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Abstract

We consider optimization problems that con-
sist in minimizing a quadratic function under
an atomic norm1 regularization or constraint.
In the line of work on conditional gradient
algorithms, we show that the fully corrective
Frank-Wolfe (FCFW) algorithm — which is
most naturally reformulated as a column gen-
eration algorithm in the regularized case —
can be made particularly efficient for difficult
problems in this family by solving the sim-
plicial or conical subproblems produced by
FCFW using a special instance of a classical
active set algorithm for quadratic program-
ming (Nocedal and Wright, 2006) that gener-
alizes the min-norm point algorithm (Wolfe,
1976).
Our experiments show that the algorithm
takes advantages of warm-starts and of the
sparsity induced by the norm, displays fast
linear convergence, and clearly outperforms
the state-of-the-art, for both complex and
classical norms, including the standard group
Lasso.

1 INTRODUCTION

A number of problems in machine learning and struc-
tured optimization involve either structured convex
constraint sets that are defined as the intersection of
a number of simple convex sets or dually, norms of
sets that are defined as convex hull of either extreme
points or of a collection of sets. A broad class of convex

1or more generally atomic gauge
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regularizers that can be used to encode a priori knowl-
edge on the structure of the objects to estimate have
been described as atomic norms and atomic gauges by
Chandrasekaran et al. (2012). The concept of atomic
norm has found several applications to design sparsity
inducing norms for vectors (Jacob et al., 2009; Obozin-
ski et al., 2011), matrices (Richard et al., 2014; Foygel
et al., 2012) and tensors (Tomioka and Suzuki, 2013;
Liu et al., 2013; Wimalawarne et al., 2014).

A number of these norms remain difficult to use in
practice because it is in general not possible to com-
pute the associated proximal operator or even the norm
itself at a reasonable cost. However, the dual norm
which is defined as a supremum of dot products with
the atoms that define the norm can often be computed
efficiently because of the structure of the set of atoms.
Also a number of atomic norms are actually naturally
defined as infimal convolution of other norms (Jacob
et al., 2009; Tomioka and Suzuki, 2013; Liu et al.,
2013) and this structure has been used to design either
block-coordinate descent approaches or dual ADMM
optimization schemes (Tomioka and Suzuki, 2013) in-
volving latent variables associated with the elementary
norms convolved.

In this paper, we propose to solve problems regularized
or constrained by atomic norms using a fully corrective
Frank-Wolfe algorithm—which can be reformulated as
simple column generation algorithm in the regularized
case—combined with a dedicated active-set algorithm
for quadratic programming. Our experiments show
that we achieve state-of-the-art performance. We also
include a formal proof of the correspondance between
the column generation algorithm and Fully Corrective
Frank-Wolfe.

After a review of the concept of atomic norms, as well
some illustrations, we present a number of the main
algorithmic approaches that have been proposed. We
then present the scheme we propose and finally some
experiments on synthetic and real datasets.
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1.1 Notations

[[p]] denotes the set {1, . . . , p}. If x ∈ Rp, xG denotes
the subvector of x whose entries are indexed by a set
G ∈ [[p]]. Given a function ψ, ψ∗ denotes its Fenchel
conjugate ψ∗(s) ∶= maxx⟨s, x⟩ − ψ(x). ∥M∥tr denotes
the trace norm of the matrix M defined as the `1-norm
of its singular values.

2 ATOMIC NORMS

In many machine learning applications applications,
and particularly for ill-posed problems, models are
constrained structurally so they have a simple rep-
resentation in terms of some fundamental elements.
Examples of such elements include sparse vectors for
many sparsity inducing norms, rank-one matrices for
the trace norm or low-rank tensors as used in the nu-
clear tensor norm (Liu et al., 2013). We call atoms
these elements and atomic set A their (possibly infi-
nite) collection. Assuming A is bounded and centrally
symmetric, and provided its convex hull CA has non
empty interior, we can define an atomic norm γA as the
norm of unit ball CA. It can be shown that (in a finite
dimensional space) γA(x) ∶= inf{∑a∈A ca ∣ ∑a∈A caa =

x, ca ≥ 0, a ∈ A}. The polar norm or dual norm is de-
fined as: γ○A(s) ∶= supa∈A⟨s, a⟩. If A is not symmetric,
or if CA is empty, as long as A contains the origin and
is closed, γA can still be defined as a gauge instead
of a norm and the theory and algorithms presented
in this paper still apply. We restrict the discussion
to norms for simplicity. For a reference on gauges,
see Rockafellar (1997).

