
Initialization and Coordinate Optimization for Multi-way Matching

SUPPLEMENTARY MATERIAL

In this supplementary material, we prove Theorems 1
and 2 in the main paper. Theorem 3 can be proved
using almost the same techniques as the proof for The-
orem 1 and hence those details are omitted.

A. Proof of Theorem 1

Proof. Since we have mentioned that, under the case
of this theorem the matrices P

ij

satisfy the sum
nP

i=1

nP
j=1

tr(P>
ij

T
ij

) reaches the optimal value for the ob-

jective in Equation (2) in the main paper, it is su�-
cient to show that the matrices A

1

, . . . , A
n

returned by
Algorithm 1 satisfy P

ij

= A>
i

A
j

for each P
ij

. We first
show that, before the coordinate update part (line 9 to
12) of Algorithm 1, we have already ensured that the
matrices A

1

, . . . , A
n

satisfy the property P
ij

= A>
i

A
j

for each P
ij

. We will use induction to prove that, af-
ter each iteration during the initialization part of the
Algorithm 1, for any set S

k

and any v
i

, v
j

2 S
k

, we
have P

ij

= A>
i

A
j

.

1. Initially (after the 0th iteration), each set S
k

only
contains one vertex v

k

. Since P
ii

= I = A>
k

A
k

,
the induction assumption is correct.

2. Assume the induction assumption is correct after
the tth iteration (t � 0). For the (t+1)th iteration,
denote the edge we use in this iteration as (v

i

, v
j

).
Then, from the algorithm we know that the ma-
trix P̂ = argmax

P

tr(P>A
i

T
ij

A>
j

) = A
i

P
ij

A>
j

for

the old values of A
i

and A
j

. Therefore, after the
update on line 5, we will get P

ij

= A>
i

A
j

for the
new values of A

i

and A
j

. Since we are multi-
plying on the lefthand side the matrices A

j

0 ’s on

line 5 by the same matrix P̂ , this does not break
the induction assumption inside the set S

j

. After
the update on line 5, for each v

i

0
2 S

i

and each
v
j

0
2 S

j

, we have A>
i

0A
j

0 = A>
i

0A
i

A>
i

A
j

A>
j

A
j

0 =
P
i

0
i

P
ij

P
jj

0 = P
i

0
j

0 . Hence, after line 6 and 7,
we know that for each v

k

2 S0 (the set defined
on the line 6) and each v

i

0 , v
j

0
2 S

k

, we have
P
i

0
j

0 = A>
i

0A
j

0 . Since the permutation matrices
that are changed during this iteration have their
corresponding vertices in the set S0, we know that
the induction assumption is correct after this it-
eration.

From 1, 2 we know that we have P
ij

= A>
i

A
j

for
each P

ij

after initialization. Since we have shown in
the main paper that the Pairwise Alignment method
can solve the problem optimally on this case, we know
that our algorithm has also solved the problem opti-
mally after initialization, and hence we do not have

any updates in the coordinate update part. There-
fore, Algorithm 1 guarantees an optimal solution in
this case.

B. Proof of Theorem 2

Proof. Ideally, we want to recover (A
1

, . . . , A
n

) such
that A>

i

A
j

= T̂
ij

for each each pair (A
i

, A
j

). Let us
analyze the probability that we recover such a tuple of
(A

1

, . . . , A
n

) under the model in Equation (5).

First, let us consider the probability that we recover
the correct permutation matrices T̂

ij

from the opti-
mization problem max

P

tr(P>T
ij

) for any i 6= j. For

any permutation matrix P 0
2 P

m

, P 0
6= T

ij

, if we de-
note k to be the number of entries where T

ij

equals 1

but P 0 does not equal 1, then k = tr((T̂
ij

� P 0)>T̂
ij

).

Therefore, U :=
tr(P

0>
Tij)�tr(

ˆ

T

>
ijTij)+k

⌘ij
follows the Chi-

Square distribution �2(2k). Hence, the probability
that P 0 is a better permutation matrix compared to
T̂
ij

is

Pr[tr(P 0>T
ij

) � tr(T̂>
ij

T
ij

)]

= Pr[⌘
ij

U � k � 0] = Pr[
U

E[U]
� 1 �

1

2
(
1

⌘
ij

� 2)].

