Appendix: Tensor Decompositions via Two-Mode Higher-Order SVD (HOSVD)

Miaoyan Wang ${ }^{1}$ and Yun S. Song ${ }^{1,2}$
${ }^{1}$ University of Pennsylvania
${ }^{2}$ University of California, Berkeley

A Characterization of Robust Eigenvectors

Proof of Theorem 3.2. The necessity is obvious. To prove the sufficiency, note that the tensor decomposition $\mathcal{T}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i}^{\otimes k}$ implies the two-mode HOSVD:

$$
\begin{equation*}
\mathcal{T}_{(12)(3 \ldots k)}=\sum_{i=1}^{r} \lambda_{i} \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes 2}\right) \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right)^{T} \tag{1}
\end{equation*}
$$

where each $\lambda_{i}>0$ and $\operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes 2}\right)$ is the i th left singular vector corresponding to λ_{i}. Now suppose $\operatorname{Vec}\left(\boldsymbol{a}^{\otimes 2}\right)$ is the left singular vector of $\mathcal{T}_{(12)(3 \ldots k)}$ corresponding to a non-zero singular value $\lambda \in \mathbb{R} \backslash\{0\}$. Then, by (1), we must have

$$
\operatorname{Vec}\left(\boldsymbol{a}^{\otimes 2}\right) \in \operatorname{Span}\left\{\operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes 2}\right): i \in[r] \text { for which } \lambda_{i}=\lambda\right\}
$$

Hence, there exist coefficients $\left\{\alpha_{i}\right\}$ such that $\operatorname{Vec}\left(\boldsymbol{a}^{\otimes 2}\right)=\sum_{i \in[r]: \lambda_{i}=\lambda} \alpha_{i} \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes 2}\right)$. In matrix form, this reads

$$
\boldsymbol{a}^{\otimes 2}=\sum_{i \in[r]: \lambda_{i}=\lambda} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}
$$

where $\left\{\boldsymbol{u}_{i}\right\}$ is a set of orthonormal vectors. Notice that the matrix on the right-hand side has rank $\mid\{i \in$ $\left.[r]: \lambda_{i}=\lambda\right\} \mid$ while the matrix on the left-hand side has rank 1 . Since the rank of a matrix is unambiguously determined, we must have $\left|\left\{i \in[r]: \lambda_{i}=\lambda\right\}\right|=1$. Therefore, $\boldsymbol{a}^{\otimes 2}=\boldsymbol{u}_{i^{*}}^{\otimes 2}$ holds for some $i^{*} \in[r]$; that is, \boldsymbol{a} is a robust eigenvector of \mathcal{T}.

B Exact Recovery for SOD Tensors

B. 1 Proof of Proposition 3.3

Proof of Proposition 3.3. Suppose \boldsymbol{M} is a rank-1 matrix in $\mathcal{L} \mathcal{S}_{0}=\operatorname{Span}\left\{\boldsymbol{u}_{1}^{\otimes 2}, \ldots, \boldsymbol{u}_{r}^{\otimes 2}\right\}$, where each \boldsymbol{u}_{i} is a robust eigenvector of \mathcal{T}. Thus, there exist coefficients $\left\{\alpha_{i}\right\}_{i \in[r]}$ such that

$$
\boldsymbol{M}=\alpha_{1} \boldsymbol{u}_{1}^{\otimes 2}+\cdots+\alpha_{r} \boldsymbol{u}_{r}^{\otimes 2}
$$

Notice that $\left\{\boldsymbol{u}_{i}\right\}$ is a set of orthonormal vectors and the rank of a matrix is unambiguously determined. We must have $\left|\left\{i \in[r]: \alpha_{i} \neq 0\right\}\right|=1$. Hence, $\boldsymbol{M}=\alpha_{i^{*}} \boldsymbol{u}_{i^{*}}^{\otimes 2}$ holds for some $i^{*} \in[r]$.

B. 2 Proof of Theorem 3.4

Proof of Theorem 3.4. Note that every matrix $\boldsymbol{M} \in \mathcal{L} \mathcal{S}_{0}$ can be written as $\boldsymbol{M}=\alpha_{1} \boldsymbol{u}_{1}^{\otimes 2}+\cdots+\alpha_{r} \boldsymbol{u}_{r}^{\otimes 2}$, where $\left\{\alpha_{i}\right\}_{i \in[r]}$ is a set of scalars in \mathbb{R}. Thus, the optimization problem is equivalent to

$$
\begin{equation*}
\max _{\alpha_{1}^{2}+\cdots+\alpha_{r}^{2}=1}\left\|\alpha_{1} \boldsymbol{u}_{1}^{\otimes 2}+\cdots+\alpha_{r} \boldsymbol{u}_{r}^{\otimes 2}\right\|_{\sigma}=\max _{\alpha_{1}^{2}+\cdots+\alpha_{r}^{2}=1} \max _{i \in[r]}\left|\alpha_{i}\right| \tag{2}
\end{equation*}
$$

Let $f(\boldsymbol{\alpha})=\max _{i \in[r]}\left|\alpha_{i}\right|$ denote the objective function in (2), where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right)^{T} \in \boldsymbol{S}^{r-1}$. Notice that the objective is upper bounded by 1; i.e., $f(\boldsymbol{\alpha}) \leq 1$ for all $\boldsymbol{\alpha} \in \mathbf{S}^{r-1}$. Suppose $\boldsymbol{\alpha}^{*}=\left(\alpha_{1}^{*}, \ldots, \alpha_{r}^{*}\right)^{T} \in \boldsymbol{S}^{r-1}$ is a local maximizer of (2). We show below that $f\left(\boldsymbol{\alpha}^{*}\right)=1$.

Suppose $f\left(\boldsymbol{\alpha}^{*}\right) \neq 1$. Then we must have $\max _{i \in[r]}\left|\alpha_{i}^{*}\right|<1$. Without loss of generality, assume α_{1}^{*} is the element with the largest magnitude in the set $\left\{\alpha_{i}^{*}\right\}_{i \in[r]}$. Since $\left|\alpha_{1}^{*}\right|<1$ and $\left(\alpha_{1}^{*}\right)^{2}+\cdots+\left(\alpha_{r}^{*}\right)^{2}=1$, there must also exist some $j \geq 2$ such that $\alpha_{j}^{*} \neq 0$. Without loss of generality again, assume $\alpha_{2}^{*} \neq 0$. Now construct another vector $\widetilde{\boldsymbol{\alpha}}=\left(\widetilde{\alpha}_{1}, \ldots, \widetilde{\alpha}_{r}\right)^{T} \in \mathbb{R}^{r}$, where

$$
\widetilde{\alpha}_{i}= \begin{cases}\alpha_{1}^{*} \eta, & i=1, \\ \operatorname{sign}\left(\alpha_{2}^{*}\right) \sqrt{\left(\alpha_{2}^{*}\right)^{2}-\left(\eta^{2}-1\right)\left(\alpha_{1}^{*}\right)^{2}}, & i=2, \\ \alpha_{i}^{*}, & i=3, \ldots, r,\end{cases}
$$

and $\eta \in \mathbb{R}_{+}$is any value in $\left(1, \frac{\sqrt{\left(\alpha_{1}^{*}\right)^{2}+\left(\alpha_{2}^{*}\right)^{2}}}{\alpha_{1}^{*}}\right]$. It is easy to verify that $\widetilde{\boldsymbol{\alpha}} \in \boldsymbol{S}^{r-1}$ for all such η. Moreover,

$$
\begin{aligned}
\left\|\widetilde{\boldsymbol{\alpha}}-\boldsymbol{\alpha}^{*}\right\|_{2}^{2} & =\sum_{i=1}^{r}\left(\widetilde{\alpha}_{i}-\alpha_{i}^{*}\right)^{2}=\left(\alpha_{1}^{*}\right)^{2}(\eta-1)^{2}+\left(\alpha_{2}^{*}-\widetilde{\alpha}_{2}\right)^{2} \\
& \leq\left(\alpha_{1}^{*}\right)^{2}(\eta-1)^{2}+\left(\alpha_{2}^{*}\right)^{2}+\left(\widetilde{\alpha}_{2}\right)^{2}-2\left(\widetilde{\alpha}_{2}\right)^{2}=2\left(\alpha_{1}^{*}\right)^{2} \eta(\eta-1) .
\end{aligned}
$$

As we see in the right-hand side of the above inequality, the distance between $\widetilde{\boldsymbol{\alpha}}$ and $\boldsymbol{\alpha}^{*}$ can be arbitrarily small as $\eta \rightarrow 1^{+}$. However, $f(\widetilde{\boldsymbol{\alpha}})=\left|\alpha_{1}^{*} \eta\right|>f\left(\boldsymbol{\alpha}^{*}\right)$, which contradicts the local optimality of $\boldsymbol{\alpha}^{*}$. Hence, we must have $f\left(\boldsymbol{\alpha}^{*}\right)=1$, which completes the proof of (A1). As an aside, we have also proved that every local maximizer of (2) is a global maximizer.

To see that there are exactly r pairs of maximizers in $\mathcal{L} \mathcal{S}_{0}$, just notice that $\left\|\boldsymbol{M}^{*}\right\|_{\sigma} /\left\|\boldsymbol{M}^{*}\right\|_{F}=1$ is equivalent to saying \boldsymbol{M}^{*} is a rank-1 matrix. Thus by Proposition 3.3, $\boldsymbol{M}^{*}= \pm \boldsymbol{u}_{i}^{\otimes 2}$ for some $i \in[r]$. Conversely, every matrix of the form $\pm \boldsymbol{u}_{i}^{\otimes 2}$ is a maximizer in $\mathcal{L} \mathcal{S}_{0}$ since $\left\|\boldsymbol{u}_{i}^{\otimes 2}\right\|_{\sigma}=1$. The conclusions (A2) and (A3) then follow from the property of $\left\{\boldsymbol{u}_{i}^{\otimes 2}\right\}_{i \in[r]}$.