We consider in this paper formulations in which an
atomic norm is used as a regularizer, and which lead
to an optimization problem of the form

min
x∈Rp

f(x) + γA(x), (1)

where f is a quadratic function. The case where f
is more generally twice differentiable is obviously of
interest, but beyond the scope of this work.

2.1 Examples of atomic norms

Lasso. The Lasso is a natural example of atomic norm,
whose atoms are the (±ei)i∈[[p]], where the (ei)i∈[[p]] is
the canonical basis of Rp. The Lasso polar norm is
defined as Ω○

Lasso(s) = maxi∈[[p]] ∣si∣.

Latent group lasso (LGL). The norms introduced
in Jacob et al. (2009) are a strong motivating example.
For instance Obozinski and Bach (2016) show that a
broad family of tight relaxations for structured sparsity
can be written in LGL form. Given a collection of sets B
covering [[p]] and which can overlap, and fixed positive

weights δB for each set B ∈ B, the atoms of LGL norm
are the vectors of norm δ−1B and support in B. The polar
LGL norm is defined as Ω○

LGL(s) = maxB∈B δ−1B ∥sB∥2.
In the particular case where B form a partition of
[[p]] we recover the group Lasso norm. Maurer and
Pontil (2012) consider a generalization to a broader
family of atomic norms with dual norms of the form
supM∈M ∥Ms∥2, whereM is a collection of operators.
Matrix counterparts of the latent group Lasso norms
are the latent group trace norms (Tomioka and Suzuki,
2013; Wimalawarne et al., 2014).

Additive decompositions. There has been inter-
est in the literature for additive matrix decomposi-
tions (Agarwal et al., 2012), the most classical ex-
ample being “sparse+low rank decompositions” which
have been proposed for robust PCA and multitask
learning (Candès et al., 2011; Chandrasekaran et al.,
2011). This formulation leads to a problem of the form
minL,S f(L+S)+µ∥L∥tr+λ∥S∥1, which under the form
minM f(M) + γA(M) with γA the atomic norm where
A ⊂ Rp1×p2 is defined as

A ∶= λA1 ∪ µAtr, where

A1 ∶= {± eie
⊺
j , (i, j) ∈ [[p1]] × [[p2]]},

Atr ∶= {uv⊺, ∥u∥2 = ∥v∥2 = 1}.

As a consequence, C○
A = 1

λ
C○

1 ∩
1
µ
C○

tr with C
○
1 a unit `∞

ball and C○
tr a unit spectral norm ball.

Convex sparse SVD and PCA. A third example are
the norms introduced in Richard et al. (2014), including
the (k, q)-trace norm for which
A ∶=⋃{AI,J ∣ (I, J) ⊂ [[p1]] × [[p2]], ∣I ∣ = k, ∣J ∣ = q},

with AI,J ∶= {uv⊺ ∈ Atr ∣ ∥u∥0 ≤ k, ∥v∥0 ≤ q},

and the sparse-PCA norm2 for which

A ∶=⋃{AI,⪰ ∣ I ⊂ [[p1]], ∣I ∣ = k},

with AI,⪰ ∶= {uu⊺ ∣ u ∈ AI}, and AI defined like AB
for LGL.

Beyond these examples a number of structured convex
optimization problems encountered in machine learn-
ing and operations research that involve combinatorial
or structured tasks such as finding permutations or
alignments, convex relaxation of structured matrix fac-
torization problems (Bach et al., 2008; Ding et al.,
2010), Procrustes analysis, etc, involve difficult convex
constraint sets such as elliptope, the Birkhoff polytope,
the set of doubly nonnegative matrices that are natu-
rally written (themselves or their polar) as intersections
of simpler sets such as the p.s.d. cone, the positive or-
thant, simplices, hypercubes, etc, and which lead to
optimization problems whose duals are regularized by
associated atomic norms.

