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A Proofs

A key concept to derive oracle inequalities and learning rates, which is used in the proof of Theorem 3.1, is the
concept of entropy numbers, see Carl and Stephani (1990) or Steinwart and Christmann (2008, Definition A.5.26).
Recall that, for normed spaces (E, ‖ · ‖E) and (F, ‖ · ‖F ) as well as an integer i ≥ 1, the i-th (dyadic) entropy
number of a bounded, linear operator S : E → F is defined by

ei(S : E → F ) := ei(SBE , ‖ · ‖F )

:= inf

{
ε > 0 : ∃s1, . . . , s2i−1 ∈ SBE such that SBE ⊂

2i−1⋃
j=1

(sj + εBF )

}
,

where we use the convention inf ∅ :=∞, and BE as well as BF denote the closed unit balls in E and F , respectively.

Proof of Theorem 3.1. We denote by H̃ the RKHS over X with Gaussian kernel of width γmax. Let f0 ∈ H̃. Then,
we can w.l.o.g. assume that ‖f0‖∞ ≤ 1, since the Gaussian kernel is bounded. For every j ∈ {1, . . .m} we define
fj = 1Ajf0 = f̂0|Aj

and remark that fj|Aj ∈ Hγmax(Aj) due to Steinwart and Christmann (2008, Exercise 4.4i)).

Hence, fj ∈ Ĥγmax by definition of Ĥγmax . Furthermore, since γj ≤ γmax for every j ∈ {1, . . .m}, Steinwart and
Christmann (2008, Proposition 4.4.6) shows that Ĥγmax ⊂ Ĥγj with

‖fj‖Ĥγj ≤
(
γmax

γj

)d/2
‖fj‖Ĥγmax

. (5)

Hence, we find that fj ∈ Ĥγj for every j ∈ {1, . . . ,m}. Since

f0 =

m∑
i=1

fj

we conclude that f0 ∈ H by definition of H. Next, we observe with (5) that

m∑
j=1

λj‖1Ajf0‖2Ĥγj =

m∑
j=1

λj‖fj‖2Ĥγj ≤
m∑
j=1

λj

(
γmax

γj

)d
‖fj‖2H̃ ≤

m∑
j=1

λj

(
γmax

γj

)d
‖f0‖2H̃ .

By using the latter inequality and the bound for the approximation error given in Steinwart and Christmann

(2008, Theorem 8.18) with tail exponent τ =∞ since X is compact and with λ =
∑m
j=1 λj

(
γmax
γj

)d
, we find that

m∑
j=1

λj‖1Ajf0‖2Ĥγj +RL,P (f0)−R∗L,P ≤
m∑
j=1

λj

(
γmax

γj

)d
‖f0‖2H̃ +RL,P (f0)−R∗L,P

≤ max{cd, c̃d,βcNE}

 m∑
j=1

λj

(
γmax

γj

)d
γ−dmax + γβmax


≤ ĉ

 m∑
j=1

λjγ
−d
j + γβmax

 ,

(6)

where ĉ := max{cd, c̃d,βcNE} with cd, c̃d,β > 0. Next, Eberts and Steinwart (2015, Theorem 6) provides the bound

ei(id : Hγ(Aj) → L2(PX |Aj )) ≤ aji
− 1

2p for i ≥ 1 with aj = c̃p
√
PX(Aj) r

d+2p
2p γ

− d+2p
2p

j , where c̃p is a positive
constant depending from p. For the constant a from Theorem B.1 this yields(

max

{
cpm

1
2

(
m∑
j=1

λ−pj a2p
j

) 1
2p

, 2

})2p
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=

(
max

{
cpm

1
2

(
m∑
j=1

λ−pj

(
c̃p

√
PX(Aj) r

d+2p
2p γ

− d+2p
2p

j

)2p
) 1

2p

, 2

})2p

=

(
max

{
cpc̃pm

1
2 r

d+2p
2p

(
m∑
j=1

(
λ−1
j γ

− d+2p
p

j PX(Aj)

)p) 1
2p

, 2

})2p

≤

(
max

{
cpc̃pm

1
2p r

d+2p
2p

(
m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

) 1
2

, 2

})2p

≤

(
max

{
cpc̃p16

d
2p r

(
m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

) 1
2

, 2

})2p

≤ Cpr2p

(
m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

)p
+ 4p

=: a2p ,

where we used that ‖ · ‖p ≤ m
1−p
p ‖ · ‖1 for 0 < p < 1, as well as mrd ≤ 16d by (3) and that Cp := c2pp c̃

2p
p 16d.

