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Abstract

We provide a unified optimization view of

iterative Hessian sketch (IHS) and iterative

dual random projection (IDRP). We estab-

lish a primal-dual connection between the

Hessian sketch and dual random projection,

and show that their iterative extensions are

optimization processes with preconditioning.

We develop accelerated versions of IHS and

IDRP based on this insight together with

conjugate gradient descent, and propose a

primal-dual sketch method that simultane-

ously reduces the sample size and dimension-

ality.

1 Introduction

Machine learning is nowadays successfully applied to

massive data sets collected from various domains. One

of the major challenges in applying machine learn-

ing methods to massive data sets is how to effectively

utilize available computational resources when build-

ing predictive and inferential models, while utilizing

data in a statistically optimal way. One approach to

tackling massive data sets is via building distributed

computer systems and distributed learning algorithms.

However, distributed systems may not always be avail-

able. Furthermore, the cost of running a distributed

system can be much higher than one can afford, mak-

ing distributed learning unsuitable for all scenarios.

An alternative approach is to use the state-of-the-art

randomized optimization algorithms to accelerate the

training process. For example, many optimization al-

gorithms exist for regularized empirical risk minimiza-

tion problem, with provably fast convergence and low
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computational cost per iteration (see [9, 25, 4] for ex-

amples). It is worth pointing out at this point that the

speed of these optimization methods heavily depends

on the condition number of the problem at hand, which

is undesirable for many real world problems.

Sketching has emerged as a technique for big data an-

alytics [22]. The idea behind sketching is to approxi-

mate the solution of the original problem by solving a

sketched, smaller scale problem. For example, sketch-

ing has been used to approximately solve various large-

scale problems, ranging from least square regression

and robust regression to low-rank approximation and

singular value decomposition (see [7, 11, 10, 1, 22, 18,

23, 14, 13, 5] and references therein). However, one

major drawback of sketching is that it is typically not

suitable in scenarios where a highly accurate solution

is needed. To obtain a solution with exponentially

smaller approximation error, we often also need to in-

crease the sketching dimension exponentially.

Recent work on “iterative sketch”, iterative Hessian

sketch (IHS) [17] and iterative dual random projection

(IDRP) [27], has improved the situation. These meth-

ods are able to refine the accuracy of their solution by

iteratively solving small scale sketched problem. Hes-

sian sketch [17] is designed to reduce the sample size

of the original problem, while dual random projection

[27] is proposed to reduce the dimensionality of data.

As a consequence, when the sample size and feature

dimension are both large, IHS and IDRP still need

to solve relatively large-scale subproblems as they can

only sketch the problem from one perspective.

In this paper, we address the problem of the recovery

of optimal solution for big and high-dimensional data

by solving small sketched problems of original prob-

lem. We make the following contributions. First, we

propose an accelerated version of IHS that is compu-

tationally as effective as IHS at each iteration, but

requires provably fewer number of sketching iterations

to reach a certain accuracy. Next, we reveal a primal-
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dual connection between IHS and IDRP, that were in-

dependently proposed. We show that these two meth-

ods are equivalent in the sense that the dual random

projection is essentially performing the Hessian sketch

in the dual space. This connection allows us to provide

a unified analysis of IHS and IDRP, and also develop

an accelerated sketching schemas. Finally, we allevi-

ate the computational issues raised by big and high-

dimensional learning problems. We propose a primal-

dual sketching method that can simultaneously reduce

the sample size and dimension of the problem, and re-

cover the optimal solution to the original large-scale

high-dimensional problem with provable convergence

guarantees. More details on theoretical and empirical

results can be found in a significantly extended version

of this paper [21].

2 Iterative Hessian Sketch and Dual
Random Projection

In this section, we review the iterative Hessian sketch

proposed in [17] and the iterative dual random pro-

jection [27] using our notation. This will serve as the

basis of our unified view and further acceleration.