C Two-Mode HOSVD via Nearly Matrix Pursuit

C. 1 Auxiliary Theorems

The following results pertain to standard perturbation theory for the singular value decomposition of matrices. For any matrix \boldsymbol{X}, we use \boldsymbol{X}^{\dagger} to denote the Hermitian transpose of \boldsymbol{X}. Given a diagonal matrix $\boldsymbol{\Sigma}$ of singular values, let $\sigma_{\min }(\boldsymbol{\Sigma})$ and $\sigma_{\max }(\boldsymbol{\Sigma})$ denote, respectively, the minimum and the maximum singular values in $\boldsymbol{\Sigma}$.
Theorem C. 1 (Wedin [3]). Let \boldsymbol{B} and $\widetilde{\boldsymbol{B}}$ be two $m \times n(m \geq n)$ real or complex matrices with SVDs

$$
\begin{align*}
& \boldsymbol{B}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\dagger} \equiv\left(\boldsymbol{U}_{1}, \boldsymbol{U}_{2}\right)\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{2} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\binom{\boldsymbol{V}_{1}^{\dagger}}{\boldsymbol{V}_{2}^{\dagger}}, \tag{3}\\
& \widetilde{\boldsymbol{B}}=\widetilde{\boldsymbol{U}} \widetilde{\boldsymbol{\Sigma}} \widetilde{\boldsymbol{V}}^{\dagger} \equiv\left(\widetilde{\boldsymbol{U}}_{1}, \widetilde{\boldsymbol{U}}_{2}\right)\left(\begin{array}{cc}
\widetilde{\boldsymbol{\Sigma}}_{1} & \mathbf{0} \\
\mathbf{0} & \widetilde{\boldsymbol{\Sigma}}_{2} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)\binom{\widetilde{\boldsymbol{V}}_{1}^{\dagger}}{\widetilde{\boldsymbol{V}}_{2}^{\dagger}}, \tag{4}
\end{align*}
$$

and

$$
\begin{array}{ll}
\boldsymbol{\Sigma}_{1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right), & \boldsymbol{\Sigma}_{2}=\operatorname{diag}\left(\sigma_{k+1}, \ldots, \sigma_{n}\right), \\
\widetilde{\boldsymbol{\Sigma}}_{1}=\operatorname{diag}\left(\widetilde{\sigma}_{1}, \ldots, \widetilde{\sigma}_{k}\right), & \widetilde{\boldsymbol{\Sigma}}_{2}=\operatorname{diag}\left(\widetilde{\sigma}_{k+1}, \ldots, \widetilde{\sigma}_{n}\right), \tag{5}
\end{array}
$$

with $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$ and $\tilde{\sigma}_{1} \geq \tilde{\sigma}_{2} \geq \cdots \geq \tilde{\sigma}_{n}$ in descending order. If there exist an $\alpha \geq 0$ and $a \delta>0$ such that

$$
\begin{equation*}
\sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)=\sigma_{k} \geq \alpha+\delta \quad \text { and } \quad \sigma_{\max }\left(\widetilde{\boldsymbol{\Sigma}}_{2}\right)=\tilde{\sigma}_{k+1} \leq \alpha \tag{6}
\end{equation*}
$$

then

$$
\max \left\{\left\|\sin \Theta\left(\boldsymbol{U}_{1}, \widetilde{\boldsymbol{U}}_{1}\right)\right\|_{\sigma},\left\|\sin \Theta\left(\boldsymbol{V}_{1}, \tilde{\boldsymbol{V}}_{1}\right)\right\|_{\sigma}\right\} \leq \frac{\max \left\{\left\|\widetilde{\boldsymbol{B}} \boldsymbol{V}_{1}-\boldsymbol{U}_{1} \boldsymbol{\Sigma}_{1}\right\|_{\sigma},\left\|\widetilde{\boldsymbol{B}}^{\dagger} \boldsymbol{U}_{1}-\boldsymbol{V}_{1} \boldsymbol{\Sigma}_{1}\right\|_{\sigma}\right\}}{\delta}
$$

Remark C.2. In the above theorem, $\boldsymbol{U}_{1}, \widetilde{\boldsymbol{U}}_{1}$ are d-by- k matrices and $\Theta\left(\boldsymbol{U}_{1}, \widetilde{\boldsymbol{U}}_{1}\right)$ denotes the matrix of canonical angles between the ranges of \boldsymbol{U}_{1} and $\widetilde{\boldsymbol{U}}_{1}$. If we let \mathcal{L} (standing for "left" singular vectors) and $\widetilde{\mathcal{L}}$ denote the column spaces of \boldsymbol{U}_{1} and $\widetilde{\boldsymbol{U}}_{1}$ respectively, then by definition, $\left\|\sin \Theta\left(\boldsymbol{U}_{1}, \widetilde{\boldsymbol{U}}_{1}\right)\right\|_{\sigma} \stackrel{\text { def }}{=}\left\|\boldsymbol{U}_{1}^{T} \widetilde{\boldsymbol{U}}_{1}^{\perp}\right\|_{\sigma}=$ $\max _{\boldsymbol{x} \in \mathcal{L}, \boldsymbol{y} \in \tilde{\mathcal{L}}} \frac{\boldsymbol{x}^{T} \boldsymbol{y}\left\|_{2}\right\| \boldsymbol{y} \|_{2}}{}$. When no confusion arises, we will simply use $\sin \Theta(\mathcal{L}, \widetilde{\mathcal{L}})$ to denote $\left\|\sin \Theta\left(\boldsymbol{U}_{1}, \widetilde{\boldsymbol{U}}_{1}\right)\right\|_{\sigma}$. Proposition C.3. Let $\mathcal{L}_{1}, \mathcal{L}_{2}$ be two subspaces in \mathbb{R}^{d}. Then for any vector $\boldsymbol{u}_{1} \in \mathcal{L}_{1}$,

$$
\sin \Theta\left(\boldsymbol{u}_{1}, \mathcal{L}_{2}\right) \leq \sin \Theta\left(\mathcal{L}_{1}, \mathcal{L}_{2}\right) .
$$

Proof. The conclusion follows readily from Remark C.2.
Theorem C. 4 (Weyl [4]). Let B and $\widetilde{\boldsymbol{B}}$ be two matrices with SVDs (3), (4), and (5), Then,

$$
\left|\widetilde{\sigma}_{i}-\sigma_{i}\right| \leq\|\widetilde{\boldsymbol{B}}-\boldsymbol{B}\|_{\sigma} \quad \text { for all } i=1, \ldots, n .
$$

In our proofs, we often make use of the following corollary based on Wedin's and Weyl's Theorems.
Corollary C.5. Let \boldsymbol{B} and $\widetilde{\boldsymbol{B}}$ be two matrices with SVDs (3), (4), and (5). Let $\boldsymbol{E} \stackrel{\text { def }}{=} \widetilde{\boldsymbol{B}}-\boldsymbol{B}$, and $\mathcal{L}, \mathcal{R}, \widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{R}}$ be the column spaces of $\boldsymbol{U}_{1}, \boldsymbol{V}_{1}, \widetilde{\boldsymbol{U}}_{1}$ and $\widetilde{\boldsymbol{V}}_{1}$, respectively. Define $\Delta=$ $\min \left\{\sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right), \sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)-\sigma_{\max }\left(\boldsymbol{\Sigma}_{2}\right)\right\}$. If $\Delta>\|\boldsymbol{E}\|_{\sigma}$, then

$$
\begin{equation*}
\max \{\sin \Theta(\mathcal{L}, \widetilde{\mathcal{L}}), \sin \Theta(\mathcal{R}, \widetilde{\mathcal{R}})\} \leq \frac{\|\boldsymbol{E}\|_{\sigma}}{\Delta-\|\boldsymbol{E}\|_{\sigma}} . \tag{7}
\end{equation*}
$$

Proof. By Weyl's theorem, $\sigma_{\max }\left(\boldsymbol{\Sigma}_{2}\right)-\sigma_{\max }\left(\widetilde{\boldsymbol{\Sigma}}_{2}\right) \geq-\|\boldsymbol{E}\|_{\sigma}$. Combining this with the assumption $\sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)-$ $\sigma_{\max }\left(\boldsymbol{\Sigma}_{2}\right)>\|\boldsymbol{E}\|_{\sigma}$, we have

$$
\sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)-\sigma_{\max }\left(\widetilde{\boldsymbol{\Sigma}}_{2}\right)=\sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)-\sigma_{\max }\left(\boldsymbol{\Sigma}_{2}\right)+\sigma_{\max }\left(\boldsymbol{\Sigma}_{2}\right)-\sigma_{\max }\left(\widetilde{\boldsymbol{\Sigma}}_{2}\right)>\|\boldsymbol{E}\|_{\sigma}-\|\boldsymbol{E}\|_{\sigma}=0 .
$$

This implies that the spectrum of $\boldsymbol{\Sigma}_{1}$ is well-separated from that of $\widetilde{\boldsymbol{\Sigma}}_{2}$, and thus (6) holds with $\alpha=$ $\max \left\{0, \sigma_{\max }\left(\widetilde{\boldsymbol{\Sigma}}_{2}\right)\right\} \geq 0$ and $\delta=\sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)-\alpha>0$. By Wedin's theorem, we get

$$
\max \{\sin \Theta(\mathcal{L}, \widetilde{\mathcal{L}}), \sin \Theta(\mathcal{R}, \widetilde{\mathcal{R}})\} \leq \frac{\left\{\left\|\widetilde{\boldsymbol{B}} \boldsymbol{V}_{1}-\boldsymbol{U}_{1} \boldsymbol{\Sigma}_{1}\right\|_{\sigma},\left\|\widetilde{\boldsymbol{B}}^{\dagger} \boldsymbol{U}_{1}-\boldsymbol{V}_{1} \boldsymbol{\Sigma}_{1}\right\|_{\sigma}\right\}}{\delta} .
$$

Then, noting

$$
\begin{aligned}
&\left\|\widetilde{B} V_{1}-\boldsymbol{U}_{1} \boldsymbol{\Sigma}_{1}\right\|_{\sigma}=\left\|\widetilde{\boldsymbol{B}} \boldsymbol{V}_{1}-\boldsymbol{B} \boldsymbol{V}_{1}\right\|_{\sigma}=\|\widetilde{\boldsymbol{B}}-\boldsymbol{B}\|_{\sigma}=\|\boldsymbol{E}\|_{\sigma}, \\
&\left\|\widetilde{\boldsymbol{B}}^{\dagger} \boldsymbol{U}_{1}-\boldsymbol{V}_{1} \boldsymbol{\Sigma}_{1}\right\|_{\sigma}=\left\|\widetilde{\boldsymbol{B}}^{\dagger} \boldsymbol{U}_{1}-\boldsymbol{B}^{\dagger} \boldsymbol{U}_{1}\right\|_{\sigma}=\left\|\widetilde{\boldsymbol{B}}^{\dagger}-\boldsymbol{B}^{\dagger}\right\|_{\sigma}=\|\boldsymbol{E}\|_{\sigma},
\end{aligned}
$$

and

$$
\delta=\sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)-\max \left\{0, \sigma_{\max }\left(\widetilde{\boldsymbol{\Sigma}}_{2}\right)\right\} \geq \sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)-\max \left\{0, \sigma_{\max }\left(\boldsymbol{\Sigma}_{2}\right)\right\}-\|\boldsymbol{E}\|_{\sigma}=\Delta-\|\boldsymbol{E}\|_{\sigma},
$$

we obtain (7).
Lemma C. 6 (Taylor Expansion). If $\varepsilon=o(1)$, then

- $(1+\varepsilon)^{\alpha}=1+\alpha \varepsilon+o(\varepsilon), \quad \forall \alpha \in \mathbb{R} ;$
- $\sin \varepsilon=\varepsilon+o\left(\varepsilon^{2}\right) ;$
- $\cos \varepsilon=1-\frac{1}{2} \varepsilon^{2}+o\left(\varepsilon^{2}\right)$.

