Supplementary Materials

A Technical lemmas for Theorem 1

In this appendix, we prove technical lemmas that appear in the proof of Theorem 1.

A. 1 Proof of Lemma 1

The following inequality always holds:

$$
\sup _{f \in \mathcal{F}}|G(f)-\ell(f)| \leq \max \left\{\sup _{f \in \mathcal{F}}\{G(f)-\ell(f)\}, \sup _{f^{\prime} \in \mathcal{F}}\left\{\ell\left(f^{\prime}\right)-G\left(f^{\prime}\right)\right\}\right\}
$$

Since \mathcal{F} contains the constant zero function, both $\sup _{f \in \mathcal{F}}\{G(f)-\ell(f)\}$ and $\sup _{f^{\prime} \in \mathcal{F}}\left\{\ell\left(f^{\prime}\right)-G\left(f^{\prime}\right)\right\}$ are nonnegative, which implies

$$
\sup _{f \in \mathcal{F}}|G(f)-\ell(f)| \leq \sup _{f \in \mathcal{F}}\{G(f)-\ell(f)\}+\sup _{f^{\prime} \in \mathcal{F}}\left\{\ell\left(f^{\prime}\right)-G\left(f^{\prime}\right)\right\}
$$

To establish Lemma 1, it suffices to prove:

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}}\{G(f)-\ell(f)\}\right] \leq 2 L R_{k}(\mathcal{F}) \quad \text { and } \quad \mathbb{E}\left[\sup _{f^{\prime} \in \mathcal{F}}\left\{\ell\left(f^{\prime}\right)-G\left(f^{\prime}\right)\right\}\right] \leq 2 L R_{k}(\mathcal{F})
$$

For the rest of the proof, we will establish the first upper bound. The second bound can be established through an identical series of steps.

The inequality $\mathbb{E}\left[\sup _{f \in \mathcal{F}}\{G(f)-\ell(f)\}\right] \leq 2 L R_{k}(\mathcal{F})$ follows as a consequence of classical symmetrization techniques [e.g. Bartlett and Mendelson, 2003] and the Talagrand-Ledoux concentration [e.g. Ledoux and Talagrand, 2013, Corollary 3.17]. However, so as to keep the paper self-contained, we provide a detailed proof here. By the definitions of $\ell(f)$ and $G(f)$, we have

$$
\mathbb{E}\left[\sup _{f \in \mathcal{F}}\{G(f)-\ell(f)\}\right]=\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{k} \sum_{j=1}^{k} h\left(-y_{j}^{\prime} f\left(x_{j}^{\prime}\right)\right)-\mathbb{E}\left[\frac{1}{k} \sum_{j=1}^{k} h\left(-y_{j}^{\prime \prime} f\left(x_{j}^{\prime \prime}\right)\right)\right]\right\}\right]
$$

where $\left(x_{j}^{\prime \prime}, y_{j}^{\prime \prime}\right)$ is an i.i.d. copy of $\left(x_{j}^{\prime}, y_{j}^{\prime}\right)$. Applying Jensen's inequality yields

$$
\begin{align*}
\mathbb{E}\left[\sup _{f \in \mathcal{F}}\{G(f)-\ell(f)\}\right] & \leq \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{k} \sum_{j=1}^{k} h\left(-y_{j}^{\prime} f\left(x_{j}^{\prime}\right)\right)-h\left(-y_{j}^{\prime \prime} f\left(x_{j}^{\prime \prime}\right)\right)\right\}\right] \\
& =\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{k} \sum_{j=1}^{k} \varepsilon_{j}\left(h\left(-y_{j}^{\prime} f\left(x_{j}^{\prime}\right)\right)-h\left(-y_{j}^{\prime \prime} f\left(x_{j}^{\prime \prime}\right)\right)\right)\right\}\right] \\
& \leq \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{k} \sum_{j=1}^{k} \varepsilon_{j} h\left(-y_{j}^{\prime} f\left(x_{j}^{\prime}\right)\right)+\sup _{f \in \mathcal{F}} \frac{1}{k} \sum_{j=1}^{k} \varepsilon_{j} h\left(-y_{j}^{\prime \prime} f\left(x_{j}^{\prime \prime}\right)\right)\right\}\right] \\
& =2 \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{k} \sum_{j=1}^{k} \varepsilon_{j} h\left(-y_{j}^{\prime} f\left(x_{j}^{\prime}\right)\right)\right\}\right] . \tag{13}
\end{align*}
$$