2.1 Hessian Sketch

Consider the following `2 regularized least-squares

(a.k.a. ridge regression) problem:

min
wPRp

P pX,y; wq

“ min
wPRp

1

2n
}y ´Xw}

2
2 `

λ

2
}w}

2
2 (2.1)

“ min
wPRp

1

2n
}y}

2
2 `

1

2n
}Xw}

2
2 ´

1

n
xy,Xwy `

λ

2
}w}

2
2 ,

where X P Rnˆp is the data matrix, y P Rn is the

response vector, and λ is the tuning parameter. Let

w˚ denote the optimum of problem (2.1), which can

be computed in a closed form as

w˚ “

ˆ

λIp `
XJX

n

˙´1
XJy

n
.

Sketching has become a widely used technique for effi-

ciently finding an approximate solution to (2.1) when

both n and p are large [6, 11, 22]. To avoid solving a

problem of huge sample size, the traditional sketching

techniques (for example, [20, 16]) reduce the sample

size from n to m, with m ! n, and solve the following

sketched `2 regularized least-squares problem:

min
wPRp

P pΠJX,ΠJy; wq

“ min
wPRp

1

2n

›

›ΠJy ´ΠJXw
›

›

2

2
`
λ

2
}w}

2
2 , (2.2)

where Π P Rnˆm is a sketching matrix. The problem

(2.2) can be solved faster and with less storage as long

as we can choose m ! n. Typical choice of Π includes

a random matrix with Gaussian or Rademacher en-

tries, sub-sampled randomized Hadamard transform

[2], and sub-sampled randomized Fourier transform

[19]. See discussion in Section 2.1 of [17] for more

details.

Though the classical sketching has been successful

in various problems and has provable guarantees, as

shown in [17], there is an approximation limit for clas-

sical sketching methods to be practically useful. To

obtain an approximate solution with high precision,

the sketching dimension m often needs to be of the

same order as n. This is impractical as the goal of

sketching is to speed up the algorithms via reducing

the sample size.

Based on the following equivalent formulation of (2.1)

min
wPRp

P pX,y; wq

“ min
wPRp

1

2n
}y}

2
2 `

1

2n
}Xw}

2
2 ´

1

n
xy,Xwy `

λ

2
}w}

2
2 ,

(2.3)

the Hessian sketch [17] only sketches the quadratic

part }Xw}
2
2 with respect to X, but not the linear part

xy,Xwy, leading to the following problem

min
wPRp

PHSpX,y; Π,wq

“ min
wPRp

1

2n
}y}

2
2 `

1

2n

›

›ΠJXw
›

›

2

2
´

1

n
xy,Xwy `

λ

2
}w}

2
2 .

(2.4)

Iterative Hessian Sketch. The Hessian sketch suf-

fers from the same approximation limit as the classical

sketch. However, one notable feature of the Hessian

sketch is that one can implement an iterative exten-

sion to refine the accuracy of the approximation. [17]

showed that the approximation error of IHS is expo-

nentially decreasing with the number of sketching it-

erations. Thus IHS can find an approximate solution

with an ε-approximation error within Oplogp1{εqq iter-

ations, as long as the sketching dimension m is large

enough. IHS was originally developed for the least-

squares problem in (2.1), the idea can be extended

to solve more general problems, such as constrained

least-squares [17], optimization with self-concordant

loss [15], as well as non-parametric methods [24].
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2.2 Dual Random Projection

While Hessian sketch [17] tries to resolve the issue of

huge sample size, Dual Random Projection [26, 27] is

aimed at resolving the issue of high-dimensionality by

using random projections as a tool for reducing the

dimension of data. Again, we consider the standard

ridge regression problem in (2.1). A random projection

is now used to transform the original problem (2.1) to

a low-dimensional problem:

min
zPRp

PRPpXR,y; zq “ min
zPRd

1

2n
}y ´XRz}

2
2 `

λ

2
}z}

2
2 ,

(2.5)

where R P Rpˆd is a random projection matrix, and

d ! p.