C. 2 Proof of Proposition 4.2 (Uniqueness of $\mathcal{L} \mathcal{S}^{(r)}$)

Proof of Proposition 4.2. Let $\widetilde{\mathcal{T}}_{(12)(3 \ldots k)}=\sum_{i} \mu_{i} \boldsymbol{a}_{i} \boldsymbol{b}_{i}^{T}$ be the two-mode HOSVD with $\left\{\mu_{i}\right\}$ in descending order, and $\mathcal{L} \mathcal{S}^{(r)}=\operatorname{Span}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{r}\right\}$ is the r-truncated two-mode singular space. In order to show that $\mathcal{L} \mathcal{S}^{(r)}$ is uniquely determined, it suffices to show that μ_{r} is strictly larger than μ_{r+1}.
Note that the tensor perturbation model $\widetilde{\mathcal{T}}=\sum_{i=1}^{r} \lambda_{i} \boldsymbol{u}_{i}^{\otimes k}+\mathcal{E}$ implies the matrix perturbation model

$$
\begin{equation*}
\widetilde{\mathcal{T}}_{(12)(3 \ldots k)}=\sum_{i=1}^{r} \lambda_{i} \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes 2}\right) \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right)^{T}+\mathcal{E}_{(12)(3 \ldots k)} \tag{8}
\end{equation*}
$$

where by [2]

$$
\begin{equation*}
\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma} \leq d^{(k-2) / 2}\|\mathcal{E}\|_{\sigma} \leq d^{(k-2) / 2} \varepsilon \tag{9}
\end{equation*}
$$

Now apply Corollary C. 5 to (8) with $\widetilde{\boldsymbol{B}}=\widetilde{\mathcal{T}}_{(12)(3 \ldots k)}, \boldsymbol{B}=\sum_{i=1}^{r} \lambda_{i} \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes 2}\right) \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right)^{T}$, and $\widetilde{\boldsymbol{B}}-\boldsymbol{B}=$ $\mathcal{E}_{(12)(3 \ldots k)}$. Considering the corresponding r th and $(r+1)$ th singular values of $\widetilde{\boldsymbol{B}}$ and \boldsymbol{B}, we obtain

$$
\left|\mu_{r}-\lambda_{r}\right| \leq\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}, \quad \text { and } \quad\left|\mu_{r+1}-0\right| \leq\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}
$$

which implies

$$
\mu_{r}-\mu_{r+1}=\lambda_{r}+\left(\mu_{r}-\lambda_{r}\right)-\left(\mu_{r+1}-0\right) \geq \lambda_{r}-2\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}
$$

By (9) and Assumption 4.1,

$$
\lambda_{r}-2\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma} \geq \lambda_{\min }-2 d^{(k-2) / 2} \varepsilon>0
$$

Therefore $\mu_{r}>\mu_{r+1}$, which ensures the uniqueness of $\mathcal{L} \mathcal{S}^{(r)}$.

C. 3 Proof of Theorem 4.4 (Perturbation of $\mathcal{L S} \mathcal{S}_{0}$)

Definition C. 7 (Singular Space). Let $\widetilde{\mathcal{T}}_{(12)(3 \ldots k)} \in \mathbb{R}^{d^{2} \times d^{k-2}}$ be the two-mode unfolding of $\tilde{\mathcal{T}}$, and $\widetilde{\mathcal{T}}_{(12)(3 \ldots k)}=\sum_{i} \mu_{i} \boldsymbol{a}_{i} \boldsymbol{b}_{i}^{T}$ be the two-mode HOSVD with $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{r}$ in descending order. We define the r-truncated left (respectively, right) singular space by

$$
\begin{aligned}
& \mathcal{L} \mathcal{S}^{(r)}=\operatorname{Span}\left\{\operatorname{Mat}\left(\boldsymbol{a}_{i}\right) \in \mathbb{R}^{d \times d}: \boldsymbol{a}_{i} \text { is the } i \text { th left singular vector of } \widetilde{\mathcal{T}}_{(12)(3 \ldots k)}, i \in[r]\right\}, \\
& \mathcal{R} \mathcal{S}^{(r)}=\operatorname{Span}\left\{\boldsymbol{b}_{i} \in \mathbb{R}^{d^{k-2}}: \boldsymbol{b}_{i} \text { is the } i \text { th right singular vector of } \widetilde{\mathcal{T}}_{(12)(3 \ldots k)}, i \in[r]\right\}
\end{aligned}
$$

The noise-free version $(\varepsilon=0)$ reduces to

$$
\mathcal{L} \mathcal{S}_{0}=\operatorname{Span}\left\{\boldsymbol{u}_{i}^{\otimes 2}: i \in[r]\right\}, \quad \text { and } \quad \mathcal{R} \mathcal{S}_{0}=\operatorname{Span}\left\{\operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right): i \in[r]\right\} .
$$

Remark C.8. We make the convention that the elements in $\mathcal{L S}{ }^{(r)}$ (respectively, $\mathcal{L S} \mathcal{S}_{0}$) are viewed as d-by- d matrices, while the elements in $\mathcal{R} \mathcal{S}^{(r)}$ (respectively, $\mathcal{R} \mathcal{S}_{0}$) are viewed as length- d^{k-2} vectors. For g of notation, we drop the subscript r from $\mathcal{L S}{ }^{(r)}$ (respectively, $\mathcal{R S}{ }^{(r)}$) and simply write $\mathcal{L S}$ (respectively, $\mathcal{R S}$) hereafter.

Definition C. 9 (Inner-Product). For any two tensors $\mathcal{A}=\llbracket a_{i_{1} \ldots i_{k}} \rrbracket, \mathcal{B}=\llbracket b_{i_{1} \ldots i_{k}} \rrbracket \in \mathbb{R}^{d_{1} \times \cdots \times d_{k}}$ of identical order and dimensions, their inner product is defined as

$$
\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i_{1}, \ldots, i_{k}} a_{i_{1} \ldots i_{k}} b_{i_{1} \ldots i_{k}}
$$

while the tensor Frobenius norm of \mathcal{A} is defined as

$$
\|\mathcal{A}\|_{F}=\sqrt{\langle\mathcal{A}, \mathcal{A}\rangle}=\sqrt{\sum_{i_{1}, \ldots, i_{k}}\left|a_{i_{1} \ldots i_{k}}\right|^{2}}
$$

both of which are analogues of standard definitions for vectors and matrices.

Lemma C.10. For every matrix $\boldsymbol{M} \in \mathcal{L S}$ satisfying $\|\boldsymbol{M}\|_{F}=1$, there exists a unit vector $\boldsymbol{b}_{\boldsymbol{M}} \in \mathcal{R} \mathcal{S}$ such that

$$
\begin{equation*}
\boldsymbol{M}=c \widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right) \tag{10}
\end{equation*}
$$

where $c=1 /\left\|\widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F}$ is a normalizing constant.

Proof. Let $\widetilde{\mathcal{T}}_{(12)(3 \ldots k)}=\sum_{i} \mu_{i} \boldsymbol{a}_{i} \boldsymbol{b}_{i}^{T}$ denote the two-mode HOSVD. Following a similar line of argument as in the proof of Proposition 4.2, we have $\mu_{r} \geq \lambda_{\min }-\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}>0$. By the property of matrix SVD,

$$
\boldsymbol{a}_{i}=\frac{1}{\mu_{i}} \widetilde{\mathcal{T}}_{(12)(3 \ldots k)} \boldsymbol{b}_{i}, \quad \text { for all } i \in[r]
$$

which implies

$$
\operatorname{Mat}\left(\boldsymbol{a}_{i}\right)=\frac{1}{\mu_{i}} \widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{i}\right), \quad \text { for all } i \in[r]
$$

Recall that $\mathcal{L S}=\operatorname{Span}\left\{\operatorname{Mat}\left(\boldsymbol{a}_{i}\right): i \in[r]\right\}$. Thus, for any $\boldsymbol{M} \in \mathcal{L} \mathcal{S}$, there exist coefficients $\left\{\alpha_{i}\right\}_{i \in[r]}$ such that

$$
\begin{aligned}
\boldsymbol{M} & =\alpha_{1} \operatorname{Mat}\left(\boldsymbol{a}_{1}\right)+\cdots+\alpha_{r} \operatorname{Mat}\left(\boldsymbol{a}_{r}\right) \\
& =\frac{\alpha_{1}}{\mu_{1}} \widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{1}\right)+\cdots+\frac{\alpha_{r}}{\mu_{r}} \widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{r}\right) \\
& =\widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \frac{\alpha_{1}}{\mu_{1}} \boldsymbol{b}_{1}+\cdots+\frac{\alpha_{r}}{\mu_{r}} \boldsymbol{b}_{r}\right)
\end{aligned}
$$

where the last line follows from the multilinearity of $\mathcal{T}_{(1)(2)(3 \ldots k)}$. Now define $\boldsymbol{b}_{\boldsymbol{M}}^{\prime}=\frac{\alpha_{1}}{\mu_{1}} \boldsymbol{b}_{1}+\cdots+\frac{\alpha_{r}}{\mu_{r}} \boldsymbol{b}_{r}$. The conclusion (10) then follows by setting $\boldsymbol{b}_{\boldsymbol{M}}=\boldsymbol{b}_{\boldsymbol{M}}^{\prime} /\left\|\boldsymbol{b}_{\boldsymbol{M}}^{\prime}\right\|_{2} \in \mathcal{R S}$.

Lemma C. 11 (Perturbation of $\mathcal{R} \mathcal{S}_{0}$). Under Assumption 4.1,

$$
\min _{\boldsymbol{b} \in \mathcal{R} \mathcal{S},\|\boldsymbol{b}\|_{2}=1}\left\|\left.\boldsymbol{b}\right|_{\mathcal{R} \mathcal{S}_{0}}\right\|_{2} \geq 1-\frac{d^{k-2}}{2 \lambda_{\min }^{2}} \varepsilon^{2}+o\left(\varepsilon^{2}\right)
$$

where $\left.\boldsymbol{b}\right|_{\mathcal{R S}_{0}}$ denotes the vector projection of $\boldsymbol{b} \in \mathcal{R} \mathcal{S}$ onto the space $\mathcal{R} \mathcal{S}_{0}$.
Proof. As seen in the proof of Proposition 4.2, $\widetilde{\mathcal{T}}_{(12)(3 \ldots k)}$ can be written as

$$
\begin{equation*}
\widetilde{\mathcal{T}}_{(12)(3 \ldots k)}=\sum_{i=1}^{r} \lambda_{i} \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes 2}\right) \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right)^{T}+\mathcal{E}_{(12)(3 \ldots k)}, \quad \text { where } \quad\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma} \leq d^{(k-2) / 2} \varepsilon \tag{11}
\end{equation*}
$$

The noise-free version of (11) reduces to

$$
\mathcal{T}_{(12)(3 \ldots k)}=\sum_{i=1}^{r} \lambda_{i} \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes 2}\right) \operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right)^{T}
$$

Following the notation of Corollary C.5, we set $\widetilde{\boldsymbol{B}}=\widetilde{\mathcal{T}}_{(12)(3 \ldots k)}, \boldsymbol{B}=\mathcal{T}_{(12)(3 \ldots k)}, \boldsymbol{\Sigma}_{1}=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, $\boldsymbol{\Sigma}_{2}=\operatorname{diag}\{0, \ldots, 0\}$, and $\Delta=\min \left\{\sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right), \sigma_{\min }\left(\boldsymbol{\Sigma}_{1}\right)-\sigma_{\max }\left(\boldsymbol{\Sigma}_{2}\right)\right\}=\min _{i \in[r]} \lambda_{i}$. Then, $\|\widetilde{\boldsymbol{B}}-\boldsymbol{B}\|_{\sigma}=$ $\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}$. By Assumption 4.1, $\Delta=\lambda_{\min }>2 d^{(k-2) / 2} \varepsilon>\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}$. Hence the condition of Corollary C. 5 holds. Applying Corollary C. 5 then yields

$$
\begin{align*}
\sin \Theta\left(\mathcal{R} \mathcal{S}_{0}, \mathcal{R} \mathcal{S}\right) & \leq \frac{\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}}{\lambda_{\min }-\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}}=\frac{\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}}{\lambda_{\min }}\left[1-\frac{\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}}{\lambda_{\min }}\right]^{-1} \tag{12}\\
& \leq \frac{d^{(k-2) / 2} \varepsilon}{\lambda_{\min }}\left[1-\frac{d^{(k-2) / 2} \varepsilon}{\lambda_{\min }}\right]^{-1}=\frac{d^{(k-2) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)
\end{align*}
$$

