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A Particularizing the Fairness Constraints for SVM

One can specialize our fair classifier formulation proposed in (4) as:

Linear SVM. A linear SVM distinguishes among classes using a linear hyperplane ✓T
x = 0. In this case, the

parameter vector ✓ of the fair linear SVM can be found by solving the following quadratic program:

minimize k✓k2 + C

Pn
i=1 ⇠i

subject to yi✓T
xi � 1� ⇠i, 8i 2 {1, . . . , n}

⇠i � 0, 8i 2 {1, . . . , n},
1
N

PN
i=1 (zi � z̄)✓T

xi  c,

1
N

PN
i=1 (zi � z̄)✓T

xi � �c,

(9)

where ✓ and ⇠ are the variables, k✓k2 corresponds to the margin between the support vectors assigned to di↵erent
classes, and C

Pn
i=1 ⇠i penalizes the number of data points falling inside the margin.

Nonlinear SVM. In a nonlinear SVM, the decision boundary takes the form ✓T�(x) = 0, where �(·) is a
nonlinear transformation that maps every feature vector x into a higher dimensional transformed feature space.
Similarly as in the case of a linear SVM, one may think of finding the parameter vector ✓ by solving a constrained
quadratic program similar to the one defined by Eq. (9). However, the dimensionality of the transformed feature
space can be large, or even infinite, making the corresponding optimization problem di�cult to solve. Fortunately,
we can leverage the kernel trick [Schölkopf and Smola, 2002] both in the original optimization problem and the
fairness inequalities, and resort instead to the dual form of the problem, which can be solved e�ciently. In
particular, the dual form is given by:

minimize
PN

i=1 ↵i +
PN

i=1 ↵iyi(g↵(xi) + h↵(xi))
subject to ↵i � 0, 8i 2 {1, . . . , N},PN

i=1 ↵iyi = 0,

1
N

PN
i=1 (zi � z̄) g↵(xi)  c,

1
N

PN
i=1 (zi � z̄) g↵(xi) � �c,

(10)

where ↵ are the dual variables, g↵(xi) =
PN

j=1 ↵jyjk(xi,xj) can still be interpreted as a signed distance to the

decision boundary in the transformed feature space, and h↵(xi) =
PN

j=1 ↵jyj
1
C �ij , where �ij = 1 if i = j and

�ij = 0, otherwise. Here, k(xi,xj) = h�(xi),�(xj)i denotes the inner product between a pair of transformed
feature vectors and is often called the kernel function.

B Additional Experiments

B.1 Experiments on Non-linear Synthetic Data

Here, we illustrate how the decision boundary of an non-linear classifier, a SVM with radial basis function (RBF)
kernel, changes under fairness constraints. To this end, we generate 4,000 user binary class labels uniformly at
random and assign a 2-dimensional user feature vector per label by drawing samples from p(x|y = 1,�) =
�N([2; 2], [5 1; 1 5]) + (1� �)N([�2;�2], [10 1; 1 3]) if y = 1, and p(x|y = �1,�) = �N([4;�4], [4 4; 2 5]) + (1�
�)N([�4; 6], [6 2; 2 3]) otherwise, where � 2 {0, 1} is sampled from Bernoulli(0.5). Then, we generate each
user’s sensitive attribute z by applying the same rotation as detailed in Section 4.1.

Figure 5 shows the decision boundaries provided by the SVM that maximizes accuracy under fairness constraints
with c = 0 for two di↵erent correlation values, set by � = ⇡/4 and � = ⇡/8, in comparison with the unconstrained
SVM. We observe that, in this case, the decision boundaries provided by the constrained SVMs are very di↵erent
to the decision boundary provided by the unconstrained SVM, not simple shifts or rotations of the latter, and
successfully reverse engineer the mechanism we used to generate the class labels and sensitive attributes.

