sample). These
approaches lead to a reduced complexity of O(D2) but
somewhat biased estimation.

mailto:cchangyou@gmail.com

Learning Structured Weight Uncertainty in BNN

Alternative learning methods In ADF, param-
eters are updated with every new data point, lead-
ing to potential underestimation of the variance. The
problem can be alleviated by considering minibatches.
Furthermore, the SEP method proposed in (Li et al.,
2015) is also a good substitution for ADF, which is
reserved for future work.

Extension for classification Our model can be
naturally extended for classification by adding an ad-
ditional softmax layer on top of znL. The parameters
in the lower layers are still updated with ADF. Given
the input znL’s for the softmax layer, the correspond-
ing parameters can be learned by standard stochas-
tic optimization algorithms, such as SGD and Adam
(Kingma and Ba, 2015).

5 Related Work

The Laplace approximation has been proposed by
MacKay (1992) and Bishop (2006) for learning of
Bayesian neural networks. However, these methods
have cubic computational cost with respect to the
dataset size for computing the inversion of a Hessian
matrix.

Hernández-Lobato and Adams (2015) propose to use
ADF for the learning of a Bayesian neural network,
forming the framework of probabilistic backpropaga-
tion. However, their work assumes independent Gaus-
sian priors on the weights of a DNN. Nevertheless,
their results show better prediction accuracies and
faster learning speed compared to conventional vari-
ational inference (Graves, 2011) and backpropagation
(Jylänki et al., 2014).

The variational Matrix Gaussian method (VMG) pro-
posed by Louizos and Welling (2016) also introduces
MVG priors in DNNs via the variational inference
framework. Consequently they show better regres-
sion and classification performances than PBP and
Dropout Bayesian neural network (Gal and Ghahra-
mani, 2016). Although VMG establishes the connec-
tion to a deep Gaussian process and effectively avoids
the high variance and memory requirements of simple
variational inference, its convergence is found to be
slow. While our work has the same computational
complexity as VMG in each iteration, it converges
faster in practice while maintaining competitive per-
formance. Notably, with the reparameterization trick,
instead of tackling a complex deep Gaussian process
in VMG, our model can efficiently perform posterior
inference like in a standard Bayesian neural network.

Ghosh et al. (2016) generalizes PBP (Hernández-
Lobato and Adams, 2015) for classification and count
regression by defining general output probability dis-
tributions. However, the priors for weights are still in-

dependent Gaussian, limiting modeling capacity. Note
that similar techniques can be adaptive to our model
for classification and count regression.

Another line of research for scalable Bayesian learning
of a DNN employs stochastic gradient MCMC methods
(SG-MCMC) (Welling and Teh, 2011; Ahn et al., 2012;
Chen et al., 2014; Ding et al., 2014; Balan et al., 2015).
However, the computational cost in testing is typically
high because of the requirement to do model averaging.
Our method mitigates this problem by adopting the
ADF framework.

6 Experiments

Since our model is trained within the PBP frame-
work, we denote it as PBP MV. To verify the effec-
tiveness of PBP MV, we conduct several experiments
on both synthetic and real datasets, and compare it
with PBP (Hernández-Lobato and Adams, 2015) and
VMG (Louizos and Welling, 2016), the-state-of-the-
art method to model structured weight uncertainty
with MVG priors. Specifically, we use two simple syn-
thetic datasets to verify the estimation quality of dif-
ferent methods for nonlinear regression and classifica-
tion, respectively; then a comparison of PBP MV with
PBP and VMG for regression is performed on 10 real
datasets. In Appendix C.2, we show some preliminary
results for classification on MNIST dataset. To com-
pared with VMG, we use the code from the authors,
which has been fairly well optimized for efficiency.

6.1 Synthetic experiments

For non-linear regression, we follow the experiment
setup in the appendix of (Louizos and Welling,
2016). We randomly generate 12 data points from
Uniform(0, 0.6) and 8 from Uniform(0.8, 1). The out-
put yn for input xn is modeled as yn = xn +
εn + sin (4 (xn + εn)) + sin (13 (xn + εn)), where εn ∼
N (εn; 0, 0.0009). We fit a neural network with two
layers, each with 50 neurons. In PBP MV, 100 sam-
ples are used to approximate the expectation in (13).
Both PBP MV and PBP are run for 120 epochs, while
VMG is run for 1000 epochs because of its slow con-
vergence speed. The results are plotted in 2, which
clearly shows that PBP MV obtains a better density
estimation in that it captures the uncertainty within
its variance; whereas other two methods fail to capture
one side parameter uncertainty.