Now let $\boldsymbol{b} \in \mathcal{R S}$ be a unit vector. Decompose \boldsymbol{b} into

$$
\boldsymbol{b}=\left.\boldsymbol{b}\right|_{\mathcal{R S}_{0}}+\left.\boldsymbol{b}\right|_{\mathcal{R S}_{0}{ }^{\perp}},
$$

where $\left.\boldsymbol{b}\right|_{\mathcal{R} \mathcal{S}_{0}}$ and $\left.\boldsymbol{b}\right|_{\mathcal{R} \mathcal{S}_{0}^{\perp}}$ are vector projections of \boldsymbol{b} onto the spaces $\mathcal{R} \mathcal{S}_{0}$ and $\mathcal{R} \mathcal{S}_{0}^{\perp}$, respectively. By (12) and Taylor expansion,

$$
\left||\boldsymbol{b}|_{\mathcal{R} \mathcal{S}_{0}} \|_{2}=\cos \Theta\left(\boldsymbol{b}, \mathcal{R} \mathcal{S}_{0}\right)=\left[1-\sin ^{2} \Theta\left(\boldsymbol{b}, \mathcal{R} \mathcal{S}_{0}\right)\right]^{1 / 2} \geq 1-\frac{d^{k-2}}{2 \lambda_{\min }^{2}} \varepsilon^{2}+o\left(\varepsilon^{2}\right)\right.
$$

Since the above holds for every unit vector $\boldsymbol{b} \in \mathcal{R} \mathcal{S}$, we conclude

$$
\min _{\boldsymbol{b} \in \mathcal{R} \mathcal{S},\|\boldsymbol{b}\|_{2}=1}\left\|\left.\boldsymbol{b}\right|_{\mathcal{R} \mathcal{S}_{0}}\right\|_{2} \geq 1-\frac{d^{k-2}}{2 \lambda_{\min }^{2}} \varepsilon^{2}+o\left(\varepsilon^{2}\right)
$$

Corollary C.12. Under Assumption 4.1,

$$
\min _{\boldsymbol{b} \in \mathcal{R} \mathcal{S},\|\boldsymbol{b}\|_{2}=1}\left\|\left.\boldsymbol{b}\right|_{\mathcal{R} \mathcal{S}_{0}}\right\|_{2} \geq 1-\frac{1}{\left(c_{0}-1\right)^{2}}
$$

which is ≥ 0.98 for $c_{0} \geq 10$.
Proof. Note that $\frac{\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}}{\lambda_{\min }} \leq \frac{1}{c_{0}}$ by Assumption 4.1. The right-hand side of (12) can be bounded as follows,

$$
\frac{\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}}{\lambda_{\min }-\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}} \leq \frac{1}{c_{0}-1}
$$

By a similar argument as in the proof of Lemma C.11, we obtain

$$
\begin{equation*}
\min _{\boldsymbol{b} \in \mathcal{R} \mathcal{S},\|\boldsymbol{b}\|_{2}=1}\left\|\left.\boldsymbol{b}\right|_{\mathcal{R} \mathcal{S}_{0}}\right\|_{2}=\cos \Theta\left(\boldsymbol{b}, \mathcal{R} \mathcal{S}_{0}\right) \geq \cos ^{2} \Theta\left(\boldsymbol{b}, \mathcal{R} \mathcal{S}_{0}\right) \geq \cos ^{2} \Theta\left(\mathcal{R} \mathcal{S}, \mathcal{R} \mathcal{S}_{0}\right) \geq 1-\frac{1}{\left(c_{0}-1\right)^{2}} \tag{13}
\end{equation*}
$$

which is the desired result.

Proof of Theorem 4.4. To prove the upper bound in Theorem 4.4, it suffices to show that for every matrix $\overline{\boldsymbol{M}} \in \mathcal{L S}$ satisfying $\|\boldsymbol{M}\|_{F}=1$, there exist coefficients $\left\{\alpha_{i} \in \mathbb{R}\right\}_{i=1}^{r}$ such that

$$
\begin{equation*}
\boldsymbol{M}=\sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\boldsymbol{E}, \quad \text { where }\|\boldsymbol{E}\|_{\sigma} \leq \frac{d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon) \tag{14}
\end{equation*}
$$

Let \boldsymbol{M} be a d-by- d matrix satisfying $\boldsymbol{M} \in \mathcal{L S}$ and $\|\boldsymbol{M}\|_{F}=1$. By Lemma C.10, there exists $\boldsymbol{b}_{\boldsymbol{M}} \in \mathcal{R} \mathcal{S}$ such that

$$
\begin{align*}
\boldsymbol{M} & =\frac{\widetilde{\mathcal{T}}_{(1)(2)(3, \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)}{\left\|\tilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F}} \tag{15}\\
& =\sum_{i=1}^{r} \frac{\lambda_{i}\left\langle\operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right), \boldsymbol{b}_{\boldsymbol{M}}\right\rangle}{\left\|\tilde{\mathcal{T}}_{(1)(2)(3, \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F}} \boldsymbol{u}_{i}^{\otimes 2}+\frac{\mathcal{E}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)}{\| \widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right) \|_{F}}} .
\end{align*}
$$

We now claim that (15) is a desired decomposition that satisfies (14). Namely, we seek to prove

$$
\begin{equation*}
\frac{\left\|\mathcal{E}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{\sigma}}{\left\|\widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F}} \leq \frac{d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon) \tag{16}
\end{equation*}
$$

Observe that by the triangle inequality,

$$
\begin{align*}
\left\|\widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F} & =\left\|\sum_{i=1}^{r} \lambda_{i}\left\langle\operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right), \boldsymbol{b}_{\boldsymbol{M}}\right\rangle \boldsymbol{u}_{i}^{\otimes 2}+\mathcal{E}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F} \\
& \geq \underbrace{\left\|\sum_{i=1}^{r} \lambda_{i}\left\langle\operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right), \boldsymbol{b}_{\boldsymbol{M}}\right\rangle \boldsymbol{u}_{i}^{\otimes 22}\right\|_{F}}_{\text {Part I }}-\underbrace{\left\|\mathcal{E}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F}}_{\text {Part II }} . \tag{17}
\end{align*}
$$

By the orthogonality of $\left\{\boldsymbol{u}_{i}\right\}_{i \in[r]}$, Part I has a lower bound,

$$
\begin{align*}
\left\|\sum_{i=1}^{r} \lambda_{i}\left\langle\operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right), \boldsymbol{b}_{\boldsymbol{M}}\right\rangle \boldsymbol{u}_{i}^{\otimes 2}\right\|_{F} & \geq \lambda_{\min } \sqrt{\sum_{i=1}^{r}\left\langle\operatorname{Vec}\left(\boldsymbol{u}_{i}^{\otimes(k-2)}\right), \boldsymbol{b}_{\boldsymbol{M}}\right\rangle^{2}} \tag{18}\\
& =\lambda_{\min }\left\|\left.\boldsymbol{b}_{\boldsymbol{M}}\right|_{\mathcal{R} \mathcal{S}_{0}}\right\|_{2}
\end{align*}
$$

By the inequality between the Frobenius norm and the spectral norm for matrices, Part II has an upper bound,

$$
\begin{equation*}
\left\|\mathcal{E}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F} \leq \sqrt{d}\left\|\mathcal{E}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{\sigma} \leq \sqrt{d}\left\|\mathcal{E}_{(1)(2)(3 \ldots k)}\right\|_{\sigma} \leq d^{(k-2) / 2} \varepsilon \tag{19}
\end{equation*}
$$

where we have used the inequality [2] that

$$
\begin{equation*}
\left\|\mathcal{E}_{(1)(2)(3 \ldots k)}\right\|_{\sigma} \leq d^{(k-3) / 2}\|\mathcal{E}\|_{\sigma} . \tag{20}
\end{equation*}
$$

Combining (17), (18) and (19) gives

$$
\begin{equation*}
\left\|\widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F} \geq \lambda_{\min }\left[\left\|\left.\boldsymbol{b}_{\boldsymbol{M}}\right|_{\mathcal{R} \mathcal{S}_{0}}\right\|_{2}-\frac{d^{(k-2) / 2} \varepsilon}{\lambda_{\min }}\right] \tag{21}
\end{equation*}
$$

By Corollary C. 12 and Assumption 4.1 with $c_{0} \geq 10,\left\|\left.\boldsymbol{b}_{\boldsymbol{M}}\right|_{\mathcal{R} \mathcal{S}_{0}}\right\|_{2}-\frac{d^{(k-2) / 2} \varepsilon}{\lambda_{\min }} \geq 0.98-0.1>0$. So the right-hand side of (21) is strictly positive. Taking the reciprocal of (21) and combining it with (20), we obtain

$$
\begin{align*}
\frac{\left\|\mathcal{E}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{\sigma}}{\left\|\widetilde{\mathcal{T}}_{(1)(2)(3 \ldots k)}\left(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{b}_{\boldsymbol{M}}\right)\right\|_{F}} & \leq \frac{d^{(k-3) / 2} \varepsilon}{\lambda_{\min }}\left[\left\|\left.\boldsymbol{b}_{\boldsymbol{M}}\right|_{\mathcal{R} \mathcal{S}_{0}}\right\|_{\sigma}-\frac{d^{(k-2) / 2} \varepsilon}{\lambda_{\min }}\right]^{-1} \tag{22}\\
& \leq \frac{d^{(k-3) / 2} \varepsilon}{\lambda_{\min }}\left[1-o(\varepsilon)-\frac{d^{(k-2) / 2} \varepsilon}{\lambda_{\min }}\right]^{-1}=\frac{d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)
\end{align*}
$$

where the second line follows from Lemma C.11. This completes the proof of (16) and therefore (14). Since (14) holds for every $\boldsymbol{M} \in \mathcal{L S}$ that satisfies $\|\boldsymbol{M}\|_{F}=1$, and $\sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2} \in \mathcal{L} \mathcal{S}_{0}$, we immediately have

$$
\max _{\boldsymbol{M} \in \mathcal{L} \mathcal{S},\|\boldsymbol{M}\|_{F}=1} \min _{\boldsymbol{M}^{*} \in \mathcal{L} \mathcal{S}_{0}}\left\|\boldsymbol{M}-\boldsymbol{M}^{*}\right\|_{\sigma} \leq \frac{d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon) .
$$

Remark C.13. In addition to (14), \boldsymbol{M} can also be decomposed into

$$
\boldsymbol{M}=\sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\boldsymbol{E}^{\prime}, \quad \text { where } \quad\left\|\boldsymbol{E}^{\prime}\right\|_{\sigma} \leq \frac{2 d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)
$$

where \boldsymbol{E}^{\prime} satisfies

$$
\left\langle\boldsymbol{E}^{\prime}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle=0 \quad \text { for all } i \in[r] .
$$

To see this, rewrite (14) as

$$
\begin{aligned}
\boldsymbol{M}=\sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\boldsymbol{E} & =\sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\sum_{i=1}^{r}\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle \boldsymbol{u}_{i}^{\otimes 2}+\boldsymbol{E}-\sum_{i=1}^{r}\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle \boldsymbol{u}_{i}^{\otimes 2} \\
& =\underbrace{\sum_{i=1}^{r}\left(\alpha_{i}+\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle\right) \boldsymbol{u}_{i}^{\otimes 2}}_{\in \mathcal{L} \mathcal{S}_{0}}+\underbrace{\boldsymbol{E}-\sum_{i=1}^{r}\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle \boldsymbol{u}_{i}^{\otimes 2}}_{=: \boldsymbol{E}^{\prime}} .
\end{aligned}
$$

