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A Characterization of Robust Eigenvectors

Proof of Theorem 3.2. The necessity is obvious. To prove the sufficiency, note that the tensor decomposition
T =

∑r
i=1 λiu

⊗k
i implies the two-mode HOSVD:

T(12)(3...k) =

r∑
i=1

λi Vec(u⊗2i ) Vec(u
⊗(k−2)
i )T , (1)

where each λi > 0 and Vec(u⊗2i ) is the ith left singular vector corresponding to λi. Now suppose Vec(a⊗2)
is the left singular vector of T(12)(3...k) corresponding to a non-zero singular value λ ∈ R\{0}. Then, by (1),
we must have

Vec(a⊗2) ∈ Span{Vec(u⊗2i ) : i ∈ [r] for which λi = λ}.

Hence, there exist coefficients {αi} such that Vec(a⊗2) =
∑

i∈[r] : λi=λ
αi Vec(u⊗2i ). In matrix form, this reads

a⊗2 =
∑

i∈[r] : λi=λ

αiu
⊗2
i ,

where {ui} is a set of orthonormal vectors. Notice that the matrix on the right-hand side has rank |{i ∈
[r] : λi = λ}| while the matrix on the left-hand side has rank 1. Since the rank of a matrix is unambiguously
determined, we must have |{i ∈ [r] : λi = λ}| = 1. Therefore, a⊗2 = u⊗2i∗ holds for some i∗ ∈ [r]; that is, a
is a robust eigenvector of T .

B Exact Recovery for SOD Tensors

B.1 Proof of Proposition 3.3

Proof of Proposition 3.3. Suppose M is a rank-1 matrix in LS0 = Span{u⊗21 , . . . ,u⊗2r }, where each ui is a
robust eigenvector of T . Thus, there exist coefficients {αi}i∈[r] such that

M = α1u
⊗2
1 + · · ·+ αru

⊗2
r .

Notice that {ui} is a set of orthonormal vectors and the rank of a matrix is unambiguously determined. We
must have |{i ∈ [r] : αi 6= 0}| = 1. Hence, M = αi∗u

⊗2
i∗ holds for some i∗ ∈ [r].

B.2 Proof of Theorem 3.4

Proof of Theorem 3.4. Note that every matrix M ∈ LS0 can be written as M = α1u
⊗2
1 + · · · + αru

⊗2
r ,

where {αi}i∈[r] is a set of scalars in R. Thus, the optimization problem is equivalent to

max
α2

1+···+α2
r=1

∥∥α1u
⊗2
1 + · · ·+ αru

⊗2
r

∥∥
σ

= max
α2

1+···+α2
r=1

max
i∈[r]
|αi|. (2)

Let f(α) = maxi∈[r] |αi| denote the objective function in (2), where α = (α1, . . . , αr)
T ∈ Sr−1. Notice that

the objective is upper bounded by 1; i.e., f(α) ≤ 1 for all α ∈ Sr−1. Suppose α∗ = (α∗1, . . . , α
∗
r)
T ∈ Sr−1 is

a local maximizer of (2). We show below that f(α∗) = 1.



Suppose f(α∗) 6= 1. Then we must have maxi∈[r] |α∗i | < 1. Without loss of generality, assume α∗1 is the
element with the largest magnitude in the set {α∗i }i∈[r]. Since |α∗1| < 1 and (α∗1)2 + · · · + (α∗r)

2 = 1, there
must also exist some j ≥ 2 such that α∗j 6= 0. Without loss of generality again, assume α∗2 6= 0. Now

construct another vector α̃ = (α̃1, . . . , α̃r)
T ∈ Rr, where

α̃i =


α∗1η, i = 1,

sign(α∗2)
√

(α∗2)2 − (η2 − 1)(α∗1)2, i = 2,

α∗i , i = 3, . . . , r,

and η ∈ R+ is any value in
(

1,

√
(α∗1)2 + (α∗2)2

α∗1

]
. It is easy to verify that α̃ ∈ Sr−1 for all such η. Moreover,

‖α̃−α∗‖22 =

r∑
i=1

(α̃i − α∗i )2 = (α∗1)2(η − 1)2 + (α∗2 − α̃2)2

≤ (α∗1)2(η − 1)2 + (α∗2)2 + (α̃2)2 − 2(α̃2)2 = 2(α∗1)2η(η − 1).

As we see in the right-hand side of the above inequality, the distance between α̃ and α∗ can be arbitrarily
small as η → 1+. However, f(α̃) = |α∗1η| > f(α∗), which contradicts the local optimality of α∗. Hence, we
must have f(α∗) = 1, which completes the proof of (A1). As an aside, we have also proved that every local
maximizer of (2) is a global maximizer.

To see that there are exactly r pairs of maximizers in LS0, just notice that ‖M∗‖σ / ‖M∗‖F = 1 is equivalent
to saying M∗ is a rank-1 matrix. Thus by Proposition 3.3, M∗ = ±u⊗2i for some i ∈ [r]. Conversely, every
matrix of the form ±u⊗2i is a maximizer in LS0 since

∥∥u⊗2i ∥∥σ = 1. The conclusions (A2) and (A3) then

follow from the property of {u⊗2i }i∈[r].

C Two-Mode HOSVD via Nearly Matrix Pursuit

C.1 Auxiliary Theorems

The following results pertain to standard perturbation theory for the singular value decomposition of ma-
trices. For any matrix X, we use X† to denote the Hermitian transpose of X. Given a diagonal matrix Σ
of singular values, let σmin(Σ) and σmax(Σ) denote, respectively, the minimum and the maximum singular
values in Σ.
Theorem C.1 (Wedin [3]). Let B and B̃ be two m× n (m ≥ n) real or complex matrices with SVDs

B = UΣV † ≡ (U1,U2)

 Σ1 0
0 Σ2

0 0

( V †1
V †2

)
, (3)

B̃ = ŨΣ̃Ṽ † ≡
(
Ũ1, Ũ2

) Σ̃1 0

0 Σ̃2

0 0

( Ṽ †1
Ṽ †2

)
, (4)

and
Σ1 = diag (σ1, . . . , σk) , Σ2 = diag (σk+1, . . . , σn) ,

Σ̃1 = diag (σ̃1, . . . , σ̃k) , Σ̃2 = diag (σ̃k+1, . . . , σ̃n) ,
(5)

with σ1 ≥ σ2 ≥ · · · ≥ σn and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n in descending order. If there exist an α ≥ 0 and a δ > 0
such that

σmin(Σ1) = σk ≥ α+ δ and σmax(Σ̃2) = σ̃k+1 ≤ α, (6)

then

max
{∥∥∥sin Θ(U1, Ũ1)

∥∥∥
σ
,
∥∥∥sin Θ(V1, Ṽ1)

∥∥∥
σ

}
≤

max
{∥∥∥B̃V1 −U1Σ1

∥∥∥
σ
,
∥∥∥B̃†U1 − V1Σ1

∥∥∥
σ

}
δ

.