Then, by using Theorem B.1, (6), the concavity of the function t 7→ t
q+1
q+2−p for t ≥ 0 and the fact that τ ≥ 1 with

τ ≤ n we obtain that

m∑
j=1

λj‖fDj ,λj ,γj‖2Ĥj +RL,P ( ÛfD,λ,γ)−R∗L,P

≤ 9

 m∑
j=1

λj‖1Ajf0‖2Ĥγj +RL,P (f0)−R∗L,P

+ C
(
a2pn−1

) q+1
q+2−p + 3

(
432c

q
q+1

NE τ

n

) q+1
q+2

+
30τ

n

≤ 9ĉ

 m∑
j=1

λjγ
−d
j + γβmax

+ C

Cpr2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1 + 4pn−1


q+1
q+2−p

+ 3

(
432c

q
q+1

NE τ

n

) q+1
q+2

+
30τ

n

≤ 9ĉ

 m∑
j=1

λjγ
−d
j + γβmax

+ C

Cpr2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1


q+1
q+2−p

+ C

(
4pτ

n

) q+1
q+2−p

+ 3

(
432c

q
q+1

NE τ

n

) q+1
q+2

+
30τ

n

≤ C̃β,d,p,q

(
m∑
j=1

λjγ
−d
j + γβmax +

r2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1


q+1
q+2−p

+
( τ
n

) q+1
q+2−p

+
( τ
n

) q+1
q+2

+
τ

n

)

≤ Cβ,d,p,q

(
m∑
j=1

λjγ
−d
j + γβmax +

r2p

 m∑
j=1

λ−1
j γ

− d+2p
p

j PX(Aj)

p

n−1


q+1
q+2−p

+
( τ
n

) q+1
q+2

)

holds with probability Pn not less than 1 − 3e−τ , where the constants C̃β,d,p,q and Cβ,d,p,q are given by
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C̃β,d,p,q := max{9ĉ, C ·C
q+1
q+2−p
p , C ·4

p(q+1)
q+2−p , 3c

q
q+2

NE ·432
q+1
q+2 , 30} and Cβ,d,p,q := max{9ĉ, C ·C

q+1
q+2−p
p , 3·C ·4

p(q+1)
q+2−p , 9c

q
q+2

NE ·
432

q+1
q+2 , 90}.

Proof of Theorem 3.2. First we simplify the presentation by using the sequences λ̃n := c2n
−(β+d)κ and γ̃n :=

c3n
−κ with κ := (q+1)

β(q+2)+d(q+1) . Then, we find with Theorem 3.1 together with rn = c1n
−ν , λn,j = rdnλ̃n and

γn,j = γ̃n and with
∑mn
j=1 PX(Aj) = 1 and mn ≤ 16dr−dn that

RL,P ( ÛfD,λ,γ)−R∗L,P

≤ Cβ,d,p,q

(
mn∑
j=1

λn,jγ
−d
n,j + γβmax +

r2p
n

mn∑
j=1

λ−1
n,jγ

− d+2p
p

n,j PX(Aj)

p

n−1


q+1
q+2−p

+
( τ
n

) q+1
q+2

)

= Cβ,d,p,q

(
mnr

d
nλ̃nγ̃

−d
n + γ̃βn +

r2p
n

r−dn λ̃−1
n γ̃

− d+2p
p

n

mn∑
j=1

PX(Aj)

p

n−1


q+1
q+2−p

+
( τ
n

) q+1
q+2

)

≤ 16dCβ,d,p,q

(
λ̃nγ̃

−d
n + γ̃βn +

(
rp(2−d)
n λ̃−pn γ̃−(d+2p)

n n−1
) q+1
q+2−p

+
( τ
n

) q+1
q+2

)