By construction, \boldsymbol{E}^{\prime} satisfies

$$
\begin{aligned}
\left\langle\boldsymbol{E}^{\prime}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle & =\left\langle\boldsymbol{E}-\sum_{j=1}^{r}\left\langle\boldsymbol{E}, \boldsymbol{u}_{j}^{\otimes 2}\right\rangle \boldsymbol{u}_{j}^{\otimes 2}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle \\
& =\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle-\sum_{j=1}^{r}\left\langle\boldsymbol{E}, \boldsymbol{u}_{j}^{\otimes 2}\right\rangle\left\langle\boldsymbol{u}_{j}^{\otimes 2}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle \\
& =\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle-\sum_{j=1}^{r}\left\langle\boldsymbol{E}, \boldsymbol{u}_{j}^{\otimes 2}\right\rangle \delta_{i j} \\
& =0
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left\|\boldsymbol{E}^{\prime}\right\|_{\sigma} & \leq\|\boldsymbol{E}\|_{\sigma}+\left\|\sum_{i=1}^{r}\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle \boldsymbol{u}_{i}^{\otimes 2}\right\|_{\sigma} \\
& \leq\|\boldsymbol{E}\|_{\sigma}+\max _{i}\left|\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle\right| \\
& \leq 2\|\boldsymbol{E}\|_{\sigma} \\
& \leq \frac{2 d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)
\end{aligned}
$$

where the first line follows from the triangle inequality and the second lines follows from the orthogonality of $\left\{\boldsymbol{u}_{i}\right\}_{i \in[r]}$.
Corollary C.14. Under Assumption 4.1,

$$
\max _{M \in \mathcal{L S},\|M\|_{F}=1} \min _{M^{*} \in \mathcal{L} \mathcal{S}_{0}}\left\|\boldsymbol{M}-\boldsymbol{M}^{*}\right\|_{\sigma} \leq \frac{1.13}{c_{0}}
$$

which is ≤ 0.12 for $c_{0} \geq 10$.
Proof. By Corollary C.12, the right-hand side of (22) has the following upper bound,

$$
\frac{d^{(k-3) / 2} \varepsilon}{\lambda_{\min }}\left[\left\|\left.\boldsymbol{b}_{\boldsymbol{M}}\right|_{\mathcal{R} S_{0}}\right\|_{\sigma}-\frac{d^{(k-2) / 2} \varepsilon}{\lambda_{\min }}\right]^{-1} \leq \frac{1}{\sqrt{d} c_{0}}\left[1-\frac{1}{\left(c_{0}-1\right)^{2}}-\frac{1}{c_{0}}\right]^{-1} \leq \frac{1.13}{c_{0}} \leq 0.12
$$

The claim then follows from the same argument as in the proof of Theorem 4.4.
Corollary C.15. Suppose $c_{0} \geq 10$ in Assumption 4.1. In the notation of (14), we have

$$
\max _{i \in[r]}\left|\alpha_{i}\right| \leq 1+\frac{1.13}{c_{0}} \leq 1.12
$$

Proof. By the triangle inequality and Corollary C.14,

$$
\max _{i \in[r]}\left|\alpha_{i}\right| \leq \sqrt{\sum_{i=1}^{r}\left|\alpha_{i}\right|^{2}}=\|\boldsymbol{M}-\boldsymbol{E}\|_{F} \leq\|\boldsymbol{M}\|_{F}+\|\boldsymbol{E}\|_{F} \leq 1+\frac{1.13}{c_{0}}=1.12
$$

C. 4 Perturbation Bounds

C.4.1 Proof of Lemma 4.5

Proof of Lemma 4.5. We prove by construction. Define $\boldsymbol{M}_{i}=\boldsymbol{u}_{i}^{\otimes 2} \in \mathcal{L} \mathcal{S}_{0}$ for $i \in[r]$, and project \boldsymbol{M}_{i} onto the space $\mathcal{L S}$,

$$
\begin{equation*}
\boldsymbol{M}_{i}=\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}+\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}^{\perp}} \tag{23}
\end{equation*}
$$

where $\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}$ and $\left.\boldsymbol{M}_{i}\right|_{\mathcal{S S}^{\perp}}$ denote the projections of $\boldsymbol{M}_{i} \in \mathcal{L} \mathcal{S}_{0}$ onto the vector space $\mathcal{L S}$ and $\mathcal{L S} \mathcal{S}^{\perp}$, respectively. We seek to show that the set of matrices $\left\{\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}: i \in[r]\right\}$ satisfies

$$
\begin{equation*}
\frac{\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}\right\|_{\sigma}}{\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}\right\|_{F}} \geq 1-\frac{d^{(k-2) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon), \quad \text { for all } i \in[r] . \tag{24}
\end{equation*}
$$

Applying the subadditivity of spectral norm to (23) gives

$$
\begin{align*}
\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}\right\|_{\sigma} & \geq\left\|\boldsymbol{M}_{i}\right\|_{\sigma}-\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}^{\perp}}\right\|_{\sigma} \\
& \geq 1-\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}^{\perp}}\right\|_{F}=1-\sin \Theta\left(\boldsymbol{M}_{i}, \mathcal{L S}\right)\left\|\boldsymbol{M}_{i}\right\|_{F} \tag{25}\\
& \geq 1-\sin \Theta\left(\mathcal{L S} \mathcal{S}_{0}, \mathcal{L S}\right)
\end{align*}
$$

where the second line comes from $\left\|\boldsymbol{M}_{i}\right\|_{\sigma}=\left\|\boldsymbol{M}_{i}\right\|_{F}=1,\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}^{\perp}}\right\|_{\sigma} \leq\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}^{\perp}}\right\|_{F}$, and the last line comes from Proposition C.3. By following the same line of argument in Lemma C.11, we have

$$
\begin{equation*}
\sin \Theta\left(\mathcal{L} \mathcal{S}_{0}, \mathcal{L S}\right) \leq \frac{\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}}{\lambda_{\min }-\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}} \leq \frac{d^{(k-2) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon) \tag{26}
\end{equation*}
$$

Combining (25) and (26) leads to

$$
\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}\right\|_{\sigma} \geq 1-\frac{d^{(k-2) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)
$$

By construction, $\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L} \mathcal{S}}\right\|_{F} \leq\left\|\boldsymbol{M}_{i}\right\|_{F}=1$, and therefore (24) is proved. Note that $\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}} \in \mathcal{L S}$ for all $i \in[r]$. Hence,

$$
\begin{equation*}
\max _{\boldsymbol{M} \in \mathcal{L S}} \frac{\|\boldsymbol{M}\|_{\sigma}}{\|\boldsymbol{M}\|_{F}} \geq \frac{\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}\right\|_{\sigma}}{\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}\right\|_{F}} \geq 1-\frac{d^{(k-2) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon) \tag{27}
\end{equation*}
$$

The conclusion then follows by the equivalence

$$
\max _{\boldsymbol{M} \in \mathcal{L S}} \frac{\|\boldsymbol{M}\|_{\sigma}}{\|\boldsymbol{M}\|_{F}}=\max _{\boldsymbol{M} \in \mathcal{L} \mathcal{S},\|\boldsymbol{M}\|_{F}=1}\|\boldsymbol{M}\|_{\sigma}
$$

Remark C.16. The above proof reveals that there are at least r elements $\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}$ in $\mathcal{L S}$ that satisfy the righthand side of (27). These r elements are linearly independent, and in fact, $\left\{\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}\right\}_{i \in[r]}$ are approximately orthogonal to each other. To see this, we bound $\cos \Theta\left(\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}},\left.\boldsymbol{M}_{j}\right|_{\mathcal{L S}}\right)$ for all $i, j \in[r]$, with $i \neq j$. Recall that $\left\{\boldsymbol{M} \stackrel{\text { def }}{=} \boldsymbol{u}_{i}^{\otimes 2}\right\}_{i \in[r]}$ is a set of mutually orthogonal vectors in $\mathcal{L} \mathcal{S}_{0}$. Then for all $i \neq j$,

$$
\begin{align*}
0=\left\langle\mathbf{M}_{i}, \mathbf{M}_{j}\right\rangle & =\left\langle\left.\mathbf{M}_{i}\right|_{\mathcal{L S}}+\left.\mathbf{M}_{i}\right|_{\mathcal{L S}^{\perp}},\left.\mathbf{M}_{j}\right|_{\mathcal{L S}}+\left.\mathbf{M}_{j}\right|_{\mathcal{L S}^{\perp}}\right\rangle \\
& =\left\langle\left.\mathbf{M}_{i}\right|_{\mathcal{L S}},\left.\mathbf{M}_{j}\right|_{\mathcal{L S}}\right\rangle+\left\langle\left.\mathbf{M}_{i}\right|_{\mathcal{L S}},\left.\mathbf{M}_{j}\right|_{\mathcal{L S}^{\perp}}\right\rangle \tag{28}
\end{align*}
$$

which implies $\left\langle\left.\mathbf{M}_{i}\right|_{\mathcal{L S}},\left.\mathbf{M}_{j}\right|_{\mathcal{L S}}\right\rangle=-\left\langle\left.\mathbf{M}_{i}\right|_{\mathcal{L S}^{\perp}},\left.\mathbf{M}_{j}\right|_{\mathcal{L S}}{ }^{\perp}\right\rangle$. Hence,

$$
\begin{aligned}
& =\frac{\left|\left\langle\left.\mathbf{M}_{i}\right|_{\mathcal{L S}^{\perp}},\left.\mathbf{M}_{j}\right|_{\mathcal{L \mathcal { S } ^ { \perp }}}\right\rangle\right|}{\left\|\left.\mathbf{M}_{i}\right|_{\mathcal{L S}}\right\|_{F}\left\|\left.\mathbf{M}_{j}\right|_{\mathcal{L S}}\right\|_{F}} \\
& \leq \frac{\left\|\left.\mathbf{M}_{i}\right|_{\mathcal{L S}^{\perp}}\right\|_{F}}{\left\|\left.\mathbf{M}_{i}\right|_{\mathcal{L S}}\right\|_{F}} \times \frac{\left\|\left.\mathbf{M}_{j}\right|_{\mathcal{L S}}{ }^{\perp}\right\|_{F}}{\left\|\left.\mathbf{M}_{j}\right|_{\mathcal{L S}}\right\|_{F}} \\
& \leq \tan ^{2} \Theta\left(\mathcal{L} \mathcal{S}_{0}, \mathcal{L S}\right),
\end{aligned}
$$

where the second line comes from (28), the third line comes from Cauchy-Schwarz inequality and the last line uses the fact that $\boldsymbol{M}_{i}, \boldsymbol{M}_{j} \in \mathcal{L} \mathcal{S}_{0}$. Following the similar argument as in Corollary C. 12 (in particular, the last inequality in (13)), we have $|\sin \Theta(\mathcal{L S}, \mathcal{L S})| \leq \frac{1}{c_{0}-1} \leq 0.12$ under the assumption $c_{0} \geq 10$. Thus,

$$
\left|\cos \Theta\left(\left.\mathbf{M}_{i}\right|_{\mathcal{L S}},\left.\mathbf{M}_{j}\right|_{\mathcal{L S}}\right)\right| \leq \tan ^{2} \Theta\left(\mathcal{L} \mathcal{S}_{0}, \mathcal{L S}\right) \leq 0.015
$$

