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Abstract

Neural networks are a powerful class of functions
that can be trained with simple gradient descent to
achieve state-of-the-art performance on a variety
of applications. Despite their practical success,
there is a paucity of results that provide theoreti-
cal guarantees on why they are so effective. Ly-
ing in the center of the problem is the difficulty
of analyzing the non-convex loss function with
potentially numerous local minima and saddle
points. Can neural networks corresponding to the
stationary points of the loss function learn the true
target function? If yes, what are the key factors
contributing to such nice optimization properties?

In this paper, we answer these questions by an-
alyzing one-hidden-layer neural networks with
ReLU activation, and show that despite the non-
convexity, neural networks with diverse units have
no spurious local minima. We bypass the non-
convexity issue by directly analyzing the first or-
der optimality condition, and show that the loss
can be made arbitrarily small if the minimum sin-
gular value of the “extended feature matrix” is
large enough. We make novel use of techniques
from kernel methods and geometric discrepancy,
and identify a new relation linking the smallest
singular value to the spectrum of a kernel function
associated with the activation function and to the
diversity of the units. Our results also suggest
a novel regularization function to promote unit
diversity for potentially better generalization.

1 Introduction
Neural networks are a powerful class of nonlinear functions
which have been successfully deployed in a variety of ma-
chine learning tasks. In the simplest form, neural networks
with one hidden layer are linear combinations of nonlinear
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with first-order methods such as (stochastic) gradient de-
scent. It is believed that basis function adaptation is a
crucial ingredient for neural networks to achieve more
compact models and better performance [Barron, 1993,
Yang et al., 2014].

However, the empirical loss minimization problem involved
in neural network training is non-convex with potentially
numerous local minima and saddle points. This makes for-
mal analysis of training neural networks very challenging.
Given the empirical success of neural networks, a sequence
of important and urgent scientific questions need to be in-
vestigated: Can neural networks corresponding to stationary
points of the empirical loss learn the true target function? If
the answer is yes, then what are the key factors contributing
to their nice optimization properties? Based on these un-
derstandings, can we design better regularization schemes
and learning algorithms to improve the training of neural
networks?

In this paper, we provide partial answers to these questions
by analyzing one-hidden-layer neural networks with recti-
fied linear units (ReLU) in a least-squares regression setting.
We show that neural networks with diverse units have no
spurious local minima. More specifically, we show that
the training loss of neural networks decreases in propor-
tion to k@L/@Wk2 /s2

m

(D) where @L/@W is the gradient
and s

m

(D) is the minimum singular value of the extended
feature matrix D (defined in Section 3.1). The minimum
singular value is lower bounded by two terms, where the
first term is related to the spectrum property of the kernel
function associate with the activation �(·), and the second
term quantifies the diversity of the units, measured by the
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classical notion of geometric discrepancy of a set of vec-
tors. Essentially, the slower the decay of the spectrum, the
better the optimization landscape; the more diverse the unit
weights, the more likely stationary points will result in small
training loss and generalization error.

We bypass the hurdle of non-convexity by directly analyzing
the first order optimality condition of the learning problem,
which implies that there are no spurious local minima if the
minimum singular value of the extended feature matrix is
large enough. Bounding the singular value is challenging
because it entangles the nonlinear activation function, the
weights and data in a complicated way. Unlike most previ-
ous attempts, we directly analyze the effect of nonlinearity
without assuming independence of the activation patterns
from actual data; in fact, the dependence of the patterns on
the data and the unit weights underlies the key connection
to activation kernel spectrum and the diversity of the units.

We have constructed a novel proof, which makes use of
techniques from geometric discrepancy and kernel methods,
and have identified a new relation linking the smallest singu-
lar value to the diversity of the units and the spectrum of a
kernel function associated with the unit. More specifically,

• We identify and separate two factors in the minimum
singular value: 1) an ideal spectrum that is related to the
kernel of the activation function and an ideal configura-
tion of diverse unit weights; 2) deviation from the ideal
spectrum measured by how far away actual unit weights
are from the diverse configuration. This new perspective
reveals benign conditions in learning neural networks.