≤ Cβ,ν,d,p,q

(
n−(β+d)κn+dκ + n−βκ +

(
n−pν(2−d)

n−p(β+d)κn−(d+2p)κ+1

) q+1
q+2−p

+
( τ
n

) q+1
q+2

)

= Cβ,ν,d,p,q

(
2n−βκ +

(
n−p[ν(2−d)−(β+d)κ−2κ]

n−dκ+1

) q+1
q+2−p

+
( τ
n

) q+1
q+2

)

= Cβ,ν,d,p,q

(
2n−βκ +

n−
p(q+1)
q+2−p [ν(2−d)−(β+d+2)κ]

n
β(q+2)(q+1)

(β(q+2)+d(q+1))(q+2−p)

+
( τ
n

) q+1
q+2

)

≤ Cβ,ν,d,p,q

(
2n−βκ +

n−
p(q+1)
q+2−p [ν(2−d)−(β+d+2)κ]

n
β(q+1)

(β(q+2)+d(q+1))

+
( τ
n

) q+1
q+2

)

≤ Cβ,ν,d,p,q

(
2n−

β(q+1)
β(q+2)+d(q+1) + n−

β(q+1)
β(q+2)+d(q+1)n−

p(q+1)
q+2 [ν(2−d)− (β+d+2)(q+1)

β(q+2)+d(q+1) ]+
(
τn−1

) q+1
q+2

)
≤ Cβ,ν,ξ,d,qτ

q+1
q+2 · n−

β(q+1)
β(q+2)+d(q+1)

+ξ

holds with probability Pn not less than 1−3e−τ , where the constants Cβ,ν,d,p,q, c1, c2, c3 > 0 depend on β, ν, d, p, q
and the constant Cβ,ν,ξ,d,q > 0 depends on β, ν, ξ, d, q. Furthermore, we remark that we chose p sufficiently close
to zero such that ξ ≥ p(q+1)

q+2

(
ν(d− 2) + (β+d+2)(q+1)

β(q+2)+d(q+1)

)
≥ 0.

B Appendix

Theorem B.1. Let P be a distribution on X × Y with noise exponent q ∈ (0,∞] and let L : Y × R→ [0,∞] be
the hinge loss. Furthermore let (A) be satisfied with Hj := Hγj (Aj) and assume that, for fixed n ≥ 1, there exist
constants p ∈ (0, 1) and a1, . . . , am > 0 such that for all j ∈ {1, . . . ,m}

ei(id : Hj → L2(PX |Aj )) ≤ aj i
− 1

2p , i ≥ 1 . (7)

Finally, fix an f0 ∈ H. Then, for all fixed τ > 0, λ = (λ1, . . . , λm) > 0, γ = (γ1, . . . , γm) > 0 and

a := max

cpm 1
2

 m∑
j=1

λ−pj a2p
j

 1
2p

, 2


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the VP-SVM given by (4) satisfies

m∑
j=1

λj‖fDj ,λj ,γj‖2Ĥj +RL,P ( ÛfD,λ,γ)−R∗L,P

≤ 9

 m∑
j=1

λj‖1Ajf0‖2Ĥj +RL,P (f0)−R∗L,P

+ C
(
a2pn−1

) q+1
q+2−p + 3

(
432c

q
q+1

NE τ

n

) q+1
q+2

+
30τ

n

with probability Pn not less than 1− 3e−τ , where C > 0 is a constant only depending on p.

Proof of Theorem B.1. One can obtain the result directly by an application of Eberts and Steinwart (2015,
Theorem 5). To this end, we note that the hinge loss is Lipschitz continuous and can be clipped at M = 1. Since
H is the sum-RKHS of RKHSs with Gaussian kernels and the Gaussian kernel is bounded, w.l.o.g. we assume for
f0 ∈ H that ‖f0‖∞ ≤ 1. Hence, ‖L ◦ f0‖∞ ≤ 2 and therefore B0 = 2. Furthermore Steinwart and Christmann
(2008, Theorem 8.24) showed that for the hinge loss the constants V and ϑ from Eberts and Steinwart (2015,
Theorem 5) can be achieved by V = 6c