For classification, we follow the binary classification
toy example in Ghosh et al. (2016), which uniformly
samples ten 2D data points in two separable regions:
[−3,−1]× [−3,−1] and [1, 3]× [1, 3], respectively. We
use a network with one hidden layer of size 10 and a
softmax layer on the top. We use 10 epochs for both

Shengyang Sun, Changyou ChenB , Lawrence Carin

Figure 2: Comparison of PBP (left), VMG (middle) and PBP MV (right) on a toy data for regression. The
observation are shown as black dots. The blue line represents the true data generating function and the mean
predictions are shown as green line. The light gray shaded area is the ±3 standard derivation confidence interval.

PBP and PBP MV, 80 epochs with 5 pseudo data and
5 batch size for VMG. Following Ghosh et al. (2016),
the ground true is obtained by running the No-U-Turn
sampler of Hoffman and Gelman (2014). The poste-
rior classification density is plotted in 3, from which
it is seen that compared to PBP and VMG, PBP MV
obtains a more accurate density estimation.

Figure 3: A synthetic binary classification experi-
ment with PBP (top-left), VMG (top-right), PBP MV
(bottom-left) and ground true (bottom right). The
blue and red dots are data points for training. The
posterior density varies with colors, where a deeper
color means more confident to belong to some class.

6.2 Bayesian DNN for nonlinear regression

Following PBP, we preform nonlinear regression on
ten publicly available datasets, with names listed in
Table 1. We use a network with two hidden layers.
For the two big datasets, YearPredict and Protein, the
number of neurons in both layers is set to 100, while
it is set to 50 for the other 8 small datasets. Since
PBP has shown superior performance to variational

inference (VI) and backpropagation (BP) Hernández-
Lobato and Adams (2015), but is generally worse than
VMG (Louizos and Welling, 2016), it suffices to com-
pare our model with VMG.

We randomly split the datasets into training and test
sets, with 90% of the data for training and the re-
maining for testing. We repeat for 20 times to calcu-
late the average predictive performance on the 8 small
datasets, 5 times for the larger YearPredict dataset,
and once for the largest dataset Protein. As data mag-
nitudes differ significantly, we normalize each dataset
so that the training data has zero mean and unit vari-
ance. All models are run until convergence∗∗, which
roughly results in 70 epochs for VMG and 50 epochs
for PBP MV on the small datasets: Boston Housing,
Concrete, Winequality and Yacht ; On the slightly
larger datasets, Energy, Kin8nm, Naval and CCPP,
180 epochs are used for both methods; for the two
biggest datasets, Protein and YearPredict, we run long
enough until converged. The expectations in (13) are
evaluated based on 100 and 300 samples for training
and testing, respectively.

Following Hernández-Lobato and Adams (2015), we
use root mean squared error (RMSE) and test log-
likelihood to evaluate model performance. In addi-
tion, to show the efficiency of our model compared
to VMG, we also report the total running time as
a metric. Because the VMG code from the authors
has a big data overhead, it runs much slower in GPU
model than in CPU mode, we thus report running time
for both methods based on the CPU mode. Results
are reported in Table 1, from which we find that in
most case, our model outperforms VMG, especially in
terms of test log-likelihood. Notably, we observe that
our model obtains a much faster total running time
than VMG (more precise results on convergence speed
will be shown below). In addition, we note that in

∗∗Though there are no theory to guarantee the conver-
gence of PBP MV, it usually does converge in practice.

mailto:cchangyou@gmail.com

Learning Structured Weight Uncertainty in BNN

Test RMSE Test Log likelihood Avg. Time (second)
Dataset VMG PBP MV VMG PBP MV VMG PBP MV