• We characterize the deviation from the ideal diverse
weight configuration using the concept of discrepancy,
which has been extensively studied in the geometric dis-
crepancy theory. This reveals an interesting connection
between the discrepancy of the weights and the training
loss of neural networks. Therefore, it serves as a clean
tool to analyze and verify the learning and the generaliza-
tion ability of the networks.

Whenever possible, we corroborate our theoretical analysis
with numerical simulations. These numerical results in-
clude computing and verifying the relationship between the
discrepancy of a learned neural network and the minimum
singular value. Additionally, we measure the effects on the
discrepancy with and without regularization. In all these
examples, the experiments match with the theory nicely and
they accord with the practice of using gradient descent to
learn neural networks.

2 Related work

Kernel methods have many commonalities with one-hidden-
layer neural networks. The random feature perspec-
tive [Rahimi and Recht, 2009, Cho and Saul, 2009] views
kernels as linear combinations of nonlinear basis functions,
similar to neural networks. The difference between the two

is that the weights are random in kernels while in neural
networks they are learned. Using learned weights leads to
considerable smaller models as shown in [Barron, 1993].
However it is a non-convex problem and it is difficult to find
the global optima. e.g., one-hidden-layer networks are NP-
complete to learn in the worst case [Blum and Rivest, 1993].
We will make novel use of techniques from kernel methods
to analyze learning in neural networks.

The empirical success of training neural networks with
simple algorithms such as gradient descent has moti-
vated researchers to explain their surprising effectiveness.
In [Choromanska et al., 2015], the authors analyze the loss
surface of a special random neural network through spin-
glass theory and show that for many large-size networks,
there is a band of exponentially many local optima, whose
loss is small and close to that of a global optimum. The
analyzed polynomial network is different from the actual
neural network being used which typically contains ReLU
nowadays. Moreover, the analysis does not lead to a gener-
alization guarantee for the learned neural network.

A similar work shows that all local optima are also
global optima in linear neural networks [Kawaguchi, 2016].
However their analysis for nonlinear neural networks
hinges on independence of the activation patterns from
the actual data, which is unrealistic. Some other
works try to argue that gradient descent is not trapped
in saddle points [Lee et al., 2016, Ge et al., 2015], as
was suggested to be the major obstacle in optimiza-
tion [Dauphin et al., 2014]. There is also a seminal work
using tensor method to avoid the non-convex optimization
problem in neural network [Janzamin et al., 2015]. How-
ever, the resulting algorithm is very different from typically
used algorithms where only gradient information of the
empirical loss L is used.

[Soudry and Carmon, 2016] is the closest to our work,
which shows that zero gradient implies zero loss for all
weights except an exception set of measure zero. However,
this is insufficient to guarantee low training loss since small
gradient can still lead to large loss. Furthermore, their
analysis does not characterize the exception set and it is
unclear a priori whether the set of local minima fall into the
exception set.

Some recent works [Mariet and Sra, 2015, Xie et al., 2015,
Littwin and Wolf, 2016] also focused on promoting diver-
sity in neural network weights however their results are not
concerned with guaranteeing global optima.

3 Problem setting and preliminaries

We will focus on a special class of data distributions where
the input x 2 Rd is drawn uniformly from the unit sphere.1

1It is possible to relax this assumption to sub-gaussian rotation-
ally invariant distributions, but we use the current assumption for
simplicity.
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Furthermore, we consider the following hypothesis class:
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Typically, gradient descent over L(f) is used to learn all
the parameters in f , and a solution with small gradient is
returned at the end.2 However, adjusting the bases {w

k

}
leads to a non-convex optimization problem, and there is no
theoretical guarantee on the training and test performance.