q
q+1

NE and ϑ = q
q+1 . That means

m∑
j=1

λj‖fDj ,λj ,γj‖2Ĥj +RL,P ( ÛfD,λ,γ)−R∗L,P

≤ 9

 m∑
j=1

λj‖1Ajf0‖2Ĥj +RL,P (f0)−R∗L,P

+ C

(
a2p

n

) 1
2−p−ϑ+ϑp

+ 3

(
72V τ

n

) 1
2−ϑ

+
15B0τ

n

= 9

 m∑
j=1

λj‖1Ajf0‖2Ĥj +RL,P (f0)−R∗L,P

+ C

(
a2p

n

) q+1
q+2−p

+ 3

(
432c

q
q+1

NE τ

n

) q+1
q+2

+
30τ

n

holds with probability Pn not less than 1− 3e−τ .

C Some more details for results

In this section we give some more technical details the pseudo-code for local SVMs (Algorithm 1), and some more
results of the experiments. Firstly, some more details on how the experiments were performed:

Hyperparameter grid We used liquidSVM’s default grid: the λ are geometrically spaced between 0.01/ñ and
0.001/ñ where ñ is the number of samples contained in the k − 1 folds currently used for training. The γ are
geometrically spaced between 5r and 0.2rñ−1/d where r is the radius of the cell, d is the dimension of the
data and ñ is as above.

Spatial partitioning scheme The segmentation for mid-sized data sets n ≤ 50000 finds centers for the Voronoi
cells using the farthest-first-traversal algorithm on the entire data set. For larger data sets a random
subsample of the full data set is created and the splitting described above is applied recursively.

In liquidSVM, this is achieved with value 6 for the partition argument to scripts/mc-svm.sh (or the -P
6 mode of svm-train).

Random Chunks scheme The data is split into random partitions of the specified size. In liquidSVM, this is
achieved with value 1 for the partition argument to scripts/mc-svm.sh (or the -P 1 mode of svm-train).
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Algorithm 1 Local SVM training and testing.
Require: A training dataset D, split into cells D1, . . . , Dm, m ≥ 1, a set Γ ⊂ R>0 of γ-candidates, a set Λ ⊂ R>0 of

λ-candidates, the number of folds k for cross-validation, and a test set DT , split into cells DT
1 , . . . , D

T
m.

Ensure: Test error
1: for all j = 1, . . . ,m do
2: Split the cell Dj into k random parts Dj,1, . . . , Dj,k.
3: for all ` = 1, . . . , k do
4: D′j,` := Dj \Dj,`
5: cache pre-kernel matrix (x1, x2)→ ‖x1 − x2‖2 for x1, x2 in D′j,`
6: for all γ ∈ Γ do
7: use cached pre-kernel matrix to calculate kernel matrix with bandwidth γ
8: for all λ ∈ Λ do
9: Train an SVM fD′

j,`
,λ,γ of the form (4) (possibly using as warm-start the solution for the previous λ-candidate).

10: Calculate and save the validation risk RL,Dj,`(fD′j,`,λ,γ)

11: end for
12: Let fDj ,λ,γ be the linear combination of the (fD′

j,`
,λ,γ)1≤`≤k with weights exponential in RL,Dj,`(fD′j,`,λ,γ).

13: Save the validation risk RL,Dj (fDj ,λ,γ)
14: end for
15: end for
16: end for
17: for all j = 1, . . . ,m do
18: Select the γj , λj-combination minimizing the combined validation risk.
19: end for
20: for all j = 1, . . . ,m do
21: Calculate test error RL,DTj (fDj ,λj ,γj ) on test cell DT

j .
22: end for
23: return global test error 1

|DT |
∑m
j=1 |D

T
j | · RL,DTj (fDj ,λj ,γj ).

Table 6: Training times divided by the product of training set size, cell size and dimension (in seconds times 109).
This shows that the time complexity in (1) is fulfilled quite nicely.

2000 5000 10000 15000

training time

higgs 33 29 29 29
hepmass 22 19 19 20
gassensor 20 19 19 19
susy 45 39 38 38
covtype 10 9 9 9
cod-rna 52 51 45 48
skin 116 117 106 111
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Figure 4: Training time vs. test error, this is the final trade-off.