Remark C.2. In the above theorem, U1, Ũ1 are d-by-k matrices and Θ(U1, Ũ1) denotes the matrix of

canonical angles between the ranges of U1 and Ũ1. If we let L (standing for “left” singular vectors) and L̃
denote the column spaces of U1 and Ũ1 respectively, then by definition,

∥∥∥sin Θ(U1, Ũ1)
∥∥∥
σ

def
=
∥∥∥UT

1 Ũ
⊥
1

∥∥∥
σ

=

maxx∈L,y∈L̃
xTy

‖x‖2‖y‖2
. When no confusion arises, we will simply use sin Θ(L, L̃) to denote

∥∥∥sin Θ(U1, Ũ1)
∥∥∥
σ
.

Proposition C.3. Let L1, L2 be two subspaces in Rd. Then for any vector u1 ∈ L1,

sin Θ (u1,L2) ≤ sin Θ (L1,L2) .

Proof. The conclusion follows readily from Remark C.2.

Theorem C.4 (Weyl [4]). Let B and B̃ be two matrices with SVDs (3), (4), and (5), Then,

|σ̃i − σi| ≤
∥∥∥B̃ −B∥∥∥

σ
for all i = 1, . . . , n.

In our proofs, we often make use of the following corollary based on Wedin’s and Weyl’s Theorems.

Corollary C.5. Let B and B̃ be two matrices with SVDs (3), (4), and (5). Let E
def
= B̃ − B,

and L, R, L̃ and R̃ be the column spaces of U1, V1, Ũ1 and Ṽ1, respectively. Define ∆ =
min {σmin(Σ1), σmin(Σ1)− σmax(Σ2)}. If ∆ > ‖E‖σ, then

max
{

sin Θ(L, L̃), sin Θ(R, R̃)
}
≤

‖E‖σ
∆− ‖E‖σ

. (7)

Proof. By Weyl’s theorem, σmax(Σ2)−σmax(Σ̃2) ≥ −‖E‖σ. Combining this with the assumption σmin(Σ1)−
σmax(Σ2) > ‖E‖σ, we have

σmin(Σ1)− σmax(Σ̃2) = σmin(Σ1)− σmax(Σ2) + σmax(Σ2)− σmax(Σ̃2) > ‖E‖σ − ‖E‖σ = 0.

This implies that the spectrum of Σ1 is well-separated from that of Σ̃2, and thus (6) holds with α =

max{0, σmax(Σ̃2)} ≥ 0 and δ = σmin(Σ1)− α > 0. By Wedin’s theorem, we get

max
{

sin Θ(L, L̃), sin Θ(R, R̃)
}
≤

{∥∥∥B̃V1 −U1Σ1

∥∥∥
σ
,
∥∥∥B̃†U1 − V1Σ1

∥∥∥
σ

}
δ

.

Then, noting ∥∥∥B̃V1 −U1Σ1

∥∥∥
σ

=
∥∥∥B̃V1 −BV1

∥∥∥
σ

=
∥∥∥B̃ −B∥∥∥

σ
= ‖E‖σ ,∥∥∥B̃†U1 − V1Σ1

∥∥∥
σ

=
∥∥∥B̃†U1 −B†U1

∥∥∥
σ

=
∥∥∥B̃† −B†∥∥∥

σ
= ‖E‖σ ,

and

δ = σmin(Σ1)−max{0, σmax(Σ̃2)} ≥ σmin(Σ1)−max{0, σmax(Σ2)} − ‖E‖σ = ∆− ‖E‖σ ,

we obtain (7).

Lemma C.6 (Taylor Expansion). If ε = o(1), then

• (1 + ε)
α

= 1 + αε+ o(ε), ∀α ∈ R;

• sin ε = ε+ o(ε2);

• cos ε = 1− 1

2
ε2 + o(ε2).



C.2 Proof of Proposition 4.2 (Uniqueness of LS(r))

Proof of Proposition 4.2. Let T̃(12)(3...k) =
∑
i µiaib

T
i be the two-mode HOSVD with {µi} in descending

order, and LS(r) = Span{a1, . . . ,ar} is the r-truncated two-mode singular space. In order to show that

LS(r) is uniquely determined, it suffices to show that µr is strictly larger than µr+1.

Note that the tensor perturbation model T̃ =
∑r
i=1 λiu

⊗k
i + E implies the matrix perturbation model

T̃(12)(3...k) =

r∑
i=1

λi Vec(u⊗2i ) Vec(u
⊗(k−2)
i )T + E(12)(3...k), (8)

where by [2] ∥∥E(12)(3...k)∥∥σ ≤ d(k−2)/2 ‖E‖σ ≤ d(k−2)/2ε. (9)

Now apply Corollary C.5 to (8) with B̃ = T̃(12)(3...k), B =
∑r
i=1 λi Vec(u⊗2i ) Vec(u

⊗(k−2)
i )T , and B̃ −B =

E(12)(3...k). Considering the corresponding rth and (r + 1)th singular values of B̃ and B, we obtain

|µr − λr| ≤
∥∥E(12)(3...k)∥∥σ , and |µr+1 − 0| ≤

∥∥E(12)(3...k)∥∥σ ,
which implies

µr − µr+1 = λr + (µr − λr)− (µr+1 − 0) ≥ λr − 2
∥∥E(12)(3...k)∥∥σ .

By (9) and Assumption 4.1,

λr − 2
∥∥E(12)(3...k)∥∥σ ≥ λmin − 2d(k−2)/2ε > 0.

Therefore µr > µr+1, which ensures the uniqueness of LS(r).

C.3 Proof of Theorem 4.4 (Perturbation of LS0)

Definition C.7 (Singular Space). Let T̃(12)(3...k) ∈ Rd2×dk−2

be the two-mode unfolding of T̃ , and

T̃(12)(3...k) =
∑
i µiaib

T
i be the two-mode HOSVD with µ1 ≥ µ2 ≥ · · · ≥ µr in descending order. We

define the r-truncated left (respectively, right) singular space by

LS(r) = Span
{

Mat(ai) ∈ Rd×d : ai is the ith left singular vector of T̃(12)(3...k), i ∈ [r]
}
,

RS(r) = Span
{
bi ∈ Rd

k−2

: bi is the ith right singular vector of T̃(12)(3...k), i ∈ [r]
}
.