Our primary goal is to identify conditions under which
there are no spurious local minima. In particular, let W :=

(w>
1
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, . . . , w>
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)

> be the column concatenation of the
unit parameters. We need to identify a set G
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such that
when gradient descent outputs a solution W 2 G
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with the
gradient norm k@L/@Wk smaller than ✏, then the training
and test errors can be bounded by ✏. Ideally, G

W

should
have clear characterization that can be easily verified, and
should contain most W in the parameter space (especially
those solutions obtained in practice).

On notation, we will use c, c0 or C, C 0 to denote constants
and its value may change from line to line.

3.1 First order optimality condition

In this section, we will rewrite the set of first order optimal-
ity conditions for minimizing the empirical loss L. This
rewriting motivates the direction of our later analysis. More
specifically, the gradient of the empirical loss w.r.t. w
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for all k = 1, . . . , n. We will express this collection of gra-
dient equations using matrix notation. Define the “extended

2Note that even though ReLU is not differentiable, we can still
use its sub-gradient by defining �0(u) = I [u � 0].
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A stationary point has zero gradient, so if D 2 Rdn⇥m has
full column rank, then immediately r = 0, i.e., it is actually
a global optimal. Since nd > m is necessary for D to have
full column rank, we assume this throughout the paper.

However, in practice, we will not have the gradient being
exactly zero because, e.g., we stop the algorithm in finite
steps or because we use stochastic gradient descent (SGD).
In other words, typically we only have k@L/@Wk  ✏, and
D being full rank is insufficient since small gradient can
still lead to large loss. More specifically, let s
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(D) be the
minimum singular value of D, we have
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We can see that s
m

(D) needs to be large enough for the
residual to be small. Thus it is important to identify condi-
tions to lower bound s

m

(D) away from zero, which will be
the focus of the paper.

3.2 Spectrum decay of activation kernel
We will later show that s

m

(D) is related to the decay rate of
the kernel spectrum associated with the activation function.
More specifically, for an activation function �(w>x), we
can define the following kernel function
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is over w uniformly distributed on a sphere.

In particular, for ReLU, the kernel has a closed form
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In fact, it is a dot-product kernel and its spectrum can be
obtained through spherical harmonic decomposition:
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Figure 1: The spectrum decay of the kernel associated with
ReLU. We set d = 1500. It is decays slower than O(1/m)

for a large range of m.

100 102

100

number of eigenvalues

 

 

Gram matrix
harmonics

Figure 2: The spectrum of a Gram matrix concentrates
around the spherical harmonic spectrum of the kernel.

eigenvalue. Therefore, the spectrum has a step like shape
where each step is of length N(d, t). Especially, for high
dimensional input x, the number of such basis functions
with large eigenvalues can be very large. Figure 1 illustrates
the spectrum of the kernel for d = 1500, and it is about
⌦(m�1

) for a large range of m. For more details about the
decomposition, please refer to Appendix A.

Such step like shape also appears in the Gram matrix as-
sociated with the kernel. Figure 2 compares the spectra of
the kernel of d = 15 and the corresponding Gram matrix
with m = 3000. We can see the spectrum of the Gram
matrix closely resembles that of the kernel. Such concentra-
tion phenomenon underlies the reason why the spectrum of
D>D is closely related to the corresponding kernel.

3.3 Weight discrepancy

Another key factor in the analysis is the diversity of
the unit weights, measured by its geometric discrep-
ancy [Bilyk and Lacey, 2015]. Given a set of n points
W = {w

k

}n
k=1

on the unit sphere Sd�1, the discrepancy of
W w.r.t. a measurable set S ✓ Sd�1 is defined as

dsp(W,S) =
1

n
|W \ S|�A(S), (11)

where A(S) is the normalized area of S (i.e., the area of
the whole sphere A(Sd�1

) = 1). dsp(W,S) quantifies the
difference between the empirical measure of S induced by
W and the measure of S induced by a uniform distribution.