This implies $89.2^{\circ} \leq \Theta\left(\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}},\left.\boldsymbol{M}_{j}\right|_{\mathcal{L S}}\right) \leq 90.8^{\circ}$; that is, $\left\{\left.\boldsymbol{M}_{i}\right|_{\mathcal{L S}}\right\}_{i \in[r]}$ are approximately orthogonal to each other.
Corollary C.17. Suppose $c_{0} \geq 10$ in Assumption 4.1. Then

$$
\max _{\boldsymbol{M} \in \mathcal{L} \mathcal{S},\|\boldsymbol{M}\|_{F}=1}\|\boldsymbol{M}\|_{\sigma} \geq 1-\frac{1}{c_{0}-1} \geq 0.88
$$

Proof. As seen in Corollary C.12,

$$
\sin \Theta\left(\mathcal{L} \mathcal{S}_{0}, \mathcal{L S}\right) \leq \frac{\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}}{\lambda_{\min }-\left\|\mathcal{E}_{(12)(3 \ldots k)}\right\|_{\sigma}} \leq \frac{1}{c_{0}-1}
$$

Combining this with (25) and (26) gives

$$
\left\|\left.\boldsymbol{M}_{i}\right|_{\mathcal{L} \mathcal{S}}\right\|_{\sigma} \geq 1-\sin \Theta\left(\mathcal{L} \mathcal{S}_{0}, \mathcal{L S}\right) \geq 1-\frac{1}{c_{0}-1} \geq 0.88
$$

The remaining argument is exactly the same as the above proof of Lemma 4.5.

C.4.2 Proof of Lemma 4.6

Proof of Lemma 4.6. Because of the symmetry of $\widetilde{\mathcal{T}}$ and Lemma C.10, $\widehat{\boldsymbol{M}}_{1}$ must be a symmetric matrix. Now let $\widehat{\boldsymbol{M}}_{1}=\sum_{i=1}^{d} \gamma_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}$ denote the eigen-decomposition of $\widehat{\boldsymbol{M}}_{1}$, where γ_{i} is sorted in decreasing order and $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ is the eigenvector corresponding to γ_{i} for all $i \in[d]$. Without loss of generality, we assume $\gamma_{1}>0$. By construction, $\widehat{\boldsymbol{M}}_{1}=\arg \max _{\boldsymbol{M} \in \mathcal{L S},\|\boldsymbol{M}\|_{F}=1}\|\boldsymbol{M}\|_{\sigma}$. By Lemma 4.5,

$$
\gamma_{1}=\left\|\widehat{\boldsymbol{M}}_{1}\right\|_{\sigma} \geq 1-\frac{d^{(k-2) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)
$$

Since $\sum_{i} \gamma_{i}^{2}=\left\|\widehat{\boldsymbol{M}}_{1}\right\|_{F}^{2}=1,\left|\gamma_{2}\right| \leq\left(1-\gamma_{1}^{2}\right)^{1 / 2} \leq \frac{\sqrt{2} d^{(k-2) / 4}}{\sqrt{\lambda_{\min }}} \sqrt{\varepsilon}+o(\sqrt{\varepsilon})$. Define $\Delta:=\min \left\{\gamma_{1}, \gamma_{1}-\gamma_{2}\right\}$. Then,

$$
\Delta \geq \gamma_{1}-\left|\gamma_{2}\right| \geq 1-\frac{\sqrt{2} d^{(k-2) / 4}}{\sqrt{\lambda_{\min }}} \sqrt{\varepsilon}+o(\sqrt{\varepsilon})
$$

Under the assumption $c_{0} \geq 10, \gamma_{1} \geq 0.88$ by Corollary C.17. Hence, $\Delta \geq \gamma_{1}-\left|\gamma_{2}\right| \geq 0.88-\sqrt{1-0.88^{2}} \approx$ $0.41>0$.

By Theorem 4.4, there exists $\boldsymbol{M}^{*}=\sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2} \in \mathcal{L} \mathcal{S}_{0}$ such that

$$
\left\|\widehat{\boldsymbol{M}}_{1}-\boldsymbol{M}^{*}\right\|_{\sigma} \leq \frac{d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)
$$

Without loss of generality, suppose the dominant eigenvector of \boldsymbol{M}^{*} is \boldsymbol{u}_{1}. Following the notation of Corollary C.5, we set $\boldsymbol{B}=\widehat{\boldsymbol{M}}_{1}, \widetilde{\boldsymbol{B}}=\boldsymbol{M}^{*}, \boldsymbol{E}=\widehat{\boldsymbol{M}}_{1}-\boldsymbol{M}^{*}, \boldsymbol{\Sigma}_{1}=\left\{\gamma_{1}\right\}$ and $\boldsymbol{\Sigma}_{2}=\operatorname{diag}\left\{\gamma_{2}, \ldots, \gamma_{d}\right\}$. From Corollary C.14, $\|\boldsymbol{E}\|_{\sigma} \leq 0.12$. Combining this with earlier calculation, we have $\Delta-\|\boldsymbol{E}\|_{\sigma} \geq 0.41-0.12=0.29>0$. Hence, the condition in Corollary C. 5 holds.
Applying Corollary C. 5 to the specified setting yields

$$
\begin{equation*}
\left|\sin \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right| \leq \frac{\|\boldsymbol{E}\|_{\sigma}}{\Delta-\|\boldsymbol{E}\|_{\sigma}} \leq \frac{d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon\left[1-\frac{\sqrt{2} d^{(k-2) / 4}}{\sqrt{\lambda_{\min }}} \sqrt{\varepsilon}+o(\sqrt{\varepsilon})\right]^{-1}=\frac{d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon) \tag{29}
\end{equation*}
$$

To bound $\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)$, we notice that

$$
\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)=\left[2-2\left|\cos \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right|\right]^{1 / 2}=\left[2-2 \sqrt{1-\sin ^{2} \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)}\right]^{1 / 2} .
$$

By Taylor expansion and (29), we conclude

$$
\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right) \leq \frac{d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)
$$

Corollary C.18. Under Assumption 4.1,

$$
\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right) \leq \frac{5}{c_{0}}
$$

which is ≤ 0.5 for $c_{0} \geq 10$.
Proof. In the proof of Lemma 4.6, we have shown that $\Delta-\|\boldsymbol{E}\|_{\sigma} \geq 0.29$. By Corollary C.14, $\|\boldsymbol{E}\|_{\sigma} \leq 1.13 / c_{0}$. Therefore, (29) has the following upper bound,

$$
\left|\sin \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right| \leq \frac{\|\boldsymbol{E}\|_{\sigma}}{\Delta-\|\boldsymbol{E}\|_{\sigma}} \leq \frac{4}{c_{0}}
$$

Following the same argument as in the proof of Lemma 4.6, we obtain

$$
\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)=\left[2-2\left|\cos \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right|\right]^{1 / 2} \leq \frac{5}{c_{0}} \leq 0.5
$$

C.4.3 Proof of Lemma 4.7

Proof of Lemma 4.7. For clarity, we use $\widehat{\boldsymbol{M}}_{1}$ and $\widehat{\boldsymbol{u}}_{1}$ to denote the estimators in line 5 of Algorithm 1, and use $\widehat{\boldsymbol{M}}_{1}^{*}$ and $\widehat{\boldsymbol{u}}_{1}^{*}$ to denote the estimators in line 6 of Algorithm 1. Namely,

$$
\widehat{\boldsymbol{M}}_{1}^{*}=\widetilde{\mathcal{T}}\left(\boldsymbol{I}, \boldsymbol{I}, \widehat{\boldsymbol{u}}_{1}, \ldots, \widehat{\boldsymbol{u}}_{1}\right), \quad \text { and } \quad \widehat{\boldsymbol{u}}_{1}^{*}=\underset{\boldsymbol{x} \in \boldsymbol{S}^{d-1}}{\arg \max }\left|\boldsymbol{x}^{T} \widehat{\boldsymbol{M}}_{1}^{*} \boldsymbol{x}\right|
$$

By construction, the perturbation model of $\widetilde{\mathcal{T}}$ implies the perturbation model of $\widehat{\boldsymbol{M}}_{1}^{*}$,

$$
\widehat{\boldsymbol{M}}_{1}^{*}=\sum_{i=1}^{r} \lambda_{i}\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{i}\right\rangle^{(k-2)} \boldsymbol{u}_{i}^{\otimes 2}+\mathcal{E}\left(\boldsymbol{I}, \boldsymbol{I}, \widehat{\boldsymbol{u}}_{1}, \ldots, \widehat{\boldsymbol{u}}_{1}\right),
$$

where $\left\|\mathcal{E}\left(\boldsymbol{I}, \boldsymbol{I}, \widehat{\boldsymbol{u}}_{1}, \ldots, \widehat{\boldsymbol{u}}_{1}\right)\right\|_{\sigma} \leq\|\mathcal{E}\|_{\sigma} \leq \varepsilon$.
Without loss of generality, assume $\widehat{\boldsymbol{u}}_{1}$ is the estimator of \boldsymbol{u}_{1} and $\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right\rangle>0$; otherwise, we take $-\widehat{\boldsymbol{u}}_{1}$ to be the estimator. Let $\eta_{i}:=\lambda_{i}\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{i}\right\rangle^{(k-2)}$ for all $i \in[r]$. In the context of Corollary C.5, we set $\boldsymbol{B}=$
$\sum_{i \in[r]} \eta_{i} \boldsymbol{u}_{i}^{\otimes 2}, \widetilde{\boldsymbol{B}}=\widehat{\boldsymbol{M}}^{*}, \boldsymbol{E}=\widetilde{\boldsymbol{B}}-\boldsymbol{B}, \boldsymbol{\Sigma}_{1}=\left\{\eta_{1}\right\}, \boldsymbol{\Sigma}_{2}=\operatorname{diag}\left\{\eta_{2}, \ldots, \eta_{r}\right\}$, and $\Delta=\min \left\{\eta_{1}, \eta_{1}-\max _{i \neq 1} \eta_{i}\right\}$. Then,

$$
\begin{equation*}
\Delta \geq \eta_{1}-\max _{i \neq 1}\left|\eta_{i}\right|=\lambda_{1}\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right\rangle^{(k-2)}-\max _{i \neq 1}\left|\lambda_{i}\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right\rangle\right|^{(k-2)} . \tag{30}
\end{equation*}
$$