The noise-free version (ε = 0) reduces to

LS0 = Span
{
u⊗2i : i ∈ [r]

}
, and RS0 = Span

{
Vec(u

⊗(k−2)
i ) : i ∈ [r]

}
.

Remark C.8. We make the convention that the elements in LS(r) (respectively, LS0) are viewed as d-by-d

matrices, while the elements in RS(r) (respectively, RS0) are viewed as length-dk−2 vectors. For g of

notation, we drop the subscript r from LS(r) (respectively, RS(r)) and simply write LS (respectively, RS)
hereafter.

Definition C.9 (Inner-Product). For any two tensors A = Jai1... ikK, B = Jbi1... ikK ∈ Rd1×···×dk of identical
order and dimensions, their inner product is defined as

〈A, B〉 =
∑

i1,...,ik

ai1...ikbi1...ik ,

while the tensor Frobenius norm of A is defined as

‖A‖F =
√
〈A, A〉 =

√ ∑
i1,...,ik

|ai1...ik |2,

both of which are analogues of standard definitions for vectors and matrices.



Lemma C.10. For every matrix M ∈ LS satisfying ‖M‖F = 1, there exists a unit vector bM ∈ RS such
that

M = cT̃(1)(2)(3...k)(I, I, bM ), (10)

where c = 1/
∥∥∥T̃(1)(2)(3...k)(I, I, bM )

∥∥∥
F

is a normalizing constant.

Proof. Let T̃(12)(3...k) =
∑
i µiaib

T
i denote the two-mode HOSVD. Following a similar line of argument as in

the proof of Proposition 4.2, we have µr ≥ λmin −
∥∥E(12)(3...k)∥∥σ > 0. By the property of matrix SVD,

ai =
1

µi
T̃(12)(3...k)bi, for all i ∈ [r],

which implies

Mat(ai) =
1

µi
T̃(1)(2)(3...k)(I, I, bi), for all i ∈ [r].

Recall that LS = Span{Mat(ai) : i ∈ [r]}. Thus, for any M ∈ LS, there exist coefficients {αi}i∈[r] such that

M = α1Mat(a1) + · · ·+ αrMat(ar)

=
α1

µ1
T̃(1)(2)(3...k)(I, I, b1) + · · ·+ αr

µr
T̃(1)(2)(3...k)(I, I, br)

= T̃(1)(2)(3...k)
(
I, I,

α1

µ1
b1 + · · ·+ αr

µr
br

)
,

where the last line follows from the multilinearity of T(1)(2)(3...k). Now define b′M = α1

µ1
b1 + · · ·+ αr

µr
br. The

conclusion (10) then follows by setting bM = b′M/ ‖b′M‖2 ∈ RS.

Lemma C.11 (Perturbation of RS0). Under Assumption 4.1,

min
b∈RS,‖b‖2=1

∥∥∥b∣∣RS0

∥∥∥
2
≥ 1− dk−2

2λ2min

ε2 + o(ε2).

where b
∣∣
RS0

denotes the vector projection of b ∈ RS onto the space RS0.

Proof. As seen in the proof of Proposition 4.2, T̃(12)(3...k) can be written as

T̃(12)(3...k) =

r∑
i=1

λi Vec(u⊗2i ) Vec(u
⊗(k−2)
i )T + E(12)(3...k), where

∥∥E(12)(3...k)∥∥σ ≤ d(k−2)/2ε. (11)

The noise-free version of (11) reduces to

T(12)(3...k) =

r∑
i=1

λi Vec(u⊗2i ) Vec(u
⊗(k−2)
i )T .

Following the notation of Corollary C.5, we set B̃ = T̃(12)(3...k), B = T(12)(3...k), Σ1 = diag {λ1, . . . , λr},
Σ2 = diag{0, . . . , 0}, and ∆ = min{σmin(Σ1), σmin(Σ1) − σmax(Σ2)} = mini∈[r] λi. Then,

∥∥∥B̃ −B∥∥∥
σ

=∥∥E(12)(3...k)∥∥σ. By Assumption 4.1, ∆ = λmin > 2d(k−2)/2ε >
∥∥E(12)(3...k)∥∥σ. Hence the condition of Corol-

lary C.5 holds. Applying Corollary C.5 then yields

sin Θ (RS0,RS) ≤
∥∥E(12)(3...k)∥∥σ

λmin −
∥∥E(12)(3...k)∥∥σ =

∥∥E(12)(3...k)∥∥σ
λmin

[
1−

∥∥E(12)(3...k)∥∥σ
λmin

]−1

≤ d(k−2)/2ε

λmin

[
1− d(k−2)/2ε

λmin

]−1
=
d(k−2)/2

λmin
ε+ o(ε).

(12)



Now let b ∈ RS be a unit vector. Decompose b into

b = b
∣∣
RS0

+ b
∣∣
RS0

⊥ ,

where b
∣∣
RS0

and b
∣∣
RS⊥0

are vector projections of b onto the spaces RS0 and RS⊥0 , respectively. By (12)

and Taylor expansion,∥∥∥b∣∣RS0

∥∥∥
2

= cos Θ (b,RS0) =
[
1− sin2 Θ (b,RS0)

]1/2 ≥ 1− dk−2

2λ2min

ε2 + o(ε2).

Since the above holds for every unit vector b ∈ RS, we conclude

min
b∈RS,‖b‖2=1

∥∥∥b∣∣RS0

∥∥∥
2
≥ 1− dk−2

2λ2min

ε2 + o(ε2).

Corollary C.12. Under Assumption 4.1,

min
b∈RS,‖b‖2=1

∥∥∥b∣∣RS0

∥∥∥
2
≥ 1− 1

(c0 − 1)2
,

which is ≥ 0.98 for c0 ≥ 10.

Proof. Note that
‖E(12)(3...k)‖σ

λmin
≤ 1

c0
by Assumption 4.1. The right-hand side of (12) can be bounded as

follows, ∥∥E(12)(3...k)∥∥σ
λmin −

∥∥E(12)(3...k)∥∥σ ≤ 1

c0 − 1
.

By a similar argument as in the proof of Lemma C.11, we obtain

min
b∈RS,‖b‖2=1

∥∥∥b∣∣RS0

∥∥∥
2

= cos Θ(b,RS0) ≥ cos2 Θ(b,RS0) ≥ cos2 Θ(RS,RS0) ≥ 1− 1

(c0 − 1)2
, (13)

which is the desired result.