By defining a collection S of such sets, we can summarize
the difference in the empirical measure induced by W versus

the uniform distribution over the sphere. More specifically,
we will focus on the set of slices, each defined by a pair of
inputs x, y 2 Sd�1, i.e.,
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Essentially, each S
xy

defines a slice-shaped area on the
sphere which is carved out by the two half spaces w>x � 0

and w>y � 0.

Based on the collection S, we can define two discrepancy
measures relevant to ReLU units. L1 discrepancy of W
w.r.t. S is defined as
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where the expectation is taken over x, y uniformly on the
sphere. We use L1(W ) and L

2

(W ) as their shorthands.
Both discrepancies measure how diverse the points W are.
The more diverse the points, the smaller the discrepancy.

For our analysis, we slightly generalize the discrepancy for
w
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4 Main results
Our first result is a bound on the smallest singular value of
D based on the spectrum of the activation kernel in (9) and
the discrepancy of the weights in (13) and (14). Recall that
�
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is the m-th eigenvalue of the kernel in (9), and we define
� such that �
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) for some � < 1.
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The theorem is stated in its general form. It bounds the small-
est singular value in terms of the n, d,m and two parameters
⇠, ⌘ quantifying how large L

2

(W ) is. It is instructive to con-
sider an interesting special case, with concrete values of ⇠
and ⌘.
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for some constant c > 0.

In the above corollary, the parameters n =

˜

⌦(m�

) and
d =

˜

⌦(m�

) match the practical setting. It is also worth not-
ing that when n becomes larger, the singular value increases
as well. This accords with some recent empirical and theo-
retical observation that the loss function is more benign in
large overspecified networks (e.g., [Shamir, 2016]).

The setting that L
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˜O(1/(nd)1/4) is also common.
In fact, this is true for any parameters W in a large sub-
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of all the parameters satisfying
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;
see Section 5.2 for details. So under typical settings, the
minimum singular value of D is bounded away from zero.

Finally, it is interesting to compare the theorem to the results
in [Soudry and Carmon, 2016], which shows that D is full
rank with probability one under small perturbations. How-
ever, full-rankness alone is not sufficient since its smallest
singular value could be extremely small leading to possibly
huge training loss. Instead, we directly bound the smallest
singular value and relate it to the activation and the diversity
of the weights.

Equipped with the bound on the singular value, we are ready
to bound the training loss and the generalization error.
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The theorem is also in the general form. It shows that when
the weights are diverse (i.e., with good discrepancy), the
training loss is proportional to the squared norm of the
gradient. This implies a local minimum leads to a global
minimum and the neural network learns the target function.
The generalization error has an additional term ˜O (1/

p
m).

So in this case, a neural network trained with sufficiently
many data points generalizes well.

We have a corresponding result for Corollary 2 concerning
the errors. Let F
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feasible set of W ’s. Then by Theorem 3 and Lemma 9 in
Section 5.2 which bounds L
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By the corollary, when we obtain an solution W 2 G
W

with
gradient k@L/@Wk2  ✏, the training loss is bounded by
O(✏), and the generalization error is O(✏+1/

p
m). This es-

sentially means that although non-convex, the loss function
is well behaved, and there are no spurious local minima over
this set. Furthermore, a randomly sampled set of weights
W are likely to fall into this set. This then suggests an ex-
planation for the practical success of training with random
initialization: after initialization, the parameters w.h.p. fall
into the set, then stay inside during training, and finally get
to a point with small gradient, which by our analysis, has
small error.

Analysis roadmap Theorem 1 is proved in Section 5,
L
2

(W ) and G
W

are characterized in Section 5.2, and the
proof sketch of Theorem 3 is provided in Section 6. Due
to space limit, we describe the proof sketch for the lemmas
and provide the remaining proofs in the appendix.