2In fact this is not a norm but only a gauge.
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2.2 Existing algorithmic approaches

2.2.1 Conditional gradient algorithms

For many3 of these norms, it is assumed that an efficient
algorithm is available to compute argmaxa∈A⟨a, s⟩. For
the case of the constrained problem

min
x
f(x) s.t. x ∈ CA, (2)

this has motivated a number of authors to suggest vari-
ants of the conditional gradient algorithm, also known
as the Frank-Wolfe algorithm when the objective is
quadratic, as a tool of choice to solve problems with
atomic norm constraints. Indeed, the principle of con-
ditional gradient algorithms is to build a sequence of
approximations to the solution of the problem as con-
vex combinations of extreme points of the constraint
sets, which here correspond to atoms, so that the ex-
pansion take the form x = ∑

t
i=1 ciai with ∑

t
i=1 ci = 1.

This procedure guarantees a feasible sequence. At each
iteration a new atom, also called Frank-Wolfe direction
or forward direction, is added in the expansion. This
atom is the extreme point of the constraint set defined
by at+1 ∶= argmaxa∈A⟨a,−∇f(xt)⟩. The Frank-Wolfe
(FW) algorithm writes

xt+1FW = (1 − ηt)xt + ηtat+1,

where ηt ∈ [0,1] is a scalar stepsize and x0 = 0. It can
be set to 1

1+t or found by line search.

Other variants of FW algorithms have been proposed,
notably, FW with away steps (which we do not
describe here), pairwise FW (PWFW) and fully
corrective Frank-Wolfe (FCFW). We refer the reader
to Lacoste-Julien and Jaggi (2015) for a detailed
presentation and summarize hereafter the form of
the different updates for PWFW and FCFW. The
active set of atoms At at time t is recursively defined
by At+1 = Ãt ∪ {at+1} with Ãt the set of active
atoms of At at the end of iteration t, i.e. the ones
that contributed with a non-zero coefficient in the
expansion of xt.
PWFW makes use of a backward direc-
tion also called away atom, and defined as
at+1B = argmaxa∈Ãt⟨a,∇f(xt)⟩, i.e. it is the active atom
of largest projection on the gradient direction. The
idea in PWFW is to move by transferring weight from
the away atom at+1B to the FW atom at+1:

xt+1PWFW = xt + ηtp (a
t+1

− at+1B ),

where ηt ∈ [0, ctB], with ctB ≥ 0 the weight attributed to
atom at+1B at iteration t, and ηt is found by line search.

3This is not true for the norms introduced in Richard
et al. (2014) whose dual are NP-hard to compute, but for
which reasonable heuristic algorithms or relaxations are
available.

The optimal step sizes ηt ∈ R for FW and PWFW are
easily obtained in closed form when f is quadratic.

In FCFW, all weights are reoptimized at each iteration:

xt+1FCFW = argminxf(x) s.t. x ∈ Convhull(At+1).

If At = {a1, ..., akt}, where kt ≤ t is the number of atoms
in At, the subproblem that has to be solved at each
iteration t of FCFW rewrites

min
c≥0

f(
kt

∑
i=1
ciai) s.t.

kt

∑
i=1
ci = 1. (3)

Lacoste-Julien and Jaggi (2015) show that PWFW and
FCFW converge linearly for strongly convex objectives
when A is finite.

Rao et al. (2015) propose a variant of FCFW to solve
(2) for f smooth and specifically for atomic norm con-
straints, with an enhancing “backward step” which
applies hard-thresholding to the coefficients ct. To
solve (3) they use a projected gradient algorithm.

Beyond constrained optimization problems, the basic
conditional gradient algorithm (corresponding to plain
FW when f is quadratic) has been generalized to solve
problems of the form minx f(x) + ψ(x) where the set
constraint CA is replaced by a proper convex function
ψ for which the subgradient of ψ∗ can be computed
efficiently (Bredies et al., 2009; Yu et al., 2014). Bach
(2015) shows that the obtained algorithm can be inter-
preted as a dual mirror descent algorithm. Yu et al.
(2014); Bach (2015) and Nesterov et al. (2015) prove
sublinear convergence rates for these algorithms. Cor-
responding generalizations of PWFW and FCFW are
however not obvious. As exploited in Yu et al. (2014);
Harchaoui et al. (2015), if ψ = h ○ γA, with h a nonde-
creasing convex function and γA an atomic norm, and
if an upper bound ρ can be specified a priori on γA(x⋆)
for x⋆ a solution of the problem, it can reformulated
as

min
x,τ

f(x) + h(τ) s.t. γA(x) ≤ τ, τ ≤ ρ, (4)

and it is natural to apply the different variant of Frank-
Wolfe on the variable (x, τ), because the FW direction
is easy to compute (see Section 3.1).