Let ẑ “ arg minz PRPpXR,y; zq. If we want to recover

the original high-dimensional solution, [27] observed

that the naive solution ŵRP “ Rẑ results in a bad

approximation. Instead, the optimal solution of the

original problem, w˚, is recovered from the dual so-

lution, leading to the dual random projection (DRP)

approach that we explain below. The dual problem of

the optimization problem in (2.1) is

max
αPRn

DpX,y;αq

“max
αPRn

´
1

2n
αJα`

yJα

n
´

1

2λn2
αJXXJα. (2.6)

Let α˚ “ arg maxαPRn DpX,y;αq be the dual opti-

mal solution. By the standard primal-dual theory [3],

we have the following connection between the optimal

primal and dual solutions:

α˚ “ y ´Xw˚ and w˚ “
1

λn
XJα˚. (2.7)

The dual random projection procedure works as

follows. First, we construct and solve the low-

dimensional, randomly projected problem (2.5) and

obtain the solution ẑ. Next, we calculate the approxi-

mated dual variables by

α̂DRP “ y ´XRẑ, (2.8)

based on the approximated dual solution α̂DRP. Fi-

nally, we recover the primal solution as:

ŵDRP “
1

λn
XJα̂DRP. (2.9)

Combining the steps above, it is easy to see that the

dual random projection for ridge regression has the

following closed form solution:

ŵDRP “
XJ

n

ˆ

λIn `
XRRJXJ

n

˙´1

y. (2.10)

The recovered solution from the dual, ŵDRP, has much

better approximation compared to the solution recov-

ered directly from primal problem ŵRP. Specifically,

ŵRP is always a poor approximation of w˚, because

ŵRP lives in a random subspace spanned by the ran-

dom projection matrix R, while ŵDRP can be a good

approximation of w˚ as long as the projected dimen-

sion d is large enough [27]. Finally, an iterative exten-

sion of DRP can exponentially reduce the approxima-

tion error [27].

2.3 Limitations of IHS and IDRP

Though IHS and IDRP improved the classical sketch

and random projection by enabling us to find a high

quality approximation more efficiently, they are imper-

fect due to the following reasons:

• The guarantee that the approximation error de-

creases exponentially for both IHS and IDRP

relies on the sketching dimension being large

enough. The necessary sketching dimension de-

pends on the intrinsic complexity of the problem,

and, if the sketching dimension is too small, IHS

can diverge, obtaining arbitrary worse approxima-

tion.

• As we will show later, even when the sketching

dimension is large enough, the speed at which the

approximation error decreases in IHS and IDRP

can be significantly improved.

3 A Unified View of IHS and IDRP

In this section, we present a unified view of the iter-

ative Hessian sketch and iterative dual random pro-

jection. We first show that the dual random projec-

tion is equivalent to applying the Hessian sketch in

the dual space. Next, we demonstrate that both IHS

and IDRP can be viewed as an optimization process

with preconditioning. This view allows us to develop

better iterative algorithms by searching the conjugate

directions.

3.1 Dual Random Projection is Hessian

Sketch in Dual Space

We present the equivalence between Hessian sketch

and dual random projection. Note that the Hessian

sketch is used for sample reduction, while the dual

random projection is utilized for dimension reduction.

Recall that the dual maximization objective (2.6) is

quadratic with respect to α. We can write it in the
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equivalent form as

min
αPRn

αJ
ˆ

XXJ

2λn
`

1

2
In

˙

α´ xy,αy. (3.1)

By applying the Hessian sketch with sketching matrix

R P Rpˆd, we find an approximate solution for α˚ as

α̂HS “ arg min
αPRn

αJ
ˆ

XRRJXJ

2λn
`

1

2
In

˙

α´ xy,αy

“ λ

ˆ

λIn `
XRRJXJ

n

˙´1

y.

(3.2)

The primal-dual connection (2.7) gives us the following

approximation to the original problem

ŵ “
XJ

n

ˆ

λIn `
XRRJXJ

n

˙´1

y,

which is the same as the DRP approximation in (2.10).