Note that $\|\boldsymbol{E}\|_{\sigma} \leq\|\mathcal{E}\|_{\sigma} \leq \varepsilon$. In order to apply Corollary C.5, we seek to show $\Delta>\varepsilon$.
By Definition 4.3, we have

$$
\begin{equation*}
\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right\rangle=\cos \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)=1-\frac{1}{2} \operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right), \tag{31}
\end{equation*}
$$

and by the orthogonality of $\left\{\boldsymbol{u}_{i}\right\}_{i \in[r]}$,

$$
\begin{equation*}
\left|\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{i}\right\rangle\right|^{2} \leq \sum_{j=2}^{r}\left|\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{j}\right\rangle\right|^{2} \leq 1-\cos ^{2} \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)=\operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\left[1-\frac{1}{4} \operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right], \tag{32}
\end{equation*}
$$

for all $i=2, \ldots, r$.
Combining (31), (32), $0 \leq \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right) \leq 1 / 2$ (by Corollary C.18), and the fact that $(1-x)^{(k-2)} \geq 1-(k-2) x$ for all $0 \leq x \leq 1$ and $k \geq 3$, we further have

$$
\begin{equation*}
\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right\rangle^{(k-2)}=\left[1-\frac{1}{2} \operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right]^{(k-2)} \geq 1-\frac{k-2}{2} \operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right) \geq 1-\frac{k-2}{4} \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right), \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{i}\right\rangle\right|^{(k-2)} \leq\left[\operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right]^{(k-2) / 2}=\operatorname{Loss}^{k-2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right) \leq \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right), \tag{34}
\end{equation*}
$$

for all $i=2, \ldots, r$. Putting (33) and (34) back in (30), we obtain

$$
\begin{aligned}
\Delta & \geq \lambda_{1}\left[1-\frac{k-2}{4} \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right]-\lambda_{\max } \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right) \\
& \geq \lambda_{1}\left[1-\left(\frac{k-2}{4}+\frac{\lambda_{\max }}{\lambda_{\min }}\right) \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right] .
\end{aligned}
$$

By Corollary C.18, Loss $\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right) \leq 5 / c_{0}$. Write $c:=\frac{k-2}{4}+\frac{\lambda_{\max }}{\lambda_{\min }}$. Under the assumption $c_{0} \geq \max \{10,6 c\}$, we have $\Delta \geq \lambda_{1} / 6$ and hence

$$
\Delta-\varepsilon \geq \frac{\lambda_{1}}{6}-\frac{\lambda_{\min }}{c_{0} d^{(k-2) / 2}}>\frac{\lambda_{1}}{6}-\frac{\lambda_{\min }}{10}>0 .
$$

This implies that the condition in Corollary C. 5 holds. Now applying Corollary C. 5 to the specified setting gives

$$
\begin{aligned}
\left|\sin \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right| & \leq \frac{\varepsilon}{\Delta-\varepsilon} \\
& \leq \frac{\varepsilon}{\lambda_{1}}\left[1-c \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)-\frac{\varepsilon}{\lambda_{1}}\right]^{-1} \\
& \leq \frac{\varepsilon}{\lambda_{1}}\left[1-\frac{c d^{(k-3) / 2} \varepsilon}{\lambda_{\min }}-\frac{\varepsilon}{\lambda_{1}}+o(\varepsilon)\right]^{-1}=\frac{\varepsilon}{\lambda_{1}}+o(\varepsilon),
\end{aligned}
$$

where the third line follows from Lemma 4.6. Using the fact that $\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)=\left[2-2\left|\cos \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)\right|\right]^{1 / 2}=$ $\left[2-2 \sqrt{1-\sin ^{2} \Theta\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)}\right]^{1 / 2}$ and Taylor expansion, we conclude

$$
\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right) \leq \frac{\varepsilon}{\lambda_{1}}+o(\varepsilon) .
$$

To obtain $\operatorname{Loss}\left(\widehat{\lambda}_{1}, \lambda_{1}\right)$, recall that under the assumption $\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right\rangle>0, \operatorname{Loss}\left(\widehat{\lambda}_{1}, \lambda_{1}\right)=\left|\widehat{\lambda}_{1}-\lambda_{1}\right|$. (Otherwise, we need to consider $\left|\widehat{\lambda}_{1}+\lambda_{1}\right|$ instead). Observe that by the triangle inequality,

$$
\begin{aligned}
\left|\widehat{\lambda}_{1}-\lambda_{1}\right| & =\left|\mathcal{T}\left(\widehat{\boldsymbol{u}}_{1}, \ldots, \widehat{\boldsymbol{u}}_{1}\right)-\lambda_{1}\right|=\left|\sum_{i=1}^{r} \lambda_{i}\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{i}\right\rangle^{k}+\mathcal{E}\left(\widehat{\boldsymbol{u}}_{1}, \ldots, \widehat{\boldsymbol{u}}_{1}\right)-\lambda_{1}\right| \\
& \leq \lambda_{1}\left|1-\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right\rangle^{k}\right|+\sum_{i=2}^{r} \lambda_{i}\left|\left\langle\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{i}\right\rangle\right|^{k}+\left|\mathcal{E}\left(\widehat{\boldsymbol{u}}_{1}, \ldots, \widehat{\boldsymbol{u}}_{1}\right)\right|
\end{aligned}
$$

Using similar techniques as in (31), (32), (33) and (34), as well as the fact $(1-x)^{k} \geq 1-k x$ for all $0 \leq x \leq 1$ and $k \geq 3$, we conclude

$$
\begin{aligned}
\left|\widehat{\lambda}_{1}-\lambda_{1}\right| & \leq \frac{\lambda_{1} k}{2} \operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)+\lambda_{\max } \operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{1}, \boldsymbol{u}_{1}\right)+\varepsilon \\
& \leq\left(\frac{\lambda_{1} k}{2}+\lambda_{\text {max }}\right)\left[\frac{\varepsilon}{\lambda_{1}}+o(\varepsilon)\right]^{2}+\varepsilon \\
& =\varepsilon+o(\varepsilon)
\end{aligned}
$$

C.4.4 Proof of Lemma 4.8

Proof of Lemma 4.8. Let \boldsymbol{M} be a d-by- d matrix in the space $\mathcal{L S}(X) \stackrel{\text { def }}{=} \mathcal{L S} \cap \operatorname{Span}\left\{\widehat{\boldsymbol{u}}_{i}^{\otimes 2}: i \in X\right\}^{\perp}$ and suppose \boldsymbol{M} satisfies $\|\boldsymbol{M}\|_{F}=1$. Since $\mathcal{L S}(X) \subset \mathcal{L S}$, from Remark C.13, \boldsymbol{M} can be decomposed into

$$
\begin{equation*}
\boldsymbol{M}=\sum_{i=1}^{r} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\boldsymbol{E} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle=0 \quad \text { for all } i \in[r], \quad \text { and } \quad\|\boldsymbol{E}\|_{\sigma} \leq \frac{2 d^{(k-3) / 2} \varepsilon}{\lambda_{\min }}+o(\varepsilon) \tag{36}
\end{equation*}
$$

By definition, every element in $\mathcal{L S}(X)$ is orthogonal to $\operatorname{Vec}\left(\widehat{\boldsymbol{u}}_{i}^{\otimes 2}\right)$ for all $i \in X$. We claim that under this condition, one must have $\alpha_{i}=o(\varepsilon)$ for all $i \in X$. To show this, we project $\widehat{\boldsymbol{u}}_{i}$ onto the space $\operatorname{Span}\left\{\boldsymbol{u}_{i}\right\}$ and write

$$
\widehat{\boldsymbol{u}}_{i}=\xi_{i} \boldsymbol{u}_{i}+\eta_{i} \boldsymbol{u}_{i}^{\perp}
$$

where $\xi_{i}^{2}+\eta_{i}^{2}=1$ and $\boldsymbol{u}_{i}^{\perp} \in \mathbf{S}^{d-1}$ denotes the normalized (i.e., unit) vector projection of $\widehat{\boldsymbol{u}}_{i}$ onto the space $\operatorname{Span}\left\{\boldsymbol{u}_{i}\right\}^{\perp}$. Then for all $i \in X$,

$$
\begin{align*}
0 & =\left\langle\boldsymbol{M}, \widehat{\boldsymbol{u}}_{i}^{\otimes 2}\right\rangle \tag{37}\\
& =\left\langle\sum_{j \in[r]} \alpha_{j} \boldsymbol{u}_{j}^{\otimes 2}+\boldsymbol{E},\left(\xi_{i} \boldsymbol{u}_{i}+\eta_{i} \boldsymbol{u}_{i}^{\perp}\right)^{\otimes 2}\right\rangle \\
& =\left\langle\alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\sum_{j \neq i, j \in[r]} \alpha_{j} \boldsymbol{u}_{j}^{\otimes 2}+\boldsymbol{E}, \xi_{i}^{2} \boldsymbol{u}_{i}^{\otimes 2}+2 \xi_{i} \eta_{i} \boldsymbol{u}_{i} \otimes \boldsymbol{u}_{i}^{\perp}+\eta_{i}^{2}\left(\boldsymbol{u}_{i}^{\perp}\right)^{\otimes 2}\right\rangle \\
& =\alpha_{i} \xi_{i}^{2}+2 \xi_{i} \eta_{i}\left\langle\boldsymbol{E}, \boldsymbol{u}_{i} \otimes \boldsymbol{u}_{i}^{\perp}\right\rangle+\eta_{i}^{2}\left\langle\sum_{j \neq i, j \in[r]} \alpha_{j} \boldsymbol{u}_{j}^{\otimes 2}+\boldsymbol{E},\left(\boldsymbol{u}_{i}^{\perp}\right)^{\otimes 2}\right\rangle
\end{align*}
$$

where the last line uses the fact that $\left\langle\boldsymbol{E}, \boldsymbol{u}_{i}^{\otimes 2}\right\rangle=0,\left\langle\boldsymbol{u}_{i}, \boldsymbol{u}_{i}^{\perp}\right\rangle=0$ and $\left\langle\boldsymbol{u}_{i}, \boldsymbol{u}_{j}\right\rangle=0$ for all $j \neq i$. By assumption, $\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{i}\right) \leq 2 \varepsilon / \lambda_{i}+o(\varepsilon)$. This implies $\left|\eta_{i}\right|=\left|\left\langle\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{i}^{\perp}\right\rangle\right|=\left[1-\cos ^{2} \Theta\left(\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{i}\right)\right]^{1 / 2} \leq \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{i}\right)[1-$ $\left.\frac{1}{4} \operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{i}\right)\right]^{1 / 2} \leq \operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{i}\right)=O(\varepsilon)$, and $\left|\xi_{i}\right|=\left(1-\eta_{i}^{2}\right)^{1 / 2} \geq 1-O(\varepsilon)$. It then follows from (37) that

$$
\xi_{i}^{2}\left|\alpha_{i}\right|=\left|2 \xi_{i} \eta_{i}\left\langle\boldsymbol{E}, \boldsymbol{u}_{i} \otimes \boldsymbol{u}_{i}^{\perp}\right\rangle+\eta_{i}^{2}\left\langle\sum_{j \neq i, j \in[r]} \alpha_{j} \boldsymbol{u}_{j}^{\otimes 2}+\boldsymbol{E},\left(\boldsymbol{u}_{i}^{\perp}\right)^{\otimes 2}\right\rangle\right|
$$

$$
\begin{aligned}
& \leq 2\left|\xi_{i} \eta_{i}\right|\left|\left\langle\boldsymbol{E}, \boldsymbol{u}_{i} \otimes \boldsymbol{u}_{i}^{\perp}\right\rangle\right|+\eta_{i}^{2}\left(\sum_{j \neq i, j \in[r]}\left|\alpha_{j}\left\langle\boldsymbol{u}_{j}^{\otimes 2},\left(\boldsymbol{u}_{i}^{\perp}\right)^{\otimes 2}\right\rangle\right|+\left|\left\langle\boldsymbol{E},\left(\boldsymbol{u}_{i}^{\perp}\right)^{\otimes 2}\right\rangle\right|\right) \\
& \leq 2\left|\xi_{i} \eta_{i}\right|\|\boldsymbol{E}\|_{\sigma}+\eta_{i}^{2}\left(\sum_{j \neq i, j \in[r]}\left|\alpha_{j}\right|+\|\boldsymbol{E}\|_{\sigma}\right) \\
& \leq O(\varepsilon)\left(\frac{2 d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)\right)+O\left(\varepsilon^{2}\right)\left(1.12 r+\frac{2 d^{(k-3) / 2}}{\lambda_{\min }} \varepsilon+o(\varepsilon)\right)=o(\varepsilon)
\end{aligned}
$$

where the last line follows from $\left|\eta_{i}\right| \leq O(\varepsilon),\left|\xi_{i}\right| \leq 1,\|\boldsymbol{E}\|_{\sigma} \leq \frac{2 d^{(k-3) / 2} \varepsilon}{\lambda_{\min }}+o(\varepsilon)\left(\right.$ cf.(36)) and $\max _{i \in[r]}\left|\alpha_{i}\right| \leq 1.12$ (cf. Corollary C.15). Therefore, since $\left|\xi_{i}\right| \geq 1-O(\varepsilon)$, we conclude that $\left|\alpha_{i}\right|=o(\varepsilon)$ for all $i \in X$.
Now write (35) as

$$
\boldsymbol{M}=\sum_{i \in[r] \backslash X} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\sum_{i \in X} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\boldsymbol{E}
$$