2.2.2 Proximal block-coordinate descent

In the context where they are applicable, proximal
gradient methods provide an appealing alternative to
Frank-Wolfe algorithms. However, the former require
to be able to compute efficiently the proximal operator
of the norm γA appearing in the objective, which is
typically more difficult to compute than the Frank-
Wolfe direction.
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For a number of atomic norms, we have A = ⋃
J
j=1Cj

where Cj are convex sets. As a consequence the polar
norm takes the form γ○A(s) = maxj γ

○
Cj
, with γCi the

atomic norm (or gauge) associated with the set Ci, and
it is a standard result that

γA(x) = inf{γC1(z1)+ . . .+ γCJ
(zJ) ∣ z1 + . . .+ zJ = x}.

Technically, γA is called the infimal convolution of the
norms (γCi)i (see Rockafellar, 1997). In fact most of
the norms that we presented in section 2.1 are of this
form, including LGL norms, latent group trace norms,
norms arising from additive decomposition (obviously
by construction), and the norms for sparse SVD and
sparse PCA.

For all these norms, problem (1) can be reformulated
as

min
z1,...,zJ

f(z1 + . . . + zJ) + γC1(z1) + . . . + γCJ
(zJ).

Since the objective is then a sum of a smooth and
of a separable function, randomized proximal block-
coordinate descent algorithm are typical candidates.
These algorithms have attracted a lot of attention in
the recent literature (see Hong et al., 2016, and refer-
ence therein) and have been applied successfully to a
number of formulations involving convex sparsity in-
ducing regularizers (Shalev-Shwartz and Tewari, 2011;
Friedman et al., 2010; Gu et al., 2016), where they
achieve state-of-the-art performance. Such BCD algo-
rithms where the ones proposed for the norms proposed
in Jacob et al. (2009) and Richard et al. (2014).

Unfortunately these algorithms are slow in general even
if f is strongly convex because of the composition with
the linear mapping (z1, . . . , zJ) ↦ z1 + . . . + zJ . Intu-
itively if the atoms of the different norms are similar,
then the formulation is badly conditioned. If they are
different or essentially decorrelated, BCD remains one
of the most efficient algorithms (Shalev-Shwartz and
Tewari, 2011; Gu et al., 2016).

3 PIVOTING FRANK-WOLFE

After reviewing the form of the corrective step of FCFW
and reformulating FCFW in the regularized case as a
column generation algorithm, we introduce active-set
algorithms to solve efficiently sequences of corrective
steps.

3.1 Simplicial and conical subproblems

We focus on the sequence of subproblems that need to
be solved at the corrective step of FCFW. Let kt ∶= ∣At∣

be the number of selected atoms at iteration t, and
At ∈ Rp×kt , the matrix whose columns are the atoms At,

then, for the constrained problem (2), the subproblem
is the simplicial problem:

min
c
f(Atc) s.t. c ∈ ∆kt , (5)

with ∆k ∶= {c ∈ Rk+ ∣ ∑
k
i=1 ci = 1} the canonical simplex.