From this discussion, we see that the Dual Random

Projection is the Hessian sketch applied in the dual

space. To summarize, for ridge regression problem

(2.1) one has closed form solutions for various sketch-

ing techniques as:

Original :

w˚ “

ˆ

λIp `
XJX

n

˙´1
XJy

n

“
XJ

n

ˆ

λIn `
XXJ

n

˙´1

y

Classical Sketch :

ŵCS “

ˆ

λIp `
XJΠΠJX

n

˙´1
XJΠΠJy

n

Random Projection :

ŵRP “ R

ˆ

λId `
RJXJXR

n

˙´1

RJXJy

n

Hessian Sketch :

ŵHS “

ˆ

λIp `
XJΠΠJX

n

˙´1
XJy

n

Dual Random Projection :

ŵDRP “
XJ

n

ˆ

λIn `
XRRJXJ

n

˙´1

y

As we can see above, the Hessian sketch is sketching

the covariance matrix :

XJX Ñ XJΠΠJX,

while DRP is sketching the Gram matrix :

XXJ Ñ XRRJXJ.

3.2 IHS and IDRP as Optimization with

Preconditionning

Define the initial Hessian sketch approximation as

ŵ
p1q
HS “ arg min

w
wJ

ˆ

XJΠΠJX

2n
`
λ

2
Ip

˙

w´
1

n
xy,Xwy.

A refinement of ŵ
p1q
HS can be obtained by considering

the following optimization problem

min
u

1

2n

›

›

›
y ´Xpu` ŵ

p1q
HSq

›

›

›

2

2
`
λ

2

›

›

›
pu` ŵ

p1q
HSq

›

›

›

2

2

“ min
u

uJ
ˆ

XJX

2n
`
λ

2
Ip

˙

u

´

C

XJpy ´Xŵ
ptq
HSq

n
´ λŵ

ptq
HS,u

G

,

whose optimum is w˚ ´ ŵ
p1q
HS. The main idea of the

iterative Hessian sketch is to approximate the residual

solution w˚´ŵ
p1q
HS by the Hessian sketch. At iteration

t, w˚ ´ ŵ
ptq
HS is approximated by ûptq that minimizes

the following problem

min
u

uJ
ˆ

XJΠΠJX

2n
`
λ

2
Ip

˙

u

´

C

XJpy ´Xŵ
ptq
HSq

n
´ λŵ

ptq
HS,u

G

(3.3)

and the new approximation ŵ
pt`1q
HS is updated as

ŵ
pt`1q
HS “ ŵ

ptq
HS ` ûptq.

Also notice that (3.3) is a sketched problem with sam-

ple size m, and therefore it can be solved more effi-

ciently than the original problem (2.1). Furthermore,

we can reuse the previous sketched data matrix ΠJX

without constructing any new random sketching ma-

trices.

Next, we show that the iterative Hessian sketch is in

fact an optimization process with preconditioning. Let

H “
XJX

n
` λIp and H̃ “

XJΠΠJX

n
` λIp.

Let

∇P pwq “ ´XJpy ´Xwq

n
` λw

denote the gradient of P pX, y; wq with respect to w.

Then the IHS algorithm can be seen as performing the

following iterative update

ŵ
pt`1q
HS “ ŵ

ptq
HS ´ H̃´1∇P pŵptqHSq,
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which is like a Newton update with the true Hessian

H being replaced by the sketched Hessian H̃. Another

way to think about this update is via the change of

variable z “ H̃1{2w and then applying the gradient

descent in the z space

ẑpt`1q “ẑptq ´∇zP pH̃
´1{2zq

“ẑptq ´ H̃´1{2∇P pH̃´1{2ẑptqq.

Multiplying by H̃´1{2, changes the update back to the

original space, leading back to the IHS update

ŵ
pt`1q
HS “ ŵ

ptq
HS ´ H̃´1∇P pŵptqHSq.

From the discussion above, we see that the iterative

Hessian sketch is an optimization process with the

sketched Hessian as preconditioning.

With this unified optimization view of IHS and IDRP,

we can provide a unified theoretical analysis for Hes-

sian sketch and dual random projection, see [21] for

more details. Moreover, based on the preconditioned

gradient descent view we propose faster convergent it-

erative algorithms via searching the conjugate direc-

tion, as well as primal-dual sketch method to simul-

taneously reduce the sample and feature dimension.

We introduce these methods in the following sections,

while their corresponding theoretical analysis can be

found in [21].