We need to bound the right-hand side using the Rademacher complexity of the function class \mathcal{F}, and we use an argument following the lecture notes of Kakade and Tewari [2008]. Introducing the shorthand notation $\varphi_{j}(x):=$ $h\left(-y_{j}^{\prime} x\right)$, the L-Lipschitz continuity of φ_{j} implies that

$$
\begin{aligned}
\mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{j=1}^{k} \varepsilon_{j} \varphi_{j}\left(f\left(x_{j}^{\prime}\right)\right)\right] & =\mathbb{E}\left[\sup _{f, f^{\prime} \in \mathcal{F}}\left\{\frac{\varphi_{1}\left(f\left(x_{1}^{\prime}\right)\right)-\varphi_{1}\left(f^{\prime}\left(x_{1}^{\prime}\right)\right)}{2}+\sum_{j=2}^{k} \varepsilon_{j} \frac{\varphi_{j}\left(f\left(x_{j}^{\prime}\right)\right)+\varphi_{j}\left(f^{\prime}\left(x_{j}^{\prime}\right)\right)}{2}\right\}\right] \\
& \leq \mathbb{E}\left[\sup _{f, f^{\prime} \in \mathcal{F}}\left\{\frac{L\left|f\left(x_{1}^{\prime}\right)-f^{\prime}\left(x_{1}^{\prime}\right)\right|}{2}+\sum_{j=2}^{k} \varepsilon_{j} \frac{\varphi_{j}\left(f\left(x_{j}^{\prime}\right)\right)+\varphi_{j}\left(f^{\prime}\left(x_{j}^{\prime}\right)\right)}{2}\right\}\right] \\
& =\mathbb{E}\left[\sup _{f, f^{\prime} \in \mathcal{F}}\left\{\frac{L f\left(x_{1}^{\prime}\right)-L f^{\prime}\left(x_{1}^{\prime}\right)}{2}+\sum_{j=2}^{k} \varepsilon_{j} \frac{\varphi_{j}\left(f\left(x_{j}^{\prime}\right)\right)+\varphi_{j}\left(f^{\prime}\left(x_{j}^{\prime}\right)\right)}{2}\right\}\right]
\end{aligned}
$$

Applying Jensen's inequality implies that the right-hand side is bounded by

$$
\begin{aligned}
\text { RHS } & \leq \frac{1}{2} \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left\{L f\left(x_{1}^{\prime}\right)+\sum_{j=2}^{k} \varepsilon_{j} \varphi_{j}\left(f\left(x_{j}^{\prime}\right)\right)\right\}+\sup _{f^{\prime} \in \mathcal{F}}\left\{-L f\left(x_{1}^{\prime}\right)+\sum_{j=2}^{k} \varepsilon_{j} \varphi_{j}\left(f^{\prime}\left(x_{j}^{\prime}\right)\right)\right\}\right] \\
& =\mathbb{E}\left[\sup _{f \in \mathcal{F}}\left\{\varepsilon_{1} L f\left(x_{1}^{\prime}\right)+\sum_{j=2}^{k} \varepsilon_{j} \varphi_{j}\left(f\left(x_{j}^{\prime}\right)\right)\right\}\right] .
\end{aligned}
$$

By repeating this argument for $j=2,3, \ldots, k$, we obtain

$$
\begin{equation*}
\mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{j=1}^{k} \varepsilon_{j} \varphi_{j}\left(f\left(x_{j}^{\prime}\right)\right)\right] \leq L \mathbb{E}\left[\sup _{f \in \mathcal{F}} \sum_{j=1}^{k} \varepsilon_{j} f\left(x_{j}^{\prime}\right)\right] . \tag{14}
\end{equation*}
$$

Combining inequalities (13) and (14), we have the desired bound.