(7)

For ⌘
ij

1

10

, by the Chi-Square tail bounds that Lau-
rent and Massart (2000) proposed,

Pr[
U
ij

E[U
ij

]
� 1 �

1

2
(
1

⌘
ij

� 2)]

Pr[
U
ij

E[U
ij

]
� 1 �

1

4
(
1

⌘
ij

� 2) +

s
1

2
(
1

⌘
ij

� 2)]

 exp(�
k

4
(
1

⌘
ij

� 2)).

(8)

Denote the probability of misaddressing k letters to k
envelopes (The Bernoulli-Euler Problem of the Misad-

dressed Letters (Dörrie, 2013)) as p
k

=
1P
i=0

(�1)

i

i!

1

2

(for k � 2). Then, by union bound on Equation (8)
for k = 2, 3, . . . , n, we know the probability that some
P 0

6= T̂
ij

is better than T̂
ij

is at most

mX

k=2

p
k

·

m!

(m� k)!
· exp(�

k

4
(
1

⌘
ij

� 2))

1

2

mX

k=2

mk

· exp(�
k

4
(
1

⌘
ij

� 2)).

(9)

Da Tang, Tony Jebara

If we have ⌘
ij

1

4(1+") lnm+2

for some " > 0, then,

1

2

mX

k=2

mk

· exp(�
k

4
(
1

⌘
ij

� 2))

1

2

mX

k=2

m�"k =
m�2"

2(1�m�")
.

(10)

Hence, if we choose the variance parameter ⌘
ij

min(1

10

, 1

4(1+") lnm+2

) for some " > 0, then for m � 2
1
"

we have probability at least 1 � m�2" to guarantee
that we recover T̂

ij

from the optimization problem
max
P

tr(P>T
ij

).

Therefore, if we assume that the number of element
sets n is not too large as there exists some constant
� > 0 such that n m� , then by union bound we know
that with probability at least 1 � m�� for any � > 0
that we can guarantee that using the Pairwise Align-

ment method recovers a correct solution if m � 2
2

4�+�

and if we set each ⌘
ij

 min(1

10

, 1

2(2+4�+�) lnm+2

) =

O(1

logm

).

Next let us consider the probability that our Algorithm
1 recovers the correct permutation matrices. We would
only make some errors on the updates on line 5 and 11.
Basically, if we don’t make any error at any iteration at
the step of computing P̂ on line 4 and don’t make any
updates on line 11, then we are sure that our algorithm
solves the problem optimally.

Here we consider m � 8 such that 1

10

> 1

4(1+") lnm+2

for any " > 0. Let us first bound the probability that
we might make a mistake when computing the matrix
P̂ on line 4. At each iteration when we are considering
edge (v

i

, v
j

), if we have ⌘
ij

1

4(1+") lnm+2

for any
" > 0, then from the above analysis we know that
with probability at least 1 � m�2" we do not make
mistakes on this step.

Otherwise, let us take (i⇤, j⇤) = argmin
i

02Si,j
02Sj

⌘
i

0
j

0 (S
i

and S
j

are the sets before being updated on line 7).
If we have ⌘

i

⇤
j

⇤

1

8(1+") lnm+4

1

4(1+") lnm+2

, then
from the above analysis we know that with probabil-
ity at least 1 �m�2" we get T̂

i

⇤
j

⇤ from the optimiza-
tion problem max

P

tr(P>T
i

⇤
j

⇤), and we also know that

⌘
ij

� ⌘
i

⇤
j

⇤
�

1

8(1+") lnm+4

.