Here we describe the high level intuition for bounding the
minimum singular value. It is necessarily connected to the
activation function and the diversity of the weights. For
example, if �0

(t) is very small for all t, then the smallest
singular value is expected to be very small. For the weights,
if d < m (the interesting case) and all w

k

’s are the same,
then D cannot have rank m. If w

k

’s are very similar to each
other, then one would expect the smallest singular value
to be very small or even zero. Therefore, some notion of
diversity of the weights are needed.

The analysis begins by considering the matrix G
n

=

D>D/n. It suffices to bound �
m

(G
n

), the m-th (and the
smallest) eigenvalue of G

n

. To do so, we introduce a matrix
G whose entries G(i, j) = E

w

[G
n

(i, j)] where the expec-
tation E

w

is taken assuming w
k

’s are uniformly random on
the unit sphere. The intuition is that when w is uniformly
distributed, �0

(w>x) is most independent of the actual value
of the x, and the matrix D should have the highest chance
of having large smallest singular value. We will introduce
G as an intermediate quantity and subsequently bound the
spectral difference between G

n

and G. Roughly speaking,
we break the proof into two steps

�
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) � �
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(G)

| {z }

I. ideal spectrum

�kG�G
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k
| {z }

II. discrepancy

where kG�G
n

k is the spectral norm of the difference.

For the first term in the lower bound, we observe that G has a
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particular nice form: G(i, j) = g(x
i

, x
j

), the kernel defined
in (9). This allows us to apply the eigendecomposition of the
kernel and positive definite matrix concentration inequality
to bound �

m

(G), which turns out to be around m�
m

/2.

For the second term, when w
k

’s are indeed from the uni-
form distribution over the sphere, this can be bounded by
concentration bounds. It turns out that when w

k

’s are not
too far away from that, it is still possible to do so. Therefore,
we use the geometric discrepancy to measure the diversity
of the weights, and show that when they are sufficiently
diverse, kG�G

n

k is small. In particular, the entries in
G � G

n

can be viewed as the kernel of some U-statistics,
hence concentration bounds can be applied. The expected U-
statistics turns out to be the (L

2

(W ))

2, which has a closed
form and can be shown to be small.

5 Bounding the smallest singular value
Our key technical lemma is a lower bound on the smallest
singular value of the extended feature matrix D.

Lemma 5 With probability � 1 � m exp (�m�
m

/8) �
2m2

exp

��4 log

2 d
�� �, we have

s
m

(D)

2 � nm�
m

/2� cn⇢(W ), (16)

where

⇢(W ) =

log dp
d

p

L1(W )L
2

(W )m

✓

4

m
log

1

�

◆

1/4

+

log dp
d
mL1(W )

r

4

3m
log

1

�

+

log dp
d
mL

2

(W ) + L1(W ). (17)

Proof [Proof of Theorem 1] First, |dsp(W,S)|  2 for any
set W and slice S, so by definition |L1(W )|  2. Next,
By the assumption in the theorem, L

2

(W ) =

˜O(n�⇠d�⌘

).
Plugging these into Lemma 5 completes the proof.

Lemma 5 is meaningful only when cn⇢(W ) is small com-
pared to nm�

m

/2. This requires L
2

(W ) to be sufficiently
small. In the following we will first provide the proof sketch
of Lemma 5, and then bound that L

2

(W ) in Section 5.2.