4 Accelerated IHS via Preconditioned
Conjugate Gradient

In this section, we present the accelerated iterative

Hessian sketch (Acc-IHS) algorithm by utilizing the

idea of preconditioned conjugate gradient. Conjugate

gradient is known to have better convergence prop-

erties than gradient descent in solving linear systems

[8, 12]. Since the iterative Hessian sketch is per-

forming the gradient descent in the transformed space

z “ H̃1{2w, it can be accelerated by performing the

conjugate gradient descent instead. Equivalently, we

can implicitly transform the space by defining inner

product as xx,yy “ xJH̃y.

This leads to the algorithm Acc-IHS detailed in Algo-

rithm 1. At each iteration, the solver is called for the

following sketched linear system

min
u

uJ
ˆ

XJΠΠJX

2n
`
λ

2
Ip

˙

u´
A

rptq,u
E

. (4.1)

Unlike IHS, which uses H̃´1∇P pŵptqHSq as the update

direction at iteration t, Acc-IHS uses pptq as the update

Algorithm 1: Accelerated Iterative Hessian Sketch

1 Input: Data X,y, sketching matrix Π.

2 Initialization: ŵ
p0q
HS “ 0, rp0q “ ´XJy

n .

3 Compute ûp0q by solving (4.1), and update

pp0q “ ´ûp0q, calculate vp0q “
´

XJX
n ` λIp

¯

pp0q.

4 for t “ 0, 1, 2, . . . do

5 Calculate αptq “ xrptq,uptqy
xpptq,vptqy

6 Update the approximation by

ŵ
pt`1q
HS “ ŵ

ptq
HS ` α

ptqpptq.

7 Update rpt`1q “ rptq ` αptqvptq.

8 Update upt`1q by solving (4.1).

9 Update βpt`1q “
xrpt`1q,uptqy
xrptq,rptqy

.

10 Update ppt`1q “ ´upt`1q ` βpt`1qpptq.

11 Update vpt`1q “

´

XJX
n ` λIp

¯

ppt`1q.

12 end

direction where pptq is chosen to satisfy the conjugate

condition: @t1, t2 ě 0, t1 ‰ t2

´

ppt1q
¯J

H̃´1{2HH̃´1{2ppt2q “ 0.

Since the updating direction is conjugate to the previ-

ous directions, it is guaranteed that after p iterations

we reach the exact minimizer, that is,

ŵ
ptq
HS “ w˚, @t ě p.

Moreover, Acc-IHS has the same computational cost

as the standard IHS in solving each sketched sub-

problem. However, the convergence rate of Algorithm

1 is much faster than IHS, that is, it requires solving

much smaller number of sketched sub-problems com-

pared to IHS to reach the same approximation accu-

racy.

4.1 Accelerated Iterative Dual Random

Projection

We recall the standard IDRP [27]. At iteration t, let

ŵ
ptq
DRP denote the approximate solution. The following

optimization problem

min
uPRp

1

2n

›

›

›
y ´Xpu` ŵ

ptq
DRPq

›

›

›

2
`
λ

2

›

›

›
u` ŵ

ptq
DRP

›

›

›

2

2
,

(4.2)

has the solution w˚´ ŵ
ptq
DRP. The idea of the iterative

dual random projection is to approximate the residual

w˚ ´ ŵ
ptq
DRP by applying dual random projection to



Sketching Meets Random Projection in the Dual

(4.2). Given ŵ
ptq
DRP, let ẑptq to be the solution of

min
zPRd

1

2n

›

›

›
y ´Xw

ptq
DRP ´XRz

›

›

›

2

2
`
λ

2

›

›

›
z`RJw

ptq
DRP

›

›

›

2

2
.

(4.3)

Using ẑptq, the dual variables are updated as

α̂
pt`1q
DRP “ y ´Xw

ptq
DRP ´XRẑ

and the primal variables as

ŵ
pt`1q
DRP “

1

λn
XJα̂

pt`1q
DRP .