The regularized problem (1) can be reformulated as the
constrained optimization problem (4) on a truncated
cone, provided the truncation level ρ is an upper bound
of the value of γA at the optimum. Actually, if ρ is
sufficiently large, several Frank-Wolfe algorithms do
not depend any longer on the value of ρ and can be
interpreted as algorithms in which whole extreme rays
of the cone {(x; τ) ∣ γA(x) ≤ τ} enter the active set via
the linear minimization oracle, and where the original
cone is locally approximated from inside by the simpli-
cial cone obtained as their conical hull. In particular in
the case of FCFW, the subproblem considered at the
t-th iteration takes the form of the conical problem

min
c
f(Atc) +∑

i

ci s.t. c ≥ 0, (6)

which is simply a Lasso problem with positivity con-
straints when f is quadratic. The fact that problem (1)
can be solved by as sequence of problems of the form (6)
is shown in Harchaoui et al. (2015, Sec. 5), who argue
that this leads to an algorithm no worse and possi-
bly better. We formally show that the simple column
generating scheme presented as Algorithm 1 is in fact
exactly equivalent to FCFW applied to the truncated
cone formulation as soon as ρ is large enough:
Proposition 1. If f is assumed lower bounded by 0
and if ρ > f(0), or more generally if the level sets of
x ↦ f(x) + γA(x) are bounded and ρ is sufficiently
large, then the sequence (x̄t)t produced by the FCFW
algorithm applied to the truncated cone constrained
problem (4) and initialized at (x̄0; τ0) = (0; 0) is the
same as the sequence (xt)t produced by Algorithm 1
initialized with x0 = 0, with equivalent sequences of
subproblems, active sets and decomposition coefficients.

See the appendix for a proof. As discussed as well in
the appendix, a variant of Algorithm 1 without pruning
of the atoms with zero coefficients (at step 7) is derived
very naturally as the dual of a cutting plane algorithm.

3.2 Leveraging active-set algorithms for
quadratic programming

Problems (5) and (6) can efficiently be solved by a
number of algorithms. In particular, an appropriate
variant LARS algorithm solves both problem in a finite
number of iterations and it is fast if the solution in
sparse, in spite of the fact that it solves exactly a
sequence of linear systems. Interior point algorithms
can always be used, and are often considered to be a
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Algorithm 1 Column generation
1: Require: f convex differentiable, tolerance ε
2: Initialization: x0 = 0, A0 = ∅, k0 = 0, t = 1
3: repeat
4: at ← arg maxa∈A⟨−∇f(xt−1), a⟩
5: At ← [At−1, at]
6: ct ← arg minc≥0 f(Atc) + ∥c∥1
7: I ← {i ∣ cti > 0},
8: ct ← ctI
9: At ← At⋅,I

10: xt ← Atct

11: t← t + 1
12: until maxa∈A⟨−∇f(xt−1), a⟩ ≤ ε

natural choice to solve this step in the literature. For
larger scale problems, and if f has Lipschitz gradients
(which is obviously the case for a quadratic function),
the forward-backward proximal algorithm can be used
as well, since the projection on the simplex for (5)
and the asymmetric soft-thresholding for (6) can be
computed efficiently. For the constrained case, this is
the algorithm used by Rao et al. (2015).

In our case, we need to solve a sequence of problems of
the form (5) or (6), that differ each from the previous
one by the addition of a single atom. So being able
to use warm-starts is key! If the simplicial problems
remains of small size, and if the corresponding Hes-
sians can be computed efficiently, using second order
algorithms is likely to outperform first order methods.
But the LARS and interior point methods cannot take
advantage of warm-starts. Thus, when f is quadratic,
we propose to use active set algorithms for convex
quadratic programming (Nocedal and Wright, 2006;
Forsgren et al., 2015). In particular, following4 Bach
(2013, Chap. 7.12), we propose to apply the active-set
algorithm of Nocedal and Wright (2006, Chap. 16.5)
to iteratively solve (5) and (6). This algorithm takes
the very simple5 form of Algorithm 2. In fact, as noted
in Bach (2013, Chap. 9.2), this algorithm is a general-
ization of the famous min-norm point algorithm (Wolfe,
1976), the latter being recovered when the Hessian is
the identity.

Algorithm 2 is illustrated in Figure 1. The obtained
iterates always remain in the positive orthant (i.e. pri-

4Bach (2013) proposed to use this active-set algorithm to
optimize convex objectives involving the Lovász extension
of a submodular function.