Boston Housing 3.18±0.19 3.11±0.15 −2.71±0.12 −2.54±0.08 633 109
Concrete 5.18±0.16 5.08±0.14 −3.07±0.04 −3.04±0.03 1287 92
Energy 0.48±0.01 0.45±0.01 −0.91±0.01 −1.01±0.01 934 620
Kin8nm 0.07±0.00 0.07±0.00 1.24±0.00 1.28±0.01 8461 2277
Naval 0.00±0.00 0.00±0.00 2.47±0.00 4.85±0.06 12457 3434
CCPP 3.87±0.05 3.91±0.04 −2.78±0.01 −2.78±0.01 8131 2711
Protein 3.90±0.02 3.94±0.02 −2.78±0.01 −2.77±0.01 45119 27846
Winequality 0.64±0.01 0.64±0.01 −0.99±0.02 −0.97±0.01 1713 280
Yacht 0.87±0.08 0.81±0.06 −1.46±0.02 −1.64±0.02 332 79
YearPredict 8.64±NA 8.72±NA −3.57±NA −3.33±NA 71007 42596

Table 1: Averaged predictions with standard deviations in terms of RMSE, log-likelihood and running time on
test sets.

PBP MV, the hyperparameters are updated in close
forms, bypassing the need for cross validation.

To compare the convergence speed, we further plot
the learning curves of RMSE/log-likelihood vs time in
Figure 4 on Concrete, Kin8nm, Yacht and Energy
datasets. Plots for other datasets are provide in Ap-
pendix C. It is clear from the figure that in most cases
PBP MV converges much faster than VMG. One ex-
ception is the likelihood vs time on the Energy dataset,
where PBP MV seems to be slower at the beginning,
but quickly surpasses VMG to reach a better likeli-
hood. For VMG, the test performance varies more
significantly along time, making it hard to diagnose
the convergence behavior. Consequently, it would lead
to a higher estimation variance.

7 Conclusion

We introduce the MVG prior to model structured
weight uncertainty in Bayesian neural networks. By
leveraging a reparameterization technique for the
MVG distribution, the MVG-based DNN model is
transformed to a simple DNN with isotropic Gaus-
sian priors on the weights. Consequently, an on-
line learning algorithm based on the PBP frame-
work is readily derived. Experiments on several syn-
thetic and real datasets demonstrate the superiority
of our method, obtaining competitive predictive per-
formance yet faster convergence speed, compared to
other Bayesian DNN models.

There are several future research directions. One is
to extend the proposed Bayesian DNN with convolu-
tional layers to model more complex data such as im-
ages. Another direction is to improve the current on-
line learning algorithms, possibly by stochastic EP (Li
et al., 2015). Finally, incorporating MVG into the vari-
ational auto-encoder framework (Kingma and Welling,
2014) for more flexible modeling is also interesting.

200 400 600 800 10001200
time (s)

4

5

6

7

8

R
M

SE

PBP_MV
VMG

200 600 1000
time (s)

-3.6

-3.4

-3.2

-3

-2.8

lo
g-

lik
el

ih
oo

d

PBP_MV
VMG

2000 4000 6000 8000
time (s)

0.065

0.07

0.075

0.08

0.085

R
M

SE

PBP_MV
VMG

2000 4000 6000 8000
time (s)

0.9

1

1.1

1.2

1.3

lo
g-

lik
el

ih
oo

d

PBP_MV
VMG

500 1000 1500 2000
time (s)

0

1

2

3

4

R
M

SE

PBP_MV
VMG

500 1000 1500 2000
time (s)

-3

-2.5

-2

-1.5

-1

-0.5

lo
g-

lik
el

ih
oo

d

PBP_MV
VMG

500 1000 1500
time (s)

0

1

2

3

4

R
M

SE

PBP_MV
VMG

500 1000 1500
time (s)

-3

-2.5

-2

-1.5

-1

-0.5

lo
g-

lik
el

ih
oo

d

PBP_MV
VMG

Figure 4: Example learning curves in terms of RMSE
vs running time (left column) and log-likelihood vs.
running time (right column) on 4 datasets: Concrete
(1st row), Kin8nm (2nd row), Yacht (3rd row) and
Energy (4th row).

Shengyang Sun, Changyou ChenB , Lawrence Carin

Acknowledgements

This research was supported in part by ARO, DARPA,
DOE, NGA, ONR and NSF.