5.1 Proof of Lemma 5
To prove Lemma 5, it is sufficient to bound the smallest
eigenvalue of G

n

= D>D/n. Note that v
k

2 {�1, 1}, so
v2
k

= 1, and thus the (i, j)-th entry of G
n

is

G
n

(i, j) =
1

n

n

X

k=1

�0
(w>

k

x
i

)�0
(w>

k

x
j

) hx
i

, x
j

i . (18)

For ReLU, �0
(w>x) does not depend on the norm of w so

without loss of generality, we assume kwk = 1. Consider a
related matrix G whose (i, j)-th entry is defined as

G(i, j) = E
w

⇥

�0
(w>x

i

)�0
(w>x

j

) hx
i

, x
j

i⇤ . (19)

where w is a random variable distributed uniformly over

the unit sphere. Since �0
(w>x) = I

⇥

w>x � 0

⇤

, we have a
closed form expression for G(i, j):

G(i, j) = E
w

⇥

I(w>x
i

� 0)I(w>x
j

� 0)

⇤ hx
i

, x
j

i

=

✓

1

2

� arccos hx
i

, x
j

i
2⇡

◆

hx
i

, x
j

i . (20)

Note that G(i, j) = g(x
i

, x
j

) where g is the kernel defined
in (9). This allows us to reason about the eigenspectrum of
G, denoted as �

1

(G) � . . . � �
m

(G).

Therefore, our strategy is to first bound �
m

(G) in Lemma 6
and then bound |�

m

(G)� �
m

(G
n

)| in Lemma 7. Combin-
ing the two immediately leads to Lemma 5.

First, consider �
m

(G). We consider a truncated version of
spherical harmonic decomposition:

g[m]

(x
i

, x
j

) =

m

X

u=1

�
u

�
u

(x
i

)�
u

(x
j

)

and the corresponding matrix G[m]. On one hand, it is clear
that �

m

(G) � �
m

(G[m]

). On the other hand, G[m]

= AA>

where A is a random matrix whose rows are

Ai

:= [

p
�
1

�
1

(x
i

), . . . ,
p
�
m

�
m

(x
i

)].

Next, we bound �
m

(G[m]

) by matrix Chernoff
bound [Tropp, 2012], and it is better than previous
work [Braun, 2006]. This leads to the following lemma.

Lemma 6 With probability at least 1�m exp (�m�
m

/8),

�
m

(G) � m�
m

/2.

Next, bound |�
m

(G)� �
m

(G
n

)|. By Weyl’s theorem, this
is bounded by kG�G

n

k. To simplify the notation, denote

E
i,j

= E
w

[�0
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i

)�0
(w>x

j

)] � 1

n

n
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)�0
(w>

k

x
j

).
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iE
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, and thus
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iE
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|E
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 c log dp
d

s

X

i 6=j

E2

ij
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i

|E
ii

| (21)

where the last inequality holds with high probability since
x
i

’s are uniform over the unit sphere and thus we can apply
sub-gaussian concentration bounds.

Note that
P

i 6=j

E2

ij

/(m(m � 1)) is a U-statistics where
the summands are dependent and typical concentration in-
equality for i.i.d. entries does not apply. Instead we use
a Bernstein inequality for U-statistics [Peel et al., 2010] to
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show that with probability at least 1� �, it is bounded by

E{x1,x2}E
2

12

+

r

4⌃

2

m
log

1

�
+

4B2

3m
log

1

�
(22)

where B = max

i

|E
ii

| and ⌃

2

= E
⇥

E4

12

⇤� (E
⇥

E2

12

⇤

)

2.

The key observation is that the quantities in the above lemma
are related to discrepancy:

max

i,j

E
ij

 L1(W ), (23)

E
x1,x2

⇥

E2

12

⇤

= (L
2

(W ))

2, (24)

⌃

2  (L
2

(W )L1(W ))

2. (25)

This is because �0
(w>x

i

)�0
(w>x

j

) = I[w 2 S
xixj ] and

thus

E
i,j

= E
w

I[w 2 S
xixj ]�

1

n

n

X

k=1

I[w
k

2 S
xixj ]

= A(S
xixj )�

1

n

�

�W \ S
xixj

�

�

= �dsp(W,S
xixj ).

Plugging (23)-(25) into (22) and (21), we have

Lemma 7 The following inequality holds with probability
at least 1� 2m2

exp

�� log

2 d
�� �,

kG
n

�Gk  c⇢(W ) (26)

where ⇢(W ) is as defined in Lemma 5.