A. 2 Proof of Lemma 2

We prove the claim by induction on the number of layers m. It is known [Kakade et al., 2009] that $R_{k}\left(\mathcal{N}_{1}\right) \leq \sqrt{\frac{q}{k}} B$. Thus, the claim holds for the base case $m=1$. Now consider some $m>1$, and assume that the claim holds for $m-1$. We then have

$$
R_{k}\left(\mathcal{N}_{1}\right)=\mathbb{E}\left[\sup _{f \in \mathcal{N}_{m}} \frac{1}{k} \sum_{i=1}^{k} \varepsilon_{i} f\left(x_{i}^{\prime}\right)\right]
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are Rademacher variables. By the definition of \mathcal{N}_{m}, we may write the expression as

$$
\begin{aligned}
R_{k}\left(\mathcal{N}_{1}\right)=\mathbb{E}\left[\sup _{f_{1}, \ldots, f_{d} \in \mathcal{N}_{m-1}} \frac{1}{k} \sum_{i=1}^{n} \varepsilon_{i} \sum_{j=1}^{d} w_{j} \sigma\left(f_{j}\left(x_{i}^{\prime}\right)\right)\right] & =\mathbb{E}\left[\sup _{f_{1}, \ldots, f_{d} \in \mathcal{N}_{m-1}} \frac{1}{k} \sum_{j=1}^{d} w_{j} \sum_{i=1}^{k} \varepsilon_{i} \sigma\left(f_{j}\left(x_{i}^{\prime}\right)\right)\right] \\
& \leq B \mathbb{E}\left[\sup _{f \in \mathcal{N}_{m-1}} \frac{1}{k} \sum_{i=1}^{k} \varepsilon_{i} \sigma\left(f\left(x_{i}^{\prime}\right)\right)\right] \\
& =B R_{k}\left(\sigma \circ \mathcal{N}_{m-1}\right)
\end{aligned}
$$

where the inequality follows since $\|w\|_{1} \leq B$. Since the function σ is 1-Lipschitz continuous, following the proof of inequality (14), we have

$$
R_{k}\left(\sigma \circ \mathcal{N}_{m-1}\right) \leq R_{k}\left(\mathcal{N}_{m-1}\right) \leq \sqrt{\frac{q}{n}} B^{m}
$$

which completes the proof.

A. 3 Proof of Lemma 3

We prove the claim by induction on the number of layers m. If $m=1$, then f^{*} is a linear function and $\varphi\left(f^{*}\right) \in$ $\left[-B_{1}, B_{1}\right]^{n}$. Since $\varphi(g)$ minimizes the ℓ_{2}-distance to vector u, we have

$$
\begin{equation*}
\left\|\varphi(g)-\varphi\left(f^{*}\right)\right\|_{2} \leq\|\varphi(g)-u\|_{2}+\left\|\varphi\left(f^{*}\right)-u\right\|_{2} \leq 2\left\|\varphi\left(f^{*}\right)-u\right\|_{2} \tag{15}
\end{equation*}
$$

Since u is drawn uniformly from $[-B, B]^{k}$, with probability at least $\left(\frac{\epsilon}{4}\right)^{k}$ we have $\left\|\varphi\left(f^{*}\right)-u\right\|_{\infty} \leq \frac{\epsilon B}{2}$, and consequently

$$
\left\|\varphi(g)-\varphi\left(f^{*}\right)\right\|_{2} \leq \sqrt{k}\left\|\varphi(g)-\varphi\left(f^{*}\right)\right\|_{\infty} \leq \epsilon \sqrt{k} B
$$

which establishes the claim.

For $m>1$, assume that the claim holds for $m-1$. Our proof uses the following lemma:
Lemma 4 (Maurey-Barron-Jones lemma) Consider any subset G of any Hilbert space H such that $\|g\|_{H} \leq b$ for all $g \in G$. Then for any point v is in the convex hull of G, there is a point v_{s} in the convex hull of s points of G such that $\left\|v-v_{s}\right\|_{H}^{2} \leq b^{2} / s$.