References

S. Ahn, A. K. Balan, and M. Welling. Bayesian poste-
rior sampling via stochastic gradient Fisher scoring.
In ICML, 2012.

A. K. Balan, V. Rathod, K. P. Murphy, and
M. Welling. Bayesian dark knowledge. In NIPS,
2015.

C. M. Bishop. Pattern recognition. Machine Learning,
128, 2006.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and
D. Wierstra. Weight uncertainty in neural networks.
In ICML, 2015.

L. Bottou, editor. Online algorithms and stochastic
approximations. Cambridge University Press, 1998.

T. Chen, E. B. Fox, and C. Guestrin. Stochastic gra-
dient Hamiltonian Monte Carlo. In ICML, 2014.

N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel,
and H. Neven. Bayesian sampling using stochastic
gradient thermostats. In NIPS, 2014.

Y. Gal and Z. Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning. In ICML, 2016.

S. Ghosh, F. M. Delle Fave, and J. Yedidia. Assumed
density filtering methods for learning bayesian neu-
ral networks. In AAAI, 2016.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse
rectifier neural networks. In AISTATS, 2011.

G. H. Golub and C. F. Van Loan, editors. Matrix Com-
putations. Johns Hopkins University Press, 1996.

A. Graves. Practical variational inference for neural
networks. In NIPS, 2011.

A. K. Gupta and D. K. Nagar. Matrix Variate Distri-
butions. CRC Press, 1999.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016.

H. V. Henderson and S. R. Searle. The vec-
permutation matrix, the vec operator and kronecker
products: A review. Linear and Multilinear Algebra,
9(4):271–288, 1980.

J. M. Hernández-Lobato and R. P. Adams. Probabilis-
tic backpropagation for scalable learning of bayesian
neural networks. In International Conference on
Machine Learning, 2015.

M. D. Hoffman and A. Gelman. The no-u-turn sam-
pler: adaptively setting path lengths in hamiltonian
monte carlo. Journal of Machine Learning Research,
15(1):1593–1623, 2014.

P. Jylänki, A. Nummenmaa, and A. Vehtari. Expecta-
tion propagation for neural networks with sparsity-
promoting priors. Journal of Machine Learning Re-
search, 2014.

D. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

D. Kingma and M. Welling. Auto-encoding variational
Bayes. In ICLR, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
genet classification with deep convolutional neural
networks. In NIPS, 2012.

C. Li, C. Chen, D. Carlson, and L. Carin. Precon-
ditioned stochastic gradient Langevin dynamics for
deep neural networks. In AAAI, 2016.

Y. Li, J. M. Hernández-Lobato, and R. E. Turner.
Stochastic expectation propagation. In NIPS, 2015.

C. Louizos and M. Welling. Structured and efficient
variational deep learning with matrix gaussian pos-
teriors. arXiv preprint arXiv:1603.04733, 2016.

X. Lu, V. Perrone, L. Hasenclever, Y. W. Teh,
and S. J. Vollmer. Relativistic Monte Carlo. In
arXiv:1609.04388, 2016.

D. J. C. MacKay. A practical bayesian framework for
backpropagaion networks. Neural Computation, 4:
448–472, 1992.

T. P. Minka. A family of algorithms for approximate
bayesian inference. Technical report, MIT, USA,
2001.

M. Opper. A Bayesian approach to on-line learning.
On-line learning in neural networks, Cambridge Uni-
versity Pres, 1998.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens,
and L. Carin. Variational autoencoder for deep
learning of images, labels and captions. In NIPS,
2016.

D. Silver et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529:484–
489, 2016.

mailto:cchangyou@gmail.com

Learning Structured Weight Uncertainty in BNN

Q. Su, X. Liao, C. Chen, and L. Carin. Nonlinear sta-
tistical learning with truncated gaussian graphical
models. In ICML, 2016.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In NIPS,
2014.

M. Welling and Y. W. Teh. Bayesian learning via
stochastic gradient Langevin dynamics. In ICML,
2011.

Y. Wu et al. Google‘s neural machine translation sys-
tem: Bridging the gap between human and machine
translation. In arXiv:1609.08144, 2016.

K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhutdinov, R. S. Zemel, and Y. Bengio.
Show, attend and tell: Neural image caption gen-
eration with visual attention. In ICML, 2015.