5Despite the fact that, in the context of a simplicial
algorithms, the polyhedral constraints sets of (5) and (6) as
convex hulls, the algorithm of Nocedal and Wright (2006,
Chap. 16.5) actually exploits their structure as intersections
of half-spaces, and thus the active constraints of the algo-
rithm actually correspond counter-intuitively to dropped
atoms.

mal feasible). Each update of c in Algorithm 2 is called
a pivot, which is either full-step or drop-step. Given
a collection of active atoms indexed by a set J , the
solution d of the non-constrained quadratic program re-
stricted to this set of atoms and obtained by removing
the positivity constraints is computed (line 4). If d lies
in the positive orthant, we set c = d, and we say that we
perform a full-step. In that case, the index of an atom
that must become active (if any), based on gradients,
is added to J . If d ∉ R∣J ∣

+ , a drop-step is performed: c is
updated as the intersection between segment [cold, d]
and the positive orthant, and the index i such that
ci = 0 is dropped from J (line 13). The algorithm stops
if after a full-step, no new index is added in J .

Figure 1: Illustration of Algorithm 2. Here, it converges
after a drop-step (variable c2 is dropped) leading to c1

followed by a full-step (along c1) leading to c2.

Algorithm 2 [c, J]=Active-set(H, b, c0, J0)
1: Solves: P ∶= minc c

⊺Hc + b⊺c, s.t. c ≥ 0
2: Initialization: c = c0 , J = J0,
3: repeat
4: d←HJ,J

−1bJ
5: if d ≥ 0,
6: c← d ▷ full-step
7: g ←Hc + b
8: k ← arg mini∈J0/J gi
9: if gk ≥ 0, then break, else J ← J ⋃{k} end

10: else
11: i∗ ← arg mini

ci
ci−di s.t. ci − di > 0, di < 0

12: τ ←
ci∗

ci∗−di∗
13: J ← J\{i∗} ▷ drop-step
14: c← c + τ(d − c)
15: end
16: until gJ0/J ≥ 0
17: return c, J

3.3 Convergence and computational cost

In this section, we discuss first the convergence of
the algorithm and the number of pivots needed for
convergence, and the the cost of each pivot.

Algorithm 2 is an instance of min-norm point (MNP)
with a general quadratic instead of Euclidean distance,
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but the algorithm is affine invariant, so the convergence
is the same. MNP is known to be finitely convergent.
The positive orthant in dimension kt has at most 2kt

faces which is a naive bound on the number of pivots
in the active-set at iteration t of FCFW. But, Lacoste-
Julien and Jaggi (2015) prove that MNP is linearly
convergent. In practice, the solution is most of the
time either strictly inside the orthant or in one of the
k − 1 dimensional faces in which case it is in fact found
in just 1 or respectively 2 iterations! The number of
pivots per call is illustrated in Figure 4 upper left.

Let s = maxa∈A ∥a∥0 be the sparsity of the atoms, k the
number of active atoms at iteration t and Ht = At⊺QAt

the Hessian of the quadratic problem in the active set,
where Q is the Hessian of the quadratic function f .

The cost of one pivot is the cost of computing the Hes-
sian Ht and its inverse, which is O(min(k2s2, kps +

k2s)) for building the Hessian and an extra O(k3) for
the inversion. In the active-set with warm starts we
only add or remove one atom at a time. We can take ad-
vantage of this to efficiently update the Hessian Ht and
its inverse with rank one updates. The computational
cost for updating the Hessian is O(min(ks2, ps + ks))
when an atom is added and O(k) when removing an
atom. The additional cost to update (Ht)−1 is then
just O(k2) in both cases. See the appendix for more
details on the rank one updates.

4 EXPERIMENTS

In this section, we report experiments that illustrate
the computational efficiency of the proposed algorithm.
We consider linear regression problems of the form of (1)
with f(w) = 1/2∥Xw − y∥2, where X is a design matrix
and γA the LGL or the sparse-PCA norms described in
Section 2. We also considered the constrained version
for LGL, minx f(x) s.t. ΩLGL(w) ≤ ρ, in section 4.2.

Section 4.1 compares the performance of our proposed
algorithm with state-of-the-art algorithms for the group
Lasso. Section 4.2 presents comparisons with the vari-
ants of Frank-Wolfe and with COGEnT on problem
involving the latent group Lasso. Section 4.3 provides a
comparison with a version of FCFW relying on interior-
point solver on larger scale problems. Sections 4.3 and
4.4 provide comparisons with randomized block proxi-
mal coordinate descent algorithms. Most experiments
are on simulated data to control characteristics of the
experiments, except in section 4.3.