See the paper by Pisier [1980] for a proof.
Recall that f^{*} / B is in the convex hull of $\sigma \circ \mathcal{N}_{m-1}$ and every function $f \in \sigma \circ \mathcal{N}_{m-1}$ satisfies $\|\varphi(f)\|_{2} \leq \sqrt{k}$. By Lemma 4, there exist s functions in \mathcal{N}_{m-1}, say $\widetilde{f}_{1}, \ldots, \widetilde{f}_{s}$, and a vector $w \in \mathbb{R}^{s}$ satisfying $\|w\|_{1} \leq B$ such that

$$
\left\|\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(\widetilde{f}_{j}\right)\right)-\varphi\left(f^{*}\right)\right\|_{2} \leq B \sqrt{\frac{k}{s}}
$$

Let $\varphi(\widetilde{f}):=\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(\widetilde{f}_{j}\right)\right)$. If we chose $s=\left\lceil\frac{1}{\epsilon^{2}}\right\rceil$, then we have

$$
\begin{equation*}
\left\|\varphi(\tilde{f})-\varphi\left(f^{*}\right)\right\|_{2} \leq \epsilon \sqrt{k} B \tag{16}
\end{equation*}
$$

Recall that the function g satisfies $g=\sum_{j=1}^{s} v_{j} \sigma \circ g_{j}$ for $g_{1}, \ldots, g_{s} \in \mathcal{N}_{m-1}$. Using the inductive hypothesis, we know that the following bound holds with probability at least p_{m-1}^{s} :

$$
\left\|\sigma\left(\varphi\left(g_{j}\right)\right)-\sigma\left(\varphi\left(\tilde{f}_{j}\right)\right)\right\|_{2} \leq\left\|\varphi\left(g_{j}\right)-\varphi\left(\widetilde{f}_{j}\right)\right\|_{2} \leq(2 m-3) \epsilon \sqrt{k} B^{m-1} \quad \text { for any } j \in[s]
$$

As a consequence, we have

$$
\begin{gather*}
\left\|\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(g_{j}\right)\right)-\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(\tilde{f}_{j}\right)\right)\right\|_{2} \leq \sum_{j=1}^{s}\left|w_{j}\right| \cdot\left\|\sigma\left(\varphi\left(g_{j}\right)\right)-\sigma\left(\varphi\left(\tilde{f}_{j}\right)\right)\right\|_{2} \\
\leq\|w\|_{1} \cdot \max _{j \in[s]}\left\{\left\|\sigma\left(\varphi\left(g_{j}\right)\right)-\sigma\left(\varphi\left(\widetilde{f}_{j}\right)\right)\right\|_{2}\right\} \leq(2 m-3) \sqrt{k} \epsilon B^{m} \tag{17}
\end{gather*}
$$

Finally, we bound the distance between $\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(g_{j}\right)\right)$ and $\varphi(g)$. Following the proof of inequality (15), we obtain

$$
\left\|\varphi(g)-\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(g_{j}\right)\right)\right\|_{2} \leq 2\left\|u-\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(g_{j}\right)\right)\right\|_{2}
$$

Note that $\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(g_{j}\right)\right) \in[-B, B]^{k}$ and u is uniformly drawn from $[-B, B]^{k}$. Thus, with probability at least $\left(\frac{\epsilon}{4}\right)^{k}$, we have

$$
\begin{equation*}
\left\|\varphi(g)-\sum_{j=1}^{s} w_{j} \sigma\left(\varphi\left(g_{j}\right)\right)\right\|_{2} \leq \epsilon \sqrt{k} B \tag{18}
\end{equation*}
$$

Combining inequalities (16), (17) and (18) and using the fact that $B \geq 1$, we have

$$
\left\|\varphi(g)-\varphi\left(f^{*}\right)\right\|_{\infty} \leq(2 m-1) \epsilon \sqrt{k} B^{m}
$$

with probability at least

$$
p_{m-1}^{s} \cdot\left(\frac{\epsilon}{4}\right)^{k}=\left(\frac{\epsilon}{4}\right)^{k\left(\frac{s\left(s^{m-1}-1\right)}{s-1}+1\right)}=\left(\frac{\epsilon}{4}\right)^{k\left(s^{m}-1\right) /(s-1)}=p_{m}
$$

which completes the induction.