Notice that (v
i

, v
j

) is an edge of the Maximum Span-
ning Tree of G. It must be the edge with largest edge
weight between vertices in S

i

and S
j

. Therefore. we
have f(T

ij

) � f(T
i

⇤
j

⇤). Conditioned on the cases that

we recover T̂
i

⇤
j

⇤ from max
P

tr(P>T
i

⇤
j

⇤) (we will omit

some conditional probability notation from now on for
brevity), and let U ⇠ �2(m) be a Chi-Square ran-

dom variable with free degree m, then by the Chi-
Square tail bounds that Laurent and Massart (2000)
proposed,

Pr[f(T
i

⇤
j

⇤) m(1� ⌘
i

⇤
j

⇤
�

1

16(1 + ") lnm+ 8
)]

= Pr[U �m �

m

⌘
i

⇤
j

⇤(16(1 + ") lnm+ 8)
]

 Pr[U �m �

m

2
] Pr[U �m � 0.48m]

 exp(�
m

25
) m�2"

(11)
for su�ciently large m. On the other hand, consider
the value of f(T

ij

), denote P 0 = argmax
P

tr(P>T
ij

) and

k to be the number of entries where T̂
ij

equals 1 while
P 0 does not equal 1 (0 k m). Since we require
all ⌘

ij

 O(1), let us assume that we have ⌘
ij

1

3

.
Let V

1

⇠ �2(k), V
2

⇠ �2(m � k) be two indepen-
dent Chi-Square random variables (we use �2(0) to be
the random variable that only has support on a single
point 0). Conditioned on k, the distribution of f(T

ij

)
is the same with ⌘

ij

(V
1

� V
2

) + m � k. If k > 0, we
know that

Pr[V
1

� k +
m

⌘
ij

(32(1 + ") lnm+ 16)
]

Pr[V
1

� k �

3m

32(1 + ") lnm+ 16
]

Pr[V
1

� k � 2
p

2k" lnm+ 4" lnm] m�2✏

(12)

for su�ciently large m. Symmetrically, if k < m,

Pr[V
2

 (m� k)�
n

⌘
ij

(32(1 + ") lnm+ 16)
]

Pr[(m� k)� V
2

�

3m

32(1 + ") lnm+ 16
]

Pr[(m� k)� V
2

� 2
p

2k" lnm] m�2✏.

(13)

for su�ciently large m. Therefore, conditioned on k,
if we have ⌘

ij

1

3

, we always have

Pr[⌘
ij

(V
1

� V
2

) +m� k � m(1� ⌘
ij

+
1

16(1 + ") lnm+ 8
)]

 Pr[⌘
ij

(V
1

� V
2

)� (2k �m)⌘
ij

�

1

16(1 + ") lnm+ 8
)]

 Pr[V
1

� k +
m

⌘
ij

(32(1 + ") lnm+ 16)
]

+ Pr[V
2

 (m� k)�
m

⌘
ij

(32(1 + ") lnm+ 16)
] 2m�2".

(14)

This is true for all k. Hence, without conditioning on
k, we know that

Pr[f(T
ij

) � m(1� ⌘
ij

+
1

16(1 + ") lnm+ 8
)] 2m�2"

(15)

Initialization and Coordinate Optimization for Multi-way Matching

for su�ciently large m and if we have ⌘
ij

1

3

.

By union bound on Equations (11) and (15), we know
that, conditioned on the cases where we recover T̂

i

⇤
j

⇤

from max
P

tr(P>T
i

⇤
j

⇤), since ⌘
ij

�⌘
i

⇤
j

⇤
�

1

8(1+") lnm+4

,

we have

Pr[f(T
ij

) � f(T
i

⇤
j

⇤)]

Pr[f(T
i

⇤
j

⇤) m(1� ⌘
i

⇤
j

⇤
�

1

16(1 + ") lnm+ 8
)]

+ Pr[f(T
ij

) � m(1� ⌘
ij

+
1

16(1 + ") lnm+ 8
)]

3m�2".
(16)