4.1 Classical group Lasso

We consider an example with group Lasso
regularization with groups of size 10, B =

{{1, . . . ,10},{11, . . . ,20}, . . .}. We choose the

support of the parameter w0 ∈ R1000 of the model
to be {1, . . . ,50} and all non zero coefficients are
set to 2. We generate n = 200 examples (yi)i=1,..,n
from y = x⊺w + ε. Block Coordinate Descent (BCD)
algorithms are the standard method for this problems
but they suffer slow convergence when the design
matrix is highly correlated. In this experiment
we choose a highly correlated design matrix (with
singular values in {1,0.92, ..,0.92(p−2),0.92(p−1)}) to
highlight the advantages of our algorithm for the
harder instances. We compared our algorithm to our
own implementation of BCD and an enhanced BCD
from Qin et al. (2013) (hyb-BCD). Figure 2 shows
that we outperform both methods.

10
−2

10
0

10
2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

d
u

a
lit

y
 g

a
p

time(s)

Group Lasso duality gap for lambda=1.5

 

 

BCD
hyb−BCD
ours

Figure 2: Experiment for classical group Lasso. log-log
plot of progress of the duality gap.

4.2 k-chain latent group Lasso

We consider a toy example involving latent group Lasso
regularization where the groups are chains of continu-
ous indices of length k = 8, that is where the collection
of group is B = {{1, . . . , k},{2, . . . , k + 1}, . . . ,{p − k +

1, . . . , p}}. We choose the support of the parameter
w0 of the model to be {1, . . . ,10}. Hence, three over-
lapping chains are needed to retrieve the support of
w0. We generate n = 300 examples (yi)i=1,..,n from
y = x⊺w + ε where x is a standard Gaussian vector and
ε ∼ N (0, σ2Ip). The noise level is chosen to be σ = 0.1.
In upper Figure 3 we show a time comparison of our
algorithm on the regularized problem. We implemented
Algorithm 1 and three Frank-Wolfe versions: simple
FW, FW with line search (FW-ls) and pairwise FW
(FW-pw). We compare also with a regularized version
of the forward-backward greedy algorithm from Rao
et al. (2015)(CoGEnT). In the bottom plot of Figure 3
we show a comparison on the constrained problem. All
codes are in Matlab and we used Rao et al.’s code for
the forward-backward greedy algorithm.

Figure 4 illustrates complexity and memory usage of
our algorithm for the same experiment. Top plots show
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Figure 3: Experiments for k-chain group Lasso, where
X is a generated random design matrix.log-log plot of
progress of the duality gap during computation time.
CoGEnT truncation parameter is set to η = 0.5.

that each call to the active-set algorithm has low cost.
Indeed less than two pivots in average, i.e. drop or full
steps, are needed to converge. This is clearly due to
the use of warm starts. Bottom plot shows the number
of active atoms during iterations.

4.3 Hierarchical sparsity

In high-dimensional linear models that involve interac-
tion terms, statisticians usually favor variable selection
obeying certain logical hierarchical constraints. In this
section we consider a quadratic model (linear + inter-
action terms) of the form

y =
p

∑
i=1
βixi +∑

i≠j
βijxixj .

Strong and weak hierarchical sparsity are usually dis-
tinguished (see Bien et al., 2013, and reference therein).
The Weak Hierarchical (WH) sparsity constraints are
that if an interaction is selected, then at least one of
its associated main effects is selected, i.e., βij ≠ 0 ⇒
βi ≠ 0 or βj ≠ 0. We use the latent overlapping group
Lasso formulation proposed in Yan and Bien (2015) to
formulate our problem. The corresponding collection
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Figure 4: Experiment for the k-chain group Lasso.
Top:number of pivots, i.e., drop/full step in active set.
Left figure shows the number of pivots per active set
call and right plot shows the total number of pivots
during iterations. Bottom: evolution of the number of
active atoms in our algorithm.

of groups B thus contains the singletons {i} and con-
tains for all pairs {i, j} the sets {i,{i, j}} and {j,{i, j}}
(coupling respectively the selection of βij with that of
βi or that of βi). We focussed on WH sparsity which
is more challenging here because of the group overlaps,
but the approach applies also to the counterpart for
strong hierarchical constraints.