B Proof of Theorem 2

Proof of Part (a)

We first prove $\widehat{f} \in \mathcal{N}_{m}$. Indeed, the definition of b_{T} implies

$$
\begin{equation*}
\sum_{t=1}^{T} \frac{B}{2 b_{T}}\left|\log \left(\frac{1-\mu_{t}}{1+\mu_{t}}\right)\right| \leq B \tag{19}
\end{equation*}
$$

Notice that $\widehat{f}=\sum_{t=1}^{T} \frac{B}{2 b_{T}} \log \left(\frac{1-\mu_{t}}{1+\mu_{t}}\right) \widehat{g}_{t}$, where $\widehat{g}_{t} \in \mathcal{N}_{m-1}$. Thus, combining inequality (19) with the definition of \mathcal{N}_{m} implies $\widehat{f} \in \mathcal{N}_{m}$. The time complexity bound is obtained by plugging in the bound from Theorem 1.

It remains to establish the correctness of \widehat{f}. We may write any function $f \in \mathcal{N}_{m}$ as

$$
f(x)=\sum_{j=1}^{d} w_{j} \sigma\left(f_{j}(x)\right) \quad \text { where } w_{j} \geq 0 \text { for all } j \in[d] .
$$

The constraints $w_{j} \geq 0$ are always satisfiable, otherwise since σ is an odd function we may write $w_{j} \sigma\left(f_{j}(x)\right)$ as $\left(-w_{j}\right) \sigma\left(-f_{j}(x)\right)$ so that it satisfies the constraint. The function f_{j} or $-f_{j}$ belongs to the class \mathcal{N}_{m-1}. We use the following result by Shalev-Shwartz and Singer [2010]: Assume that there exists $f^{*} \in \mathcal{N}_{m}$ which separate the data with margin γ. Then for any set of non-negative importance weights $\left\{\alpha_{i}\right\}_{i=1}^{n}$, there is a function $f \in \mathcal{N}_{m-1}$ such that $\sum_{i=1}^{n} \alpha_{i} \sigma\left(-y_{i} f\left(x_{i}\right)\right) \leq-\frac{\gamma}{B}$. This implies that, for every $t \in[T]$, there is $f \in \mathcal{N}_{m-1}$ such that

$$
G_{t}(f)=\sum_{i=1}^{n} \alpha_{t, i} \sigma\left(-y_{i} f\left(x_{i}\right)\right) \leq-\frac{\gamma}{B}
$$

Hence, with probability at least $1-\delta$, the sequence μ_{1}, \ldots, μ_{T} satisfies the relation

$$
\begin{equation*}
\mu_{t}=G_{t}\left(\widehat{g}_{t}\right) \leq-\frac{\gamma}{2 B} \quad \text { for every } t \in[T] \tag{20}
\end{equation*}
$$

Algorithm 2 is based on running AdaBoost for T iterations. The analysis of AdaBoost Schapire and Singer [1999] guarantees that for any $\beta>0$, we have

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} e^{-\beta} \mathbb{I}\left[-y_{i} f_{T}\left(x_{i}\right) \geq-\beta\right] & \leq \frac{1}{n} \sum_{i=1}^{n} e^{-y_{i} f_{T}\left(x_{i}\right)} \\
& \leq \exp \left(-\frac{\sum_{t=1}^{T} \mu_{t}^{2}}{2}\right)
\end{aligned}
$$

Thus, the fraction of data that cannot be separated by f_{T} with margin β is bounded by $\exp \left(\beta-\frac{\sum_{t=1}^{T} \mu_{t}^{2}}{8 B^{2}}\right)$. If we choose

$$
\beta:=\frac{\sum_{t=1}^{T} \mu_{t}^{2}}{2}-\log (n+1)
$$

then this fraction is bounded by $\frac{1}{n+1}$, meaning that all points are separated with margin β. Recall that \widehat{f} is a scaled version of f_{T}. As a consequence, all points are separated by \widehat{f} with margin

$$
\frac{B \beta}{b_{T}}=\frac{\sum_{t=1}^{T} \mu_{t}^{2}-2 \log (n+1)}{\frac{1}{B} \sum_{t=1}^{T} \log \left(\frac{1-\mu_{t}}{1+\mu_{t}}\right)}
$$