Since we know that, if we have ⌘
i

⇤
j

⇤

1

8(1+") lnm+4

,

then with probability at least 1 � m�2" we would
recover T̂

i

⇤
j

⇤ from max
P

tr(P>T
i

⇤
j

⇤). Hence, condi-

tioned on the case that ⌘
ij

> 1

4(1+") lnm+2

, we know

that the probability Pr[f(T
ij

) � f(T
i

⇤
j

⇤)] 3m�2" +
m�2" = 4m�2". Plus the opposite case where ⌘

ij

1

4(1+") lnm+2

, by union bound we know that the prob-
ability that we make an error during each iteration
of the initialization part of Algorithm 1 is at most
5m�2". This is true under the condition that ⌘

ij

1

3

and min
i

02Si,j
02Sj

⌘
ij

1

8(1+") lnm+4

. To make these two

conditions true, we impose the following two require-
ments:

• Consider an undirected weighted graph G0 =
(V 0, E00), where there is a vertex v0

i

for each el-
ement set X

i

and their is en edge (v0
i

, v0
j

) 2 E00

with edge weight ⌘
ij

. Then the bottleneck weight
of the minimum bottleneck spanning tree of G0

should be at most 1

8(1+") lnm+4

.

• max
i<j

⌘
ij

1

3

.

Therefore, under the above two conditions, assume the
number of element setsm satisfy n m� for some con-
stant � > 0. Then, by union bound we know that, for
su�ciently large n, the probability that we recover the
correct solution for (Â

1

, . . . , Â
n

) during the initializa-
tion part of the Algorithm 1 is 1� 5m�2"+� .

For the coordinate update part of Algorithm 1 (line 9
to 12), let us consider the probability that we do not
perform any updates conditioned on the case that we
already have an optimal solution in the initialization
part. For each step, denote the matrix we are optimiz-
ing as A

i

. The update rule is Equation (3). Using the
same approach as before, assume that there is some
matrix P 0

6= A
i

such that tr(P 0> P
1jn,i 6=j

A
j

T
ij

) �

tr(A>
i

P
1jn,i 6=j

A
j

T
ij

). Denote k as the number of

entries where A
i

equals 1 but P 0 does not. Also,
denote U

1

, . . . , U
i�1

, U
i+1

, . . . , U
n

to be independent
random variables following the distribution �2(2k),
and let U be a random variable following distribution
�2(2k(n � 1)). Then, by the Chi-Square tail bounds
that Laurent and Massart (2000) proposed

Pr[tr(P 0>
X

1jn,i 6=j

A
j

T
ij

) � tr(A>
i

X

1jn,i 6=j

A
j

T
ij

)]

=Pr[
X

1jn,i 6=j

⌘
ij

U
j

� k(n� 1)]

Pr[
1

3
U � k(n� 1)] exp(�

2k(n� 1)

25
).

(17)

Then, again by union bound on all values for k, we
know that the probability that we might get a wrong
answer for A

i

in a single step is at most

mX

k=2

p
k

·

m!

(m� k)!
· exp(�

2k(n� 1)

25
)

1

2

mX

k=2

mk

· exp(�
2k(n� 1)

25
).

(18)

If we have n � 20 lnm, then for su�cient large value
of m we have

1

2

mX

k=2

mk

· exp(�
2k(n� 1)

25
) m�2. (19)

By union bound on all m matrices A
i

’s, we know that
the probability at least one of them needs updates is
at most m�1. Hence, we can solve the optimization
problem with probability at least 1� 5m�2"+� +m�1

under all of the above constraints. If we set " = �+1

2

,
then the probability becomes 1� 6m�1 = 1� o(1) for
su�ciently large m. Under that setting, we require the
bottleneck weight of the minimum bottleneck spanning
tree ofG0 to be at at most 1

8(1+") lnm+4

= 1

4(3+�) lnm+4

.

	INTRODUCTION
	CONSISTENT MATCHING FOR SETS OF ELEMENTS
	COORDINATE OPTIMIZATION WITH SMART INITIALIZATION
	Coordinate ascent over permutations
	MST-based initialization
	Analysis of the coordinate update
	Analysis without noise
	Analysis with noise

	Practical improvements
	Combining initialization with coordinate optimization
	Using a good MST edge ordering
	The overall algorithm

	EXPERIMENTS
	PCA reconstruction of MNIST digits
	Stereo landmark alignment
	Repetitive structures of key points
	Experiments in domains beyond computer vision

	CONCLUSION