Proof of Theorem 4.4. To prove the upper bound in Theorem 4.4, it suffices to show that for every matrix
M ∈ LS satisfying ‖M‖F = 1, there exist coefficients {αi ∈ R}ri=1 such that

M =

r∑
i=1

αiu
⊗2
i +E, where ‖E‖σ ≤

d(k−3)/2

λmin
ε+ o(ε). (14)

Let M be a d-by-d matrix satisfying M ∈ LS and ‖M‖F = 1. By Lemma C.10, there exists bM ∈ RS such
that

M =
T̃(1)(2)(3...k)(I, I, bM )∥∥∥T̃(1)(2)(3...k)(I, I, bM )

∥∥∥
F

=

r∑
i=1

λi〈Vec(u
⊗(k−2)
i ), bM 〉∥∥∥T̃(1)(2)(3...k)(I, I, bM )

∥∥∥
F

u⊗2i +
E(1)(2)(3...k)(I, I, bM )∥∥∥T̃(1)(2)(3...k)(I, I, bM )

∥∥∥
F

.

(15)

We now claim that (15) is a desired decomposition that satisfies (14). Namely, we seek to prove∥∥E(1)(2)(3...k)(I, I, bM )
∥∥
σ∥∥∥T̃(1)(2)(3...k)(I, I, bM )
∥∥∥
F

≤ d(k−3)/2

λmin
ε+ o(ε). (16)



Observe that by the triangle inequality,

∥∥∥T̃(1)(2)(3...k)(I, I, bM )
∥∥∥
F

=

∥∥∥∥∥
r∑
i=1

λi〈Vec(u
⊗(k−2)
i ), bM 〉u⊗2i + E(1)(2)(3...k)(I, I, bM )

∥∥∥∥∥
F

≥

∥∥∥∥∥
r∑
i=1

λi〈Vec(u
⊗(k−2)
i ), bM 〉u⊗2i

∥∥∥∥∥
F︸ ︷︷ ︸

Part I

−
∥∥E(1)(2)(3...k)(I, I, bM )

∥∥
F︸ ︷︷ ︸

Part II

.
(17)

By the orthogonality of {ui}i∈[r], Part I has a lower bound,∥∥∥∥∥
r∑
i=1

λi〈Vec(u
⊗(k−2)
i ), bM 〉u⊗2i

∥∥∥∥∥
F

≥ λmin

√√√√ r∑
i=1

〈Vec(u
⊗(k−2)
i ), bM 〉2

= λmin

∥∥∥bM ∣∣RS0

∥∥∥
2
.

(18)

By the inequality between the Frobenius norm and the spectral norm for matrices, Part II has an upper
bound, ∥∥E(1)(2)(3...k)(I, I, bM )

∥∥
F
≤
√
d
∥∥E(1)(2)(3...k)(I, I, bM )

∥∥
σ
≤
√
d
∥∥E(1)(2)(3...k)∥∥σ ≤ d(k−2)/2ε, (19)

where we have used the inequality [2] that∥∥E(1)(2)(3...k)∥∥σ ≤ d(k−3)/2 ‖E‖σ . (20)

Combining (17), (18) and (19) gives∥∥∥T̃(1)(2)(3...k)(I, I, bM )
∥∥∥
F
≥ λmin

[∥∥∥bM ∣∣RS0

∥∥∥
2
− d(k−2)/2ε

λmin

]
. (21)

By Corollary C.12 and Assumption 4.1 with c0 ≥ 10,
∥∥∥bM ∣∣RS0

∥∥∥
2
− d(k−2)/2ε

λmin
≥ 0.98 − 0.1 > 0. So the

right-hand side of (21) is strictly positive. Taking the reciprocal of (21) and combining it with (20), we
obtain ∥∥E(1)(2)(3...k)(I, I, bM )

∥∥
σ∥∥∥T̃(1)(2)(3...k)(I, I, bM )
∥∥∥
F

≤ d(k−3)/2ε

λmin

[∥∥∥bM ∣∣RS0

∥∥∥
σ
− d(k−2)/2ε

λmin

]−1

≤ d(k−3)/2ε

λmin

[
1− o(ε)− d(k−2)/2ε

λmin

]−1
=
d(k−3)/2

λmin
ε+ o(ε),

(22)

where the second line follows from Lemma C.11. This completes the proof of (16) and therefore (14). Since
(14) holds for every M ∈ LS that satisfies ‖M‖F = 1, and

∑r
i=1 αiu

⊗2
i ∈ LS0, we immediately have

max
M∈LS,‖M‖F=1

min
M∗∈LS0

‖M −M∗‖σ ≤
d(k−3)/2

λmin
ε+ o(ε).

Remark C.13. In addition to (14), M can also be decomposed into

M =

r∑
i=1

αiu
⊗2
i +E′, where ‖E′‖σ ≤

2d(k−3)/2

λmin
ε+ o(ε),

where E′ satisfies
〈E′,u⊗2i 〉 = 0 for all i ∈ [r].



To see this, rewrite (14) as

M =

r∑
i=1

αiu
⊗2
i +E =

r∑
i=1

αiu
⊗2
i +

r∑
i=1

〈E,u⊗2i 〉u
⊗2
i +E −

r∑
i=1

〈E,u⊗2i 〉u
⊗2
i

=

r∑
i=1

(
αi + 〈E,u⊗2i 〉

)
u⊗2i︸ ︷︷ ︸

∈LS0

+E −
r∑
i=1

〈E,u⊗2i 〉u
⊗2
i︸ ︷︷ ︸

=:E′

.

By construction, E′ satisfies

〈E′,u⊗2i 〉 = 〈E −
r∑
j=1

〈E,u⊗2j 〉u
⊗2
j , u⊗2i 〉

= 〈E,u⊗2i 〉 −
r∑
j=1

〈E,u⊗2j 〉〈u
⊗2
j ,u⊗2i 〉

= 〈E,u⊗2i 〉 −
r∑
j=1

〈E,u⊗2j 〉δij

= 0.

Moreover,

‖E′‖σ ≤ ‖E‖σ +

∥∥∥∥∥
r∑
i=1

〈E,u⊗2i 〉u
⊗2
i

∥∥∥∥∥
σ

≤ ‖E‖σ + max
i
|〈E,u⊗2i 〉|

≤ 2 ‖E‖σ

≤ 2d(k−3)/2

λmin
ε+ o(ε),

where the first line follows from the triangle inequality and the second lines follows from the orthogonality
of {ui}i∈[r].
Corollary C.14. Under Assumption 4.1,

max
M∈LS,‖M‖F=1

min
M∗∈LS0

‖M −M∗‖σ ≤
1.13

c0
,

which is ≤ 0.12 for c0 ≥ 10.