5.2 Characterizing the discrepancy
In this subsection, we present a bound for L

2

(W ) and show
that the G

W

defined in the following covers most W ’s:

G
W

=

(

W : (L
2

(W ))

2  c
g

 

r

log d

nd
log

1

�
+

1

n
log

1

�

!)

(27)

for 0 < � < 1 and a proper constant c
g

> 0.3

First we provide a closed form for L
2

discrepancy of slices
defined in (12). The proof is provided in the appendix.

Theorem 8 Suppose W = {w
i

}n
i=1

✓ Sd�1.

(L
2

(W ))

2

=

1

n2

n

X

i,j=1

k(w
i

, w
j

)

2 � E
u,v

⇥

k(u, v)2
⇤

where E
u,v

is over u and v uniformly distributed on Sd�1

and the kernel k(·, ·) is

k(u, v) =
⇡ � arccos hu, vi

2⇡
.

The closed form is simple and intuitive. The kernel
k(w

i

, w
j

) measures how similar two units are. The dis-
crepancy is the difference between the average pairwise
similarity and the expected one over uniform distribution.

3The constant cg is the constant in Lemma 9. � will be clear
from the context where GW is used.

Given the theorem, we now show that (L
2

(W ))

2 can be
small. We use the probabilistic method, i.e., show that if
w

k

’s are sampled from Sd�1 uniformly at random, then with
high probability W falls into G

W

. The key observation is
that with random W , (L

2

(W ))

2 is the difference between a
U-statistics and its expectation, which can be bounded by
concentration inequalities. Formally,

Lemma 9 There exists a constant c
g

, such that for any 0 <
� < 1, with probability at least 1 � � over W = {w

i

}n
i=1

that are sampled from the unit sphere uniformly at random,

(L
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(W ))

2  c
g

 

r

log d
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�
+

1

n
log

1

�

!

.

Alternatively, the theorem means that G
W

defined in Eqn 27
covers most W ’s. This is because L

2

(W ) is independent
of the length of w

k

’s, it is sufficient to show that L
2

(W ) is
small for W 2 G

W

\ Sd�1.

6 Final bound on generalization error

Here we prove Theorem 3 using Theorem 1. Suppose
an algorithm such as gradient descent on the loss func-
tion L =

1

2m

P

l

(y
l

� f(x
l

))

2 gives a solution satisfying
the assumption and with small gradient k@L/@Wk. Using
Eqn (7), we have krk  k@L/@Wk/s

m

(D). By Theorem 1
and the assumption in Theorem 3, with high probability
s2
m

(D) = ⌦(nm1��

). This implies the training loss

1

m

X

l

(f(x
l

)� y
l

)

2

= m krk2  cm�

n

�

�

�

�

@L

@W

�

�

�

�

2

.

The generalization error can be derived using McDiamid’s
inequality and Rademacher complexity. First, we need
an upper bound on the difference of the loss for two data
points for the McDiamid’s inequality. Since kxk

2

 1 and
P

k

kw
k

k
2

 C
W

, we have |f |  C
W

. Thus

|l(y, f(x))� l(y0, f(x0
))|

 1

2

max

�

(y � f(x))2, (y0 � f(x0
))

2

  Y 2

+ C2

W

where in the last inequality we use the fact that the true func-
tion |y|  Y . Next, we use the composition rules to compute
the Rademacher complexity. Since the complexity of linear
functions

�

w>x : kwk
2

 b
W

, kxk
2

 1

 

is b
W

/
p
m and

�(·) is 1-Lipschitz, and
P

k

kw
k

k
2

 C
W

, the complexity
R

m

(F)  C
W

/
p
m. Composing it with the loss function,

and applying the bound in [Bartlett and Mendelson, 2002],
we get the final generalization bound.