Based on the equivalence between the dual random

projection and the Hessian sketch established in Sec-

tion 3.2, we propose an accelerated iterative dual ran-

dom projection algorithm, which improves the conver-

gence speed of the standard iterative DRP procedure

[27]. At each iteration t, we call the solver for the

following randomly projected problem based on the

residual rptq (see Algorithm 4 in [21]):

min
zPRd

zJ
ˆ

RJXJXR

2n
`
λ

2
Id

˙

z´ xRJXJrptq, zy.

(4.4)

The accelerated IDRP algorithm runs the Acc-IHS Al-

gorithm 1 in the dual space. However, Acc-IDRP

is still a primal algorithm, since it updates the cor-

responding dual variables after solving the randomly

projected primal problem (4.4). The dual version of

Acc-IDRP algorithm would at each iteration solve the

following dual optimization problem

min
uPRn

uJ
ˆ

XRRJXJ

2n
`
λ

2
In

˙

u´ xrptq,uy, (4.5)

where rptq is the dual residual. This, however, is not

a practical algorithm as it requires solving relatively

more expensive dual problem.

Though the computational cost per iteration of Acc-

IDRP and standard IDRP is the same, Acc-IDRP con-

verges faster and is more robust than IDRP.

5 Iterative Primal-Dual Sketch

In this section, we combine the idea of the iterative

Hessian sketch and iterative dual random projection

from the primal-dual point of view. We propose a more

efficient sketching technique named Iterative Primal-

Dual Sketch (IPDS), which simultaneously reduces the

sample size and dimensionality of the problem, while

recovering the original solution to a high precision.

Algorithm 2: Iterative Primal-Dual Sketch (IPDS).

1 Input: Data X P Rnˆp,y P Rn, sketching matrix

R P Rpˆd,Π P Rnˆm.

2 Initialization: ŵ
p0q
DS “ 0.

3 for t “ 0, 1, 2, . . . do

4 Initialization: z̃p0q “ 0, k “ 0

5 if not converged then

6 Solve the sketched problem in (5.2) and

obtain solution ∆zpkq.

7 Update z̃pk`1q “ z̃pkq `∆zpkq.

8 Update k “ k ` 1.

9 end

10 Update dual approximation:

α̂
pt`1q
DS “ y ´Xŵ

ptq
DS ´XRz̃pk`1q.

11 Update primal approximation:

ŵ
pt`1q
DS “ 1

λnXJα̂
pt`1q
DS .

12 end

The Hessian sketch is particularly suitable for the case

where the sample size is much larger than the problem

dimension and the computational bottleneck is “big

n”. Here the Hessian sketch reduces the sample size

significantly, and as a consequence, speeds up the com-

putation. By utilizing the iterative extension approx-

imation error can be further reduced to recover the

original solution to a high precision. In contrast, the

dual random projection is aimed at dimensionality re-

duction and is suitable for the case of high-dimensional

data, with relatively small sample size. Here the com-

putational bottleneck is “large p” and the random pro-

jection is used to reduce dimensionality and speedup

computations.

The iterative Primal-Dual Sketch only involves solving

small scale problems. For the original problem (2.1)

with data tX,yu, we first construct the randomly pro-

jected data, as well as the doubly sketched data, as

follows:

X Ñ XR, XR Ñ ΠJXR,

where XR is the randomly projected data, and ΠJXR

is doubly sketched data. Let ŵ
p0q
DS “ 0. At every

iteration of IPDS, we first apply random projection on

the primal problem (which is equivalent to the Hessian

sketch on the dual problem), and obtain the following

problem:

min
zPRd

1

2n

›

›

›
y ´Xŵ

ptq
DS ´XRz

›

›

›

2

2
`
λ

2

›

›

›
z`RJŵ

ptq
DS

›

›

›

2

2
,

(5.1)

which is the same as the iterative dual random projec-

tion subproblem (4.3). However, different from IDRP,
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we do not directly solve (5.1), but apply the iterative

Hessian sketch in the inner loop to find an approximate

solution to

min
zPRd

zJ
ˆ

RJXJXR

2n
`
λ

2
Id

˙

z

´

C

py ´Xŵ
ptq
DSq

JXR

n
´ λRJŵ

ptq
DS, z

G

.