Proof. By Corollary C.12, the right-hand side of (22) has the following upper bound,

d(k−3)/2ε

λmin

[∥∥∥bM ∣∣RS0

∥∥∥
σ
− d(k−2)/2ε

λmin

]−1
≤ 1√

dc0

[
1− 1

(c0 − 1)2
− 1

c0

]−1
≤ 1.13

c0
≤ 0.12.

The claim then follows from the same argument as in the proof of Theorem 4.4.

Corollary C.15. Suppose c0 ≥ 10 in Assumption 4.1. In the notation of (14), we have

max
i∈[r]
|αi| ≤ 1 +

1.13

c0
≤ 1.12.

Proof. By the triangle inequality and Corollary C.14,

max
i∈[r]
|αi| ≤

√√√√ r∑
i=1

|αi|2 = ‖M −E‖F ≤ ‖M‖F + ‖E‖F ≤ 1 +
1.13

c0
= 1.12.



C.4 Perturbation Bounds

C.4.1 Proof of Lemma 4.5

Proof of Lemma 4.5. We prove by construction. Define Mi = u⊗2i ∈ LS0 for i ∈ [r], and project Mi onto
the space LS,

Mi = Mi

∣∣
LS +Mi

∣∣
LS⊥ , (23)

where Mi

∣∣
LS and Mi

∣∣
LS⊥ denote the projections of Mi ∈ LS0 onto the vector space LS and LS⊥, respec-

tively. We seek to show that the set of matrices
{
Mi

∣∣
LS : i ∈ [r]

}
satisfies∥∥Mi

∣∣
LS

∥∥
σ∥∥Mi

∣∣
LS

∥∥
F

≥ 1− d(k−2)/2

λmin
ε+ o(ε), for all i ∈ [r]. (24)

Applying the subadditivity of spectral norm to (23) gives∥∥Mi

∣∣
LS

∥∥
σ
≥ ‖Mi‖σ −

∥∥Mi

∣∣
LS⊥

∥∥
σ

≥ 1−
∥∥Mi

∣∣
LS⊥

∥∥
F

= 1− sin Θ(Mi,LS) ‖Mi‖F
≥ 1− sin Θ(LS0,LS),

(25)

where the second line comes from ‖Mi‖σ = ‖Mi‖F = 1,
∥∥Mi

∣∣
LS⊥

∥∥
σ
≤
∥∥Mi

∣∣
LS⊥

∥∥
F

, and the last line comes
from Proposition C.3. By following the same line of argument in Lemma C.11, we have

sin Θ (LS0,LS) ≤
∥∥E(12)(3...k)∥∥σ

λmin −
∥∥E(12)(3...k)∥∥σ ≤ d(k−2)/2

λmin
ε+ o(ε). (26)

Combining (25) and (26) leads to

∥∥Mi

∣∣
LS

∥∥
σ
≥ 1− d(k−2)/2

λmin
ε+ o(ε).

By construction,
∥∥Mi

∣∣
LS

∥∥
F
≤ ‖Mi‖F = 1, and therefore (24) is proved. Note that Mi

∣∣
LS ∈ LS for all

i ∈ [r]. Hence,

max
M∈LS

‖M‖σ
‖M‖F

≥
∥∥Mi

∣∣
LS

∥∥
σ∥∥Mi

∣∣
LS

∥∥
F

≥ 1− d(k−2)/2

λmin
ε+ o(ε). (27)

The conclusion then follows by the equivalence

max
M∈LS

‖M‖σ
‖M‖F

= max
M∈LS,‖M‖F=1

‖M‖σ .

Remark C.16. The above proof reveals that there are at least r elements Mi

∣∣
LS in LS that satisfy the right-

hand side of (27). These r elements are linearly independent, and in fact, {Mi

∣∣
LS}i∈[r] are approximately

orthogonal to each other. To see this, we bound cos Θ(Mi

∣∣
LS ,Mj

∣∣
LS) for all i, j ∈ [r], with i 6= j. Recall

that {M def
= u⊗2i }i∈[r] is a set of mutually orthogonal vectors in LS0. Then for all i 6= j,

0 = 〈Mi,Mj〉 = 〈Mi

∣∣
LS + Mi

∣∣
LS⊥ ,Mj

∣∣
LS + Mj

∣∣
LS⊥〉

= 〈Mi

∣∣
LS ,Mj

∣∣
LS〉+ 〈Mi

∣∣
LS⊥ ,Mj

∣∣
LS⊥〉,

(28)

which implies 〈Mi

∣∣
LS ,Mj

∣∣
LS〉 = −〈Mi

∣∣
LS⊥ ,Mj

∣∣
LS⊥〉. Hence,

∣∣cos Θ(Mi

∣∣
LS ,Mj

∣∣
LS)
∣∣ =

∣∣〈Mi

∣∣
LS ,Mj

∣∣
LS〉
∣∣∥∥Mi

∣∣
LS

∥∥
F

∥∥Mj

∣∣
LS

∥∥
F



=

∣∣〈Mi

∣∣
LS⊥ ,Mj

∣∣
LS⊥〉

∣∣∥∥Mi

∣∣
LS

∥∥
F

∥∥Mj

∣∣
LS

∥∥
F

≤
∥∥Mi

∣∣
LS⊥

∥∥
F∥∥Mi

∣∣
LS

∥∥
F

×
∥∥Mj

∣∣
LS⊥

∥∥
F∥∥Mj

∣∣
LS

∥∥
F

≤ tan2 Θ(LS0,LS),

where the second line comes from (28), the third line comes from Cauchy-Schwarz inequality and the last
line uses the fact that Mi,Mj ∈ LS0. Following the similar argument as in Corollary C.12 (in particular,
the last inequality in (13)), we have | sin Θ(LS0,LS)| ≤ 1

c0−1 ≤ 0.12 under the assumption c0 ≥ 10. Thus,

| cos Θ(Mi

∣∣
LS ,Mj

∣∣
LS)| ≤ tan2 Θ(LS0,LS) ≤ 0.015.