Note that $\sum_{i \in[r] \backslash X} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2} \in \mathcal{L} \mathcal{S}_{0}(X) \stackrel{\text { def }}{=} \operatorname{Span}\left\{\boldsymbol{u}_{i}^{\otimes 2}: i \in[r] \backslash X\right\}$. Hence,

$$
\min _{\boldsymbol{M}^{*} \in \mathcal{S S}_{0}(X)}\left\|\boldsymbol{M}-\boldsymbol{M}^{*}\right\|_{\sigma} \leq\left\|\sum_{i \in X} \alpha_{i} \boldsymbol{u}_{i}^{\otimes 2}+\boldsymbol{E}\right\|_{\sigma} \leq \max _{i \in X}\left|\alpha_{i}\right|+\|\boldsymbol{E}\|_{\sigma} \leq \frac{2 d^{(k-3) / 2} \varepsilon}{\lambda_{\min }}+o(\varepsilon)
$$

Since the above holds for all $\boldsymbol{M} \in \mathcal{L S}(X)$ that satisfies $\|\boldsymbol{M}\|_{F}=1$, taking maximum over \boldsymbol{M} yields the desired result.

C.4.5 Proof of Theorem 4.9

We use the following lemma [1] in our proof of Theorem 4.9.
Lemma C.19. Fix a subset $X \subset[r]$ and assume that $0 \leq \varepsilon \leq \lambda_{i} / 2$ for each $i \in X$. Choose any $\left\{\widehat{\boldsymbol{u}}_{i}, \widehat{\lambda}_{i}\right\}_{i \in X} \subset$ $\mathbb{R}^{d} \times \mathbb{R}$ such that

$$
\left|\lambda_{i}-\widehat{\lambda}_{i}\right| \leq \varepsilon, \quad\left\|\widehat{\boldsymbol{u}}_{i}\right\|_{2}=1, \quad \text { and } \quad\left\langle\boldsymbol{u}_{i}, \widehat{\boldsymbol{u}}_{i}\right\rangle \geq 1-2\left(\varepsilon / \lambda_{i}\right)^{2}>0
$$

and define tensor $\Delta_{i}:=\lambda_{i} \boldsymbol{u}_{i}^{\otimes k}-\widehat{\lambda}_{i} \widehat{\boldsymbol{u}}_{i}^{\otimes k}$ for $i \in X$. Pick any unit vector $\boldsymbol{a}=\sum_{i=1}^{d} a_{i} \boldsymbol{u}_{i}$. Then, there exist positive constants $C_{1}, C_{2}>0$, depending only on k, such that

$$
\begin{equation*}
\left\|\sum_{i \in X} \Delta_{i} \boldsymbol{a}^{\otimes k-1}\right\|_{\sigma} \leq C_{1}\left(\sum_{i \in X}\left|a_{i}\right|^{k-1} \varepsilon\right)+C_{2}\left(|X|\left(\frac{\varepsilon}{\lambda_{\min }}\right)^{k-1}\right) \tag{38}
\end{equation*}
$$

where $\Delta_{i} \boldsymbol{a}^{\otimes k-1}:=\Delta_{i}(\boldsymbol{a}, \ldots, \boldsymbol{a}, \boldsymbol{I}) \in \mathbb{R}^{d}$.

Proof of Theorem 4.9. We prove the conclusion

$$
\begin{equation*}
\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{\pi(i)}\right) \leq \frac{2 \varepsilon}{\lambda_{\pi(i)}}+o(\varepsilon), \quad \operatorname{Loss}\left(\widehat{\lambda}_{i}, \lambda_{\pi(i)}\right) \leq 2 \varepsilon+o(\varepsilon) \tag{39}
\end{equation*}
$$

by induction on i. For $i=1$, the error bound of $\left\{\left(\widehat{\boldsymbol{u}}_{1}, \widehat{\lambda}_{1}\right) \in \mathbb{R}^{d} \times \mathbb{R}\right\}$ follows readily from Lemmas 4.5-4.7. Now suppose (39) holds for $i \leq s$. Taking $X=[s]$ in Lemma 4.8 yields the deviation of $\mathcal{L S}(X)$ from $\mathcal{L S} \mathcal{S}_{0}(X)$,

$$
\begin{equation*}
\max _{\boldsymbol{M} \in \mathcal{L S}(X),\|\boldsymbol{M}\|_{F}=1} \min _{\boldsymbol{M}^{*} \in \mathcal{L} \mathcal{S}_{0}(X)}\left\|\boldsymbol{M}-\boldsymbol{M}^{*}\right\|_{\sigma} \leq \frac{2 d^{(k-3) / 2} \varepsilon}{\lambda_{\min }}+o(\varepsilon) \tag{40}
\end{equation*}
$$

Applying Theorem 4.4 and Lemmas $4.5-4.7$ to $i=s+1$ with ε replaced by 2ε (because of the additional factor " 2 " in (40) compared to Theorem 4.4), we obtain

$$
\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{s+1}, \boldsymbol{u}_{\pi(s+1)}\right) \leq \frac{2 \varepsilon}{\lambda_{\pi(s+1)}}+o(\varepsilon), \quad \operatorname{Loss}\left(\widehat{\lambda}_{s+1}, \lambda_{\pi(s+1)}\right) \leq 2 \varepsilon+o(\varepsilon)
$$

So (39) also holds for $i=s+1$.
It remains to bound the residual tensor $\Delta \widetilde{\mathcal{T}} \stackrel{\text { def }}{=} \widetilde{\mathcal{T}}-\sum_{i \in[r]} \widehat{\lambda}_{i} \widehat{\boldsymbol{u}}_{i}^{\otimes k}$. Note that $\operatorname{Loss}\left(\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{\pi(i)}\right) \leq 2 \varepsilon / \lambda_{\pi(i)}+o(\varepsilon)$ implies $\left\langle\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{\pi(i)}\right\rangle=1-\frac{1}{2} \operatorname{Loss}^{2}\left(\widehat{\boldsymbol{u}}_{i}, \boldsymbol{u}_{\pi(i)}\right) \geq 1-2\left(\varepsilon / \lambda_{\pi(i)}\right)^{2}+o\left(\varepsilon^{2}\right)$. When c_{0} is sufficiently large (i.e., ε is sufficiently small), $\widehat{\boldsymbol{u}}_{i}$ is approximately parallel to $\boldsymbol{u}_{\pi(i)}$ and orthogonal to \boldsymbol{u}_{j} for all $j \neq \pi(i)$. For ease of notation, we renumber the indices and assume $\pi(i)=i$ for all $i \in[r]$. Following the definition of Δ_{i} in Lemma C.19,

$$
\|\Delta \widetilde{\mathcal{T}}\|_{\sigma}=\left\|\sum_{i \in[r]} \lambda_{i} u_{i}^{\otimes k}+\mathcal{E}-\sum_{i \in[r]} \widehat{\lambda}_{i} \widehat{\boldsymbol{u}}_{i}^{\otimes k}\right\|_{\sigma}=\left\|\sum_{i \in[r]} \Delta_{i}+\mathcal{E}\right\|_{\sigma}
$$

Now taking $X=[r]$ in (38) gives

$$
\begin{aligned}
\|\Delta \widetilde{\mathcal{T}}\|_{\sigma} & \leq \max _{a \in \mathbf{S}^{d-1}}\left\|\sum_{i \in[r]} \Delta_{i} \boldsymbol{a}^{\otimes(k-1)}\right\|_{\sigma}+\varepsilon \\
& \leq \max _{a \in \mathbf{S}^{d-1}} C_{1} \sum_{i \in[r]}\left|a_{i}\right|^{k-1} \varepsilon+C_{2} r\left(\frac{\varepsilon}{\lambda_{\min }}\right)^{k-1}+\varepsilon \\
& \leq \max _{a \in \mathbf{S}^{d-1}} C_{1} \varepsilon \sum_{i \in[r]}\left|a_{i}\right|^{2}+C_{2} r\left(\frac{\varepsilon}{\lambda_{\min }}\right)^{2}+\varepsilon \\
& \leq C \varepsilon+o(\varepsilon)
\end{aligned}
$$

where the third line comes from the fact that $k \geq 3,\left|a_{i}\right| \leq 1$, and $\varepsilon / \lambda_{\text {min }} \leq 1$ from Assumption 4.1.

D Supplementary Figures and Table

Supplementary Figure S1: Average l^{2} Loss for decomposing order-3 nearly SOD tensors with Bernoulli/Tdistributed noise, $d=25$.

Supplementary Figure S2: Average l^{2} Loss for decomposing order-5 nearly SOD tensors with Gaussian noise, $d=25$.

Supplementary Table S1: Runtime for decomposing nearly-SOD tensors with Gaussian noise, $d=25$.

Order	Rank	Noise Level (σ)	Time (sec.)		
			TM-HOSVD	TPM	OJD
3	2	5×10^{-2}	0.08	0.01	0.13
3	10	5×10^{-2}	0.20	0.03	0.80
3	25	5×10^{-2}	0.47	0.07	0.92
4	2	1.5×10^{-2}	0.13	0.06	0.12
4	10	1.5×10^{-2}	0.29	0.14	1.06
4	25	1.5×10^{-2}	0.57	0.25	1.58
5	2	5.5×10^{-3}	0.25	0.51	0.14
5	10	5.5×10^{-3}	0.45	1.98	1.01
5	25	5.5×10^{-3}	0.87	4.27	2.66

References

[1] Mu, C., Hsu, D., and Goldfarb, D. Successive rank-one approximations for nearly orthogonally decomposable symmetric tensors. SIAM Journal on Matrix Analysis and Applications 36, 4 (2015), 1638-1659.
[2] Wang, M., Dao Duc, K., Fischer, J., and Song, Y. S. Operator norm inequalities between tensor unfoldings on the partition lattice. Linear Algebra and its Applications 520 (2017), 44-66.
[3] Wedin, P.-Å. Perturbation bounds in connection with singular value decomposition. BIT Numerical Mathematics 12, 1 (1972), 99-111.
[4] Weyl, H. Inequalities between the two kinds of eigenvalues of a linear transformation. Proceedings of the National Academy of Sciences 35, 7 (1949), 408-411.