We initialize z̃p0q “ 0. At iteration k in the inner loop,
we solve the following sketched problem:

min
∆z

∆zJ

ˆ

RJXJΠΠJXR

2n
`
λ

2
Id

˙

z´

C

RJXJ
py ´Xŵ

ptq

DS ´XRz̃pkq
q

n
´ λRJŵ

ptq

DS ´ λz̃pkq,∆z

G

.

(5.2)

and update z̃pk`1q as

z̃pk`1q “ z̃pkq `∆zpkq.

The key point is that for the subproblem (5.2), the

sketched data matrix is only of size m ˆ d, compared

to the original problem size nˆp, where n " m, p " d.

In contrast, the IHS still needs to solve sub-problems

of size mˆp, while IDRP needs to solve sub-problems

of size n ˆ d. We only need to call solvers of m ˆ d

problem (5.2) logarithmic times to obtain a solution

of high approximation quality.

The pseudo code of Iterative Primal-Dual Sketch

(IPDS) is summarized in Algorithm 2. It is also pos-

sible to perform iterative Primal-Dual Sketch via an-

other direction, that is, first perform primal Hessian

sketch, and then apply dual Hessian sketch to solve

the sketched primal problem:

X Ñ ΠJX, ΠJX Ñ ΠJXR.

The idea presented in Section 4 can also be adopted

to further reduce the number of calls to m ˆ d scale

sub-problems, which leads to the accelerated iterative

primal-dual sketch (Acc-IPDS) algorithm. In Acc-

IPDS, we maintain both the vectors in the primal

space uP,vP, rP and the vectors in the dual space

uD,vD, rD, to make sure that the updating directions

for both primal variables and dual variables are con-

jugate with previous updating directions. Moreover,

based on the residual vector rP, Acc-IPDS iteratively

calls the solver to find a solution of the following

sketched linear system of scale mˆ d:

min
u

uJ
ˆ

RJXJΠΠJXR

2n
`
λ

2
Id

˙

u´
A

r
pkq
P ,u

E

.

Table 1: List of real-world data sets used in the exper-

iments.
Name #Instances #Features

connect4 67,557 126

slice 53,500 385

year 51,630 90

colon-cancer 62 2,000

duke breast-cancer 44 7,129

leukemia 72 7,129

cifar 4,047 3,072

gisette 6,000 5,000

sector 6,412 15,000

6 Experiments

We conduct experiments on real-world data sets where

their statistics are summarized in Table 1. Among all

the data sets, the first 3 are cases where the sample

size is significantly larger than the dimension of data

and we use them to compare the IHS and Acc-IHS al-

gorithms; the middle 3 data sets are high-dimensional

data sets with small sample size and we use them to

compare DRP and Acc-DRP procedures; the last 3

data sets are cases where both the sample size and di-

mension are relatively large and therefore are suitable

for iterative primal-dual sketching methods. For the

last 3 data sets we found that standard IHS and DRP

often fail (unless a very large sketching dimension is

used), thus we compared with Acc-IHS and Acc-DRP.

The convergence plots are summarized in Figure 1. We

have the following observations:

• For both IHS and Acc-IHS, the larger the sketch-

ing dimension m, the faster the iterative methods

converge to the optimum, which is consistent with

the theory, as also observed in [17] and [27] for IHS

and IDRP algorithms. Acc-IHS and Acc-DRP

converge significantly faster than IHS and DRP,

respectively. In particular, accelerated algorithms

converges faster than their non-accelerated coun-

terpart even when their sketching dimensions are

only 1{3 of the sketching dimensions in IHS and

DRP. Moreover, when the sketching dimension is

small, IHS can diverge and go far away from the

optimum, while Acc-IHS still converges.