This implies 89.2◦ ≤ Θ(Mi

∣∣
LS ,Mj

∣∣
LS) ≤ 90.8◦; that is,

{
Mi

∣∣
LS

}
i∈[r] are approximately orthogonal to each

other.
Corollary C.17. Suppose c0 ≥ 10 in Assumption 4.1. Then

max
M∈LS,‖M‖F=1

‖M‖σ ≥ 1− 1

c0 − 1
≥ 0.88.

Proof. As seen in Corollary C.12,

sin Θ(LS0,LS) ≤
∥∥E(12)(3...k)∥∥σ

λmin −
∥∥E(12)(3...k)∥∥σ ≤ 1

c0 − 1
.

Combining this with (25) and (26) gives

∥∥Mi

∣∣
LS

∥∥
σ
≥ 1− sin Θ(LS0,LS) ≥ 1− 1

c0 − 1
≥ 0.88.

The remaining argument is exactly the same as the above proof of Lemma 4.5.

C.4.2 Proof of Lemma 4.6

Proof of Lemma 4.6. Because of the symmetry of T̃ and Lemma C.10, M̂1 must be a symmetric matrix.

Now let M̂1 =
∑d
i=1 γixix

T
i denote the eigen-decomposition of M̂1, where γi is sorted in decreasing order

and xi ∈ Rd is the eigenvector corresponding to γi for all i ∈ [d]. Without loss of generality, we assume

γ1 > 0. By construction, M̂1 = arg maxM∈LS,‖M‖F=1 ‖M‖σ. By Lemma 4.5,

γ1 =
∥∥∥M̂1

∥∥∥
σ
≥ 1− d(k−2)/2

λmin
ε+ o(ε).

Since
∑
i γ

2
i =

∥∥∥M̂1

∥∥∥2
F

= 1, |γ2| ≤
(
1− γ21

)1/2 ≤ √2d(k−2)/4
√
λmin

√
ε+o(

√
ε). Define ∆ := min{γ1, γ1−γ2}. Then,

∆ ≥ γ1 − |γ2| ≥ 1−
√

2d(k−2)/4√
λmin

√
ε+ o(

√
ε).

Under the assumption c0 ≥ 10, γ1 ≥ 0.88 by Corollary C.17. Hence, ∆ ≥ γ1 − |γ2| ≥ 0.88 −
√

1− 0.882 ≈
0.41 > 0.

By Theorem 4.4, there exists M∗ =
∑r
i=1 αiu

⊗2
i ∈ LS0 such that

∥∥∥M̂1 −M∗
∥∥∥
σ
≤ d(k−3)/2

λmin
ε+ o(ε).



Without loss of generality, suppose the dominant eigenvector of M∗ is u1. Following the notation of Corol-

lary C.5, we set B = M̂1, B̃ = M∗, E = M̂1 −M∗, Σ1 = {γ1} and Σ2 = diag{γ2, . . . , γd}. From Corol-
lary C.14, ‖E‖σ ≤ 0.12. Combining this with earlier calculation, we have ∆−‖E‖σ ≥ 0.41−0.12 = 0.29 > 0.
Hence, the condition in Corollary C.5 holds.

Applying Corollary C.5 to the specified setting yields

| sin Θ(û1,u1)| ≤
‖E‖σ

∆− ‖E‖σ
≤ d(k−3)/2

λmin
ε

[
1−
√

2d(k−2)/4√
λmin

√
ε+ o(

√
ε)

]−1
=
d(k−3)/2

λmin
ε+ o(ε). (29)

To bound Loss(û1,u1), we notice that

Loss(û1,u1) = [2− 2 |cos Θ(û1,u1)|]1/2 =

[
2− 2

√
1− sin2 Θ(û1,u1)

]1/2
.

By Taylor expansion and (29), we conclude

Loss(û1,u1) ≤ d(k−3)/2

λmin
ε+ o(ε).

Corollary C.18. Under Assumption 4.1,

Loss(û1,u1) ≤ 5

c0
,

which is ≤ 0.5 for c0 ≥ 10.

Proof. In the proof of Lemma 4.6, we have shown that ∆−‖E‖σ ≥ 0.29. By Corollary C.14, ‖E‖σ ≤ 1.13/c0.
Therefore, (29) has the following upper bound,

| sin Θ(û1,u1)| ≤
‖E‖σ

∆− ‖E‖σ
≤ 4

c0
.

Following the same argument as in the proof of Lemma 4.6, we obtain

Loss(û1,u1) = [2− 2| cos Θ(û1,u1)|]1/2 ≤ 5

c0
≤ 0.5.

C.4.3 Proof of Lemma 4.7

Proof of Lemma 4.7. For clarity, we use M̂1 and û1 to denote the estimators in line 5 of Algorithm 1, and

use M̂∗
1 and û∗1 to denote the estimators in line 6 of Algorithm 1. Namely,

M̂∗
1 = T̃ (I, I, û1, . . . , û1), and û∗1 = arg max

x∈Sd−1

|xTM̂∗
1x|.

By construction, the perturbation model of T̃ implies the perturbation model of M̂∗
1 ,

M̂∗
1 =

r∑
i=1

λi〈û1,ui〉(k−2)u⊗2i + E(I, I, û1, . . . , û1),

where ‖E(I, I, û1, . . . , û1)‖σ ≤ ‖E‖σ ≤ ε.

Without loss of generality, assume û1 is the estimator of u1 and 〈û1,u1〉 > 0; otherwise, we take −û1 to
be the estimator. Let ηi := λi〈û1,ui〉(k−2) for all i ∈ [r]. In the context of Corollary C.5, we set B =



∑
i∈[r] ηiu

⊗2
i , B̃ = M̂∗, E = B̃ −B, Σ1 = {η1}, Σ2 = diag{η2, . . . , ηr}, and ∆ = min{η1, η1 −maxi 6=1 ηi}.

Then,

∆ ≥ η1 −max
i 6=1
|ηi| = λ1〈û1,u1〉(k−2) −max

i 6=1
|λi〈û1,u1〉|(k−2). (30)

Note that ‖E‖σ ≤ ‖E‖σ ≤ ε. In order to apply Corollary C.5, we seek to show ∆ > ε.

By Definition 4.3, we have

〈û1,u1〉 = cos Θ(û1,u1) = 1− 1

2
Loss2(û1,u1), (31)

and by the orthogonality of {ui}i∈[r],

|〈û1,ui〉|2 ≤
r∑
j=2

|〈û1,uj〉|2 ≤ 1− cos2 Θ(û1,u1) = Loss2(û1,u1)

[
1− 1

4
Loss2(û1,u1)

]
, (32)

for all i = 2, . . . , r.