B.2 Experiments on Real Data

Additional Data Statistics. In this section, we show the distribution of sensitive features and class labels in
our real-world datasets.
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(a) Unconstrained (b) � = ⇡/4 (c) � = ⇡/8

Figure 5: Decision boundaries for SVM classifier with RBF Kernel trained without fairness constraints (left)
and with fairness constraints (c = 0) on two synthetic datasets with di↵erent correlation value between sensitive
attribute values (crosses vs circles) and class labels (red vs green).

Table 2: Datasets details (binary sensitive attributes: gender and age).

Sensitive Attribute y  50K > 50K Total
Males 20,988 9,539 30,527
Females 13,026 1,669 14, 695
Total 34,014 11,208 45,222

(a) Adult dataset

Sensitive Attribute No Yes Total
25  age  60 35,240 3,970 39,210

age < 25 or age > 60 1,308 670 1,978
Total 36,548 4,640 41,188

(b) Bank dataset
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Figure 7: [Maximizing fairness under accuracy constraints] Panels in (a) show the accuracy (solid) and CV score
value (dashed) against �. Panels in (b) show the percentage of protected (P, dashed) and non-protected (N-P,
solid) users in the positive class against �.

CV score as fairness measure. While evaluating the performance of our method in Section 4, we used p%-rule
as the true measure of fairness, since it is a generalization of the 80%-rule advocated by US Equal Employment
Opportunity Commission [Biddle, 2005] to quantify disparate impact. We would like to remark that this measure
is closely related to another measure of fairness used by some of the previous works [Kamiran and Calders, 2009,
Kamishima et al., 2011, Zemel et al., 2013] in this area, referred to as Calder-Verwer (CV) score by Kamishima
et al. [2011]. In particular, the CV score is defined as the (absolute value of the) di↵erence between the percentage
of users sharing a particular sensitive attribute value that lie on one side of the decision boundary and the
percentage of users not sharing that value lying on the same side, i.e.,

��
P (d✓(x) � 0|z = 0)�P (d✓(x) � 0|z = 1)

��.

In this section, we show that using CV score (instead of p%-rule) as a measure of fairness would yield similar
results.

First, we show that constraining the covariance between users’ sensitive attributes (Fig. 6a and Figure 6b), and
the signed distance from the decision boundary, corresponds to an increasing relative loss and decreasing CV



Fairness Constraints: Mechanisms for Fair Classification

Table 3: Adult dataset (Non-binary sensitive attribute: race)
Sensitive Attribute y  50K > 50K Total

American-Indian/Eskimo 382 53 435
Asian/Pacific-Islander 934 369 1,303

White 28,696 10,207 38, 903
Black 3,694 534 4, 228
Other 308 45 353
Total 34,014 11,208 45,222
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(c) Single binary sensitive attribute

Figure 6: [Maximizing accuracy under fairness constraints: single, binary sensitive attribute] Panels in (a) show
the trade-o↵ between the empirical covariance and the relative loss in accuracy (with respect to the unconstrained
classifier), where each pair of (covariance, loss) values is guaranteed to be Pareto optimal by construction. Panels
in (b) show the correspondence between the empirical covariance in Eq. 2 and the CV score for classifiers trained
under fairness constraints for the Adult (top) and Bank (bottom) datasets. Panels in (c) show the accuracy
against CV score value (top) and the percentage of protected (dashed) and non-protected (solid) users in the
positive class against the CV score value (bottom).

score (a more fair decision boundary).

Next, we show the performance of di↵erent methods based on the CV score (Fig, 6c and 7). The results in Fig.6c
and 7 correspond to the ones shown in Fig. 2c and 4, where we took p%-rule as the measure of fairness. It can
be seen that both measures of fairness (p%-rule and CV score) provide very similar trades-o↵ in terms of fairness
and accuracy.

Notice that according to the definitions provided in Section 2.1, a decreasing CV score corresponds to an in-
creasing p%-rule (and hence, a more fair decision boundary).
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