• For the last 3 data sets where n and p are both

large, and the data are not exactly low-rank: IHS,

DRP and IPDS often diverge because the require-

ments on the sketching dimension that ensure con-

vergence are not satisfied. On the other hand, the

accelerated versions still converge to the optimum,



Sketching Meets Random Projection in the Dual

Iterations

0 2 4 6 8 10

R
e

la
ti
v
e

 E
rr

o
r

10 -15

10 -10

10 -5

10 0

10 5

IHS(500)

IHS(1000)

IHS(2000)

Acc-IHS(500)

Acc-IHS(1000)

Acc-IHS(2000)

Iterations

0 2 4 6 8 10

R
e

la
ti
v
e

 E
rr

o
r

10 -10

10 0

10 10

IHS(2000)

IHS(4000)

IHS(8000)

Acc-IHS(2000)

Acc-IHS(4000)

Acc-IHS(8000)

Iterations

0 2 4 6 8 10

R
e

la
ti
v
e

 E
rr

o
r

10 -15

10 -10

10 -5

10 0

10 5

IHS(500)

IHS(1000)

IHS(2000)

Acc-IHS(500)

Acc-IHS(1000)

Acc-IHS(2000)

connect4 slice year

Iterations

0 2 4 6 8 10

R
e

la
ti
v
e

 E
rr

o
r

10
-15

10
-10

10
-5

10
0

10
5

DRP(400)

DRP(800)

DRP(1200)

Acc-DRP(400)

Acc-DRP(800)

Acc-DRP(1200)

Iterations

0 2 4 6 8 10

R
e

la
ti
v
e

 E
rr

o
r

10
-20

10
-15

10
-10

10
-5

10
0

DRP(400)

DRP(800)

DRP(1200)

Acc-DRP(400)

Acc-DRP(800)

Acc-DRP(1200)

Iterations

0 2 4 6 8 10

R
e

la
ti
v
e

 E
rr

o
r

10
-15

10
-10

10
-5

10
0

10
5

DRP(500)

DRP(1000)

DRP(1500)

Acc-DRP(500)

Acc-DRP(1000)

Acc-DRP(1500)

colon-cancer duke breast-cancer leukemia

1 2 3 4 5 6

Iteratiions (for Acc-IHS and Acc-DRP)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

R
el

at
iv

e
E

rr
or

Acc-IHS(500)
Acc-DRP(500)

Acc-IPDS(500,500)

5 10 15 20 25 30 35 40 45
Iterations (for Acc-IPDS)

0 5 10 15 20

Iteratiions (for Acc-IHS and Acc-DRP)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

R
el

at
iv

e
E

rr
or

Acc-IHS(500)
Acc-DRP(500)

Acc-IPDS(500,500)

0 50 100 150 200 250
Iterations (for Acc-IPDS)

0 5 10 15 20

Iteratiions (for Acc-IHS and Acc-DRP)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

R
el

at
iv

e
E

rr
or

Acc-IHS(1000)
Acc-DRP(2000)

Acc-IPDS(1000,2000)

0 50 100 150 200 250
Iterations (for Acc-IPDS)

cifar gisette sector

Figure 1: Comparion of various iterative sketching approaches on real-world datasets, Top row: Acc-IHS versus

IHS, middle row: Acc-DRP versus DRP, bottom row: Acc-IPDS versus Acc-IHS and Acc-DRP.

so we only show their accelerated version in the

plot. It is notable that the Acc-IPDS only require

solving several least squares problems where both

sample size and dimension are relatively small.

7 Conclusion and Discussion

We focused on sketching techniques for solving large-

scale `2 regularized least squares problem. We es-

tablished the equivalence between the recently pro-

posed two emerging techniques (Hessian sketch and

dual random projection) from a primal-dual point of

view. We also proposed accelerated methods for IHS

and IDRP, from the preconditioned optimization per-

spective. Finally, by combining the primal and dual

sketching ideas, we proposed a novel iterative primal-

dual sketching approach, which substantially reduced

the computational cost in solving sketched sub prob-

lems.

The proposed approach can be extended to solving

more general problems. For example, by sketching the

Newton step in the second-order optimization meth-

ods, as was done in the “Newton Sketch” paper [15],

we will be able to solve regularized risk minimization

problem with self-concordant losses. It will be interest-

ing to examine its empirical performance compared to

existing approaches. More generally, Hessian sketch

and dual random projection are designed for solving

convex problems and it will be interesting to extend

them for some structured non-convex problems such

as principle component analysis.
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