Combining (31), (32), 0 ≤ Loss(û1,u1) ≤ 1/2 (by Corollary C.18), and the fact that (1−x)(k−2) ≥ 1−(k−2)x
for all 0 ≤ x ≤ 1 and k ≥ 3, we further have

〈û1,u1〉(k−2) =

[
1− 1

2
Loss2(û1,u1)

](k−2)
≥ 1− k − 2

2
Loss2(û1,u1) ≥ 1− k − 2

4
Loss(û1,u1), (33)

and

|〈û1,ui〉|(k−2) ≤
[
Loss2(û1,u1)

](k−2)/2
= Lossk−2(û1,u1) ≤ Loss(û1,u1), (34)

for all i = 2, . . . , r. Putting (33) and (34) back in (30), we obtain

∆ ≥ λ1
[
1− k − 2

4
Loss(û1,u1)

]
− λmax Loss(û1,u1)

≥ λ1
[
1−

(
k − 2

4
+
λmax

λmin

)
Loss(û1,u1)

]
.

By Corollary C.18, Loss(û1,u1) ≤ 5/c0. Write c := k−2
4 + λmax

λmin
. Under the assumption c0 ≥ max {10, 6c} ,

we have ∆ ≥ λ1/6 and hence

∆− ε ≥ λ1
6
− λmin

c0d(k−2)/2
>
λ1
6
− λmin

10
> 0.

This implies that the condition in Corollary C.5 holds. Now applying Corollary C.5 to the specified setting
gives

|sin Θ(û1,u1)| ≤ ε

∆− ε

≤ ε

λ1

[
1− cLoss(û1,u1)− ε

λ1

]−1
≤ ε

λ1

[
1− cd(k−3)/2ε

λmin
− ε

λ1
+ o(ε)

]−1
=

ε

λ1
+ o(ε),

where the third line follows from Lemma 4.6. Using the fact that Loss(û1,u1) = [2− 2| cos Θ(û1,u1)|]1/2 =[
2− 2

√
1− sin2 Θ(û1,u1)

]1/2
and Taylor expansion, we conclude

Loss(û1,u1) ≤ ε

λ1
+ o(ε).



To obtain Loss(λ̂1, λ1), recall that under the assumption 〈û1,u1〉 > 0, Loss(λ̂1, λ1) = |λ̂1 − λ1|. (Otherwise,

we need to consider |λ̂1 + λ1| instead). Observe that by the triangle inequality,

|λ̂1 − λ1| = |T (û1, . . . , û1)− λ1| =

∣∣∣∣∣
r∑
i=1

λi〈û1,ui〉k + E(û1, . . . , û1)− λ1

∣∣∣∣∣
≤ λ1

∣∣1− 〈û1,u1〉k
∣∣+

r∑
i=2

λi |〈û1,ui〉|k + |E(û1, . . . , û1)| .

Using similar techniques as in (31), (32), (33) and (34), as well as the fact (1−x)k ≥ 1−kx for all 0 ≤ x ≤ 1
and k ≥ 3, we conclude

|λ̂1 − λ1| ≤
λ1k

2
Loss2(û1,u1) + λmax Loss2(û1,u1) + ε

≤
(
λ1k

2
+ λmax

)[
ε

λ1
+ o(ε)

]2
+ ε

= ε+ o(ε).

C.4.4 Proof of Lemma 4.8

Proof of Lemma 4.8. Let M be a d-by-d matrix in the space LS(X)
def
= LS ∩ Span{û⊗2i : i ∈ X}⊥ and

suppose M satisfies ‖M‖F = 1. Since LS(X) ⊂ LS, from Remark C.13, M can be decomposed into

M =

r∑
i=1

αiu
⊗2
i +E, (35)

where

〈E,u⊗2i 〉 = 0 for all i ∈ [r], and ‖E‖σ ≤
2d(k−3)/2ε

λmin
+ o(ε). (36)

By definition, every element in LS(X) is orthogonal to Vec(û⊗2i ) for all i ∈ X. We claim that under this
condition, one must have αi = o(ε) for all i ∈ X. To show this, we project ûi onto the space Span{ui} and
write

ûi = ξiui + ηiu
⊥
i ,

where ξ2i + η2i = 1 and u⊥i ∈ Sd−1 denotes the normalized (i.e., unit) vector projection of ûi onto the space
Span{ui}⊥. Then for all i ∈ X,

0 = 〈M , û⊗2i 〉 (37)

=

〈∑
j∈[r]

αju
⊗2
j +E,

(
ξiui + ηiu

⊥
i

)⊗2〉

=

〈
αiu

⊗2
i +

∑
j 6=i, j∈[r]

αju
⊗2
j +E, ξ2i u

⊗2
i + 2ξiηiui ⊗ u⊥i + η2i (u⊥i )⊗2

〉

= αiξ
2
i + 2ξiηi

〈
E,ui ⊗ u⊥i

〉
+ η2i

〈 ∑
j 6=i, j∈[r]

αju
⊗2
j +E, (u⊥i )⊗2

〉
,

where the last line uses the fact that 〈E,u⊗2i 〉 = 0, 〈ui,u⊥i 〉 = 0 and 〈ui,uj〉 = 0 for all j 6= i. By assumption,
Loss(ûi,ui) ≤ 2ε/λi + o(ε). This implies |ηi| = |〈ûi,u⊥i 〉| = [1 − cos2 Θ(ûi,ui)]

1/2 ≤ Loss(ûi,ui)[1 −
1
4 Loss2(ûi,ui)]

1/2 ≤ Loss(ûi,ui) = O(ε), and |ξi| = (1− η2i )1/2 ≥ 1−O(ε). It then follows from (37) that

ξ2i |αi| =
∣∣∣∣2ξiηi〈E,ui ⊗ u⊥i 〉+ η2i

〈 ∑
j 6=i, j∈[r]

αju
⊗2
j +E, (u⊥i )⊗2

〉∣∣∣∣



≤ 2|ξiηi|
∣∣∣∣〈E,ui ⊗ u⊥i 〉∣∣∣∣+ η2i

 ∑
j 6=i, j∈[r]

∣∣∣∣αj〈u⊗2j , (u⊥i )⊗2
〉∣∣∣∣+

∣∣∣∣〈E, (u⊥i )⊗2
〉∣∣∣∣


≤ 2|ξiηi| ‖E‖σ + η2i

 ∑
j 6=i, j∈[r]

|αj |+ ‖E‖σ


≤ O(ε)

(
2d(k−3)/2

λmin
ε+ o(ε)

)
+O(ε2)

(
1.12r +

2d(k−3)/2

λmin
ε+ o(ε)

)
= o(ε),

where the last line follows from |ηi| ≤ O(ε), |ξi| ≤ 1, ‖E‖σ ≤
2d(k−3)/2ε
λmin

+o(ε) (cf.(36)) and maxi∈[r] |αi| ≤ 1.12
(cf. Corollary C.15). Therefore, since |ξi| ≥ 1−O(ε), we conclude that |αi| = o(ε) for all i ∈ X.