Simulated data We consider a quadratic problem
with p = 50 main features, which entails that we have
p × (p − 1)/2 = 1225 potential interaction terms and
simulate n = 1000 samples. We choose the parameter
β to have 10% of the interaction terms βij equal to
1 and the rest equal to zero. In order to respect the
WH structure, the minimal number of necessary unary
terms βi possible given the WH constrains are included
in the model with βi = 0.5. We compare our algorithm
with FCFW combined with an interior point solver
(FCFW-ip) instead of the active-set subroutine, and
with a degraded version of our algorithm not using
warm starts. Figure 5 shows that FCFW-ip becomes
slower than our algorithm only beyond 200 seconds. A
plausible explanation is that at the begining the sub-
problems being solved are small and time is dominated
by the search of the new direction; when the size of
the problem grows, the active-set with warm start is
faster, meaning that the active-set exploits the struc-
ture of positivity constraints better than IP, which has
to invert bigger matrices. Full corrections of FCFW-ip
call the quadprog function of Matlab, which is an
optimized C++ routine, whereas our implementation
is done in Matlab. An optimized C implementation
of our active-set algorithm, in particular leveraging the
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rank one updates on the inverse Hessian described in
sections 3.3 should provide an additional significant
speedup.
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Figure 5: Experiments on simulated data for WH spar-
sity. log-plot of progress of the duality gap as a function
time in seconds.

California housing data set We apply the previ-
ous hierarchical mode to the California housing data
(Pace and Barry, 1997). The data contains 8 variables,
so with interaction terms the intial model contains 36
variables. To make the selection problem more challeng-
ing, following She and Jiang (2014), we add 20 main
nuisance variables, generated as standard Gaussian ran-
dom variables corresponding to 370 additional noisy
interaction terms. We compare our algorithm to the
greedy Forward-Backward algorithm with a truncation
parameter η = 0.5 and with Block Coordinate Descent
(BCD). Table 1 shows running time for different levels
of regularization λ. λ = 10−3 is the value selected by
10-fold cross validation on the validation risk. Figure 6
shows the running time for the different algorithms.

Table 1: Computation time in seconds needed to reach
a duality gap of 10−3 on California housing data set.
Time is not reported when larger than 103 seconds.

λ 10−5 10−4 10−3 10−2 10−1

BCD - - 585 73 5
CoGEnT - - 1300 14 0.2

ours 27 1.4 0.4 0.06 0.02

4.4 Sparse PCA

We compare our method to the block proximal gradient
descent (BCD) described in Richard et al. (2014). We
generate a sparse covariance matrix Σ⋆ of size 150×150
obtained as the sum of five overlapping rank one blocks
111111⊺ of size k × k with k = 10. We generate a noisy
covariance with a noise level σ = 0.3. We consider an `2
loss and a regularization by the gauge γAk,⪰

described
in Section 2 with k = 10. The regularization parameter
is λ. Figure 7 shows a time comparison with BCD.
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Figure 6: Experiments on California House data set.
log-log plot of progress of the duality gap during com-
putation time.
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Figure 7: Experiments on sparse PCA. log-log plot of
progress of the duality gap.

5 CONCLUSION

In this paper, we have shown that to minimize a
quadratic function with an atomic norm regulariza-
tion or constraint, the fully corrective Frank-Wolfe
algorithm, which in the regularized case corresponds ex-
actly to a very simple column generating algorithm that
is not well known, is particularly efficient given that
sparsity make the computation of the reduced Hessian
relatively cheap. In particular, the corrective step is
solved very efficiently with a simple active-set methods
for quadratic programming. The proposed algorithm
takes advantage of warm-starts, and empirically out-
performs other Frank-Wolfe schemes, block-coordinate
descent (when applicable) and the algorithm of Rao
et al. (2015). Its performance could be enhanced by
low-rank updates of the inverse Hessian. In future work
we intend to generalize the algorithm to smooth loss
functions using sequential quadratic programming.
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