Since $\mu_{t} \geq-1 / 2$, it is easy to verify that $\log \left(\frac{1-\mu_{t}}{1+\mu_{t}}\right) \leq 4\left|\mu_{t}\right|$. Using this fact and Jensen's inequality, we have

$$
\frac{B \beta}{b_{T}} \geq \frac{\left(\sum_{t=1}^{T}\left|\mu_{t}\right|\right)^{2} / T-2 \log (n+1)}{\frac{4}{B} \sum_{t=1}^{T}\left|\mu_{t}\right|}
$$

The right-hand side is a monotonically increasing function of $\sum_{t=1}^{T}\left|\mu_{t}\right|$. Plugging in the bound in (20), we find that

$$
\frac{B \beta}{b_{T}} \geq \frac{\gamma^{2} T /\left(4 B^{2}\right)-2 \log (n+1)}{2 \gamma T / B^{2}}
$$

Plugging in $T=\frac{16 B^{2} \log (n+1)}{\gamma^{2}}$, some algebra shows that the right-hand side is equal to $\gamma / 16$ which completes the proof.

Proof of Part (b)

Consider the empirical loss function

$$
\ell(f):=\frac{1}{n} \sum_{i=1}^{n} h\left(-y_{i} f\left(x_{i}\right)\right)
$$

where $h(t):=\max \{0,1+16 t / \gamma\}$. Part (a) implies that $\ell(\widehat{f})=0$ with probability at least $1-\delta$. Note that h is $(16 / \gamma)-$ Lipschitz continuous; the Rademacher complexity of \mathcal{N}_{m} with respect to n i.i.d. samples is bounded by $\sqrt{q / n} B^{m}$ (see Lemma 2). By the classical Rademacher generalization bound [Bartlett and Mendelson, 2003, Theorem 8 and Theorem 12], if (x, y) is randomly sampled form \mathbb{P}, then with probability at least $1-\delta$ we have

$$
\mathbb{E}[h(-y \widehat{f}(x))] \leq \ell(\widehat{f})+\frac{32 B^{m}}{\gamma} \cdot \sqrt{\frac{q}{n}}+\sqrt{\frac{8 \log (2 / \delta)}{n}} .
$$

Thus, in order to bound the generalization loss by ϵ with probability $1-2 \delta$, it suffices to choose $n=\operatorname{poly}(1 / \epsilon, \log (1 / \delta))$. Since $h(t)$ is an upper bound on the zero-one loss $\mathbb{I}[t \geq 0]$, we obtain the claimed bound.

C Proof of Corollary 1

The first step is to use the improper learning algorithm [Zhang et al., 2015, Algorithm 1] to learn a predictor \widehat{g} that minimizes the following risk function:

$$
\ell(g):=\mathbb{E}[\phi(-\widetilde{y} g(x))] \quad \text { where } \quad \phi(t):= \begin{cases}-\frac{2 \eta}{1-2 \eta}+\frac{\eta(t+\gamma)}{(1-\eta)(1-2 \eta) \gamma} & \text { if } t \leq-\gamma, \\ -\frac{2 \eta}{1-2 \eta}+\frac{t+\gamma}{(1-2 \eta) \gamma} & \text { if } t>-\gamma .\end{cases}
$$

Since $\eta<1 / 2$, the function ϕ is convex and Lipschitz continuous. The activation function $\operatorname{erf}(x)$ satisfies the condition of [Zhang et al., 2015, Theorem 1]. Thus, with sample complexity poly $(1 / \tau, \log (1 / \delta))$ and time complexity $\operatorname{poly}(d, 1 / \tau, \log (1 / \delta))$, the resulting predictor \widehat{g} satisfies

$$
\ell(\widehat{g}) \leq \ell\left(f^{*}\right)+\tau \quad \text { with probability at least } 1-\delta / 3
$$

By the definition of \widetilde{y} and ϕ, it is straightforward to verify that

$$
\begin{equation*}
\ell(g)=\mathbb{E}[(1-\eta) \phi(-y g(x))+\eta \phi(y g(x))]=\mathbb{E}[\psi(-y g(x))] \tag{21}
\end{equation*}
$$

where

$$
\psi(t):= \begin{cases}0 & \text { if } t<-\gamma \\ 1+t / \gamma & \text { if }-\gamma \leq t \leq \gamma \\ 2+\frac{2 \eta^{2}-2 \eta+1}{(1-\eta)(1-2 \eta) \gamma}(t-\gamma) & \text { if } t>\gamma\end{cases}
$$