Now write (35) as

M =
∑

i∈[r]\X

αiu
⊗2
i +

∑
i∈X

αiu
⊗2
i +E,

Note that
∑
i∈[r]\X αiu

⊗2
i ∈ LS0(X)

def
= Span{u⊗2i : i ∈ [r]\X}. Hence,

min
M∗∈LS0(X)

‖M −M∗‖σ ≤

∥∥∥∥∥∑
i∈X

αiu
⊗2
i +E

∥∥∥∥∥
σ

≤ max
i∈X
|αi|+ ‖E‖σ ≤

2d(k−3)/2ε

λmin
+ o(ε).

Since the above holds for all M ∈ LS(X) that satisfies ‖M‖F = 1, taking maximum over M yields the
desired result.

C.4.5 Proof of Theorem 4.9

We use the following lemma [1] in our proof of Theorem 4.9.

Lemma C.19. Fix a subset X ⊂ [r] and assume that 0 ≤ ε ≤ λi/2 for each i ∈ X. Choose any {ûi, λ̂i}i∈X ⊂
Rd × R such that

|λi − λ̂i| ≤ ε, ‖ûi‖2 = 1, and 〈ui, ûi〉 ≥ 1− 2(ε/λi)
2 > 0,

and define tensor ∆i := λiu
⊗k
i − λ̂iû

⊗k
i for i ∈ X. Pick any unit vector a =

∑d
i=1 aiui. Then, there exist

positive constants C1, C2 > 0, depending only on k, such that∥∥∥∥∥∑
i∈X

∆ia
⊗k−1

∥∥∥∥∥
σ

≤ C1

(∑
i∈X
|ai|k−1ε

)
+ C2

(
|X|

(
ε

λmin

)k−1)
, (38)

where ∆ia
⊗k−1 := ∆i(a, . . . ,a, I) ∈ Rd.

Proof of Theorem 4.9. We prove the conclusion

Loss(ûi,uπ(i)) ≤
2ε

λπ(i)
+ o(ε), Loss(λ̂i, λπ(i)) ≤ 2ε+ o(ε), (39)

by induction on i. For i = 1, the error bound of {(û1, λ̂1) ∈ Rd × R} follows readily from Lemmas 4.5–4.7.
Now suppose (39) holds for i ≤ s. Taking X = [s] in Lemma 4.8 yields the deviation of LS(X) from LS0(X),

max
M∈LS(X),‖M‖F=1

min
M∗∈LS0(X)

‖M −M∗‖σ ≤
2d(k−3)/2ε

λmin
+ o(ε). (40)

Applying Theorem 4.4 and Lemmas 4.5–4.7 to i = s + 1 with ε replaced by 2ε (because of the additional
factor “2” in (40) compared to Theorem 4.4), we obtain

Loss(ûs+1,uπ(s+1)) ≤
2ε

λπ(s+1)
+ o(ε), Loss(λ̂s+1, λπ(s+1)) ≤ 2ε+ o(ε).



So (39) also holds for i = s+ 1.

It remains to bound the residual tensor ∆T̃ def
= T̃ −

∑
i∈[r] λ̂iû

⊗k
i . Note that Loss(ûi,uπ(i)) ≤ 2ε/λπ(i) +o(ε)

implies 〈ûi,uπ(i)〉 = 1 − 1
2 Loss2(ûi,uπ(i)) ≥ 1 − 2(ε/λπ(i))

2 + o(ε2). When c0 is sufficiently large (i.e., ε
is sufficiently small), ûi is approximately parallel to uπ(i) and orthogonal to uj for all j 6= π(i). For ease
of notation, we renumber the indices and assume π(i) = i for all i ∈ [r]. Following the definition of ∆i in
Lemma C.19,

∥∥∥∆T̃
∥∥∥
σ

=

∥∥∥∥∥∥
∑
i∈[r]

λiu
⊗k
i + E −

∑
i∈[r]

λ̂iû
⊗k
i

∥∥∥∥∥∥
σ

=

∥∥∥∥∥∥
∑
i∈[r]

∆i + E

∥∥∥∥∥∥
σ

.

Now taking X = [r] in (38) gives

∥∥∥∆T̃
∥∥∥
σ
≤ max

a∈Sd−1

∥∥∥∥∥∥
∑
i∈[r]

∆ia
⊗(k−1)

∥∥∥∥∥∥
σ

+ ε

≤ max
a∈Sd−1

C1

∑
i∈[r]

|ai|k−1ε+ C2r

(
ε

λmin

)k−1
+ ε

≤ max
a∈Sd−1

C1ε
∑
i∈[r]

|ai|2 + C2r

(
ε

λmin

)2

+ ε

≤ Cε+ o(ε),

where the third line comes from the fact that k ≥ 3, |ai| ≤ 1, and ε/λmin ≤ 1 from Assumption 4.1.



D Supplementary Figures and Table

Order−3 Tensors with Bernoulli Noise
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Order−3 Tensors with t−distributed Noise
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Supplementary Figure S1: Average l2 Loss for decomposing order-3 nearly SOD tensors with Bernoulli/T-
distributed noise, d = 25.

Order = 5
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Supplementary Figure S2: Average l2 Loss for decomposing order-5 nearly SOD tensors with Gaussian noise,
d = 25.



Supplementary Table S1: Runtime for decomposing nearly-SOD tensors with Gaussian noise, d = 25.

Order Rank Noise Level (σ)
Time (sec.)

TM-HOSVD TPM OJD
3 2 5× 10−2 0.08 0.01 0.13
3 10 5× 10−2 0.20 0.03 0.80
3 25 5× 10−2 0.47 0.07 0.92
4 2 1.5× 10−2 0.13 0.06 0.12
4 10 1.5× 10−2 0.29 0.14 1.06
4 25 1.5× 10−2 0.57 0.25 1.58
5 2 5.5× 10−3 0.25 0.51 0.14
5 10 5.5× 10−3 0.45 1.98 1.01
5 25 5.5× 10−3 0.87 4.27 2.66
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