Corollary 4 then follows from Theorem 3 and Lemma 9.
More details of the proof are in Appendix E.

7 Numerical evaluation

In this section, we further investigate numerically the effects
of gradient descent on the discrepancy and the effects of
regularizing the weights using discrepancy measure.
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Figure 3: Discrepancy of W obtained after gradient descent.
We perform gradient descent and compute discrepancy for
the returned solution. The red curve corresponds to such
solutions with different n. It scales similarly to the bound
for uniform W as in Lemma 9.

7.1 Discrepancy and gradient descent
One limitation of the analysis is that we have not analyzed
how to obtain a solution W 2 G

W

with small gradient. The
theoretical analysis of gradient descent is left for future work.
Meanwhile we provide some numerical results supporting
our claims.

Although the set G
W

contains most W ’s, it is still unclear
whether the solutions given by gradient descent lie in the
set. We design experiments to investigate this issue. The
ground truth input data are of dimension d = 50 and true
function consists of n = 50 units. We use networks of
different n to learn the true function and perform SGD with
batch size 100 and learning rate 0.1 for 5000 iterations.
Figure 3 shows how (L

2

(W ))

2 changes as a function of
n. It is slightly worse than O(n�1

) but scales better than
O(n�1/2

), suggesting (stochastic) gradient descent outputs
solutions with reasonable discrepancy.

7.2 Regularization
To reinforce solutions with small discrepancy, we propose a
novel regularization term to minimize L

2

discrepancy:

R(W ) =

1

n(n� 1)

n

X

i 6=j

k(w
i

, w
j

)

2. (28)

It is essentially L
2

discrepancy without the constants.

To verify the effectiveness of the regularization term, we
explore the relationship between the regularization and the
minimum singular value. We first generate 20 random W ’s,
all with n = 100 and d = 100, and compute their dis-
crepancy and singular values using m = 3000. Then we
optimize R(W ) and compare the quantities after optimiza-
tion. The result is presented in Figure 4. We can see smaller
regularization value corresponds to larger singular value.

We also conducts experiments to compare training and
test errors with and without regularization. The ground
truth data are of d = 100 and n = 100. We learn the
true function by SGD with learning rate 0.1, momentum
0.9 and a total of 300,000 iterations. The regularization
coefficients are chosen from {1, 0.1, 0.01, 0.001} and the
best results are reported. We use neural networks of size
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Figure 4: Effect of regularization. The blue dots represent
random weights and the red dots linked with dashed black
lines represent weights optimized by minimizing R(w).
Smaller regularization values correspond to larger minimal
singular values.

Table 1: Comparison of performance with/without regular-
ization (all numbers are of unit 10�5). The true function is
generated with d = 100 and n = 100. To learn the function,
we use networks with different n.

n = 100 n = 150

train test train test

no-reg 15.42(5.86) 14.80(5.36) 1.79(0.45) 1.86(0.50)

reg 11.32(1.77) 10.63(1.58) 1.07(0.84) 1.13(0.99)

n = 200 n = 300

train test train test

no-reg 0.38(0.27) 0.44(0.35) 0.39(0.39) 0.44(0.40)

reg 0.50(0.51) 0.58(0.59) 0.10(0.05) 0.12(0.07)

n 2 {100, 150, 200, 300} and for each n we repeat five
times with different random seeds. The result is summa-
rized in Table 1. Regularization leads to lower training
and test errors for most settings. Even in the case where
the un-regularized one performs better, the errors are all
small enough (within the same range as standard deviation),
suggesting the noise begins to dominate.

8 Conclusion

We have analyzed one-hidden-layer neural networks and
identified novel conditions when local minima become
global minima despite the non-convexity of the loss function.
The key factors are the spectrum of the kernel associated
with the activation function and the diversity of the units
measured by discrepancy. Based on the insights, we have
also proposed a novel regularization term that promotes unit
diversity and achieves better generalization.
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