Recall that $y f^{*}(x) \geq \gamma$ almost surely. From the definition of ψ, we have $\ell\left(f^{*}\right)=0$, so that $\ell(\widehat{g}) \leq \ell\left(f^{*}\right)+\tau$ implies $\ell(\widehat{g}) \leq \tau$. Also note that $\psi(t)$ upper bounds the indicator $\mathbb{I}[t \geq 0]$, so that the right-hand side of equation (21) provides an upper bound on the probability $\mathbb{P}(\operatorname{sign}(g(x)) \neq y)$. Consequently, defining the classifier $\widehat{h}(x):=\operatorname{sign}(g(x))$, then we have

$$
\mathbb{P}(\widehat{h}(x) \neq y) \leq \ell(\widehat{g}) \leq \tau \quad \text { with probability at least } 1-\delta / 3
$$

Given the classifier \widehat{h}, we draw another random dataset of n points taking the form $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$. If $\tau=\frac{\delta}{3 n}$, then this dataset is equal to $\left\{\left(x_{i}, \widehat{h}\left(x_{i}\right)\right)\right\}_{i=1}^{n}$ with probability at least $1-2 \delta / 3$. Let the BoostNet algorithm take $\left\{\left(x_{i}, \widehat{h}\left(x_{i}\right)\right)\right\}_{i=1}^{n}$ as its input. With sample size $n=\operatorname{poly}(1 / \epsilon, \log (1 / \delta))$, Theorem 2 implies that the algorithm learns a neural network \widehat{f} such that $\mathbb{P}(\operatorname{sign}(\widehat{f}(x)) \neq y) \leq \epsilon$ with probability at least $1-\delta$. Plugging in the assignments of n and τ, the overall sample complexity is poly $(1 / \epsilon, 1 / \delta)$ and the overall computation complexity is poly $(d, 1 / \epsilon, 1 / \delta)$.

D Proof of Proposition 1

The following MAX-2-SAT problem is known to be NP-hard [Papadimitriou and Yannakakis, 1991].
Definition 1 (MAX-2-SAT) Given n literals $\left\{z_{1}, \ldots, z_{n}\right\}$ and d clauses $\left\{c_{1}, \ldots, c_{d}\right\}$. Each clause is the conjunction of two arguments that may either be a literal or the negation of a literal *. The goal is to determine the maximum number of clauses that can be simultaneously satisfied by an assignment.

We consider the loss function:

$$
\begin{equation*}
\left.\left.\ell(w):=-\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,\left\langle w, x_{i}\right\rangle\right)\right\}=\frac{1}{n} \sum_{i=1}^{n} \min \left\{0,\left\langle w,-x_{i}\right\rangle\right)\right\} \tag{22}
\end{equation*}
$$

It suffices to prove that: it is NP-hard to compute a vector $\widehat{w} \in \mathbb{R}^{d}$ such that $\|\widehat{w}\|_{2} \leq 1$ and

$$
\begin{equation*}
\ell(\widehat{w}) \leq \ell\left(w^{*}\right)+\frac{1}{(2 n+2) d} \tag{23}
\end{equation*}
$$

To prove this claim, we reduce MAX-2-SAT to the minimization problem. Given a MAX-2-SAT instance, we construct a loss function ℓ so that if any algorithm computes a vector \widehat{w} satisfying inequality (23), then the vector \widehat{w} solves MAX-2-SAT.

First, we construct $n+1$ vectors in \mathbb{R}^{d}. Define the vector $x_{0}:=\frac{1}{\sqrt{d}} \mathbf{1}_{d}$, and for $i=1, \ldots, n$, the vectors $x_{i}:=\frac{1}{\sqrt{d}} x_{i}^{\prime}$, where $x_{i}^{\prime} \in \mathbb{R}^{d}$ is given by

$$
x_{i j}^{\prime}= \begin{cases}1 & \text { if } z_{i} \text { appears in } c_{j} \\ -1 & \text { if } \neg z_{i} \text { appears in } c_{j} \\ 0 & \text { otherwise }\end{cases}
$$

[^0]It is straightforward to verify that that $\left\|x_{i}\right\|_{2} \leq 1$ for any $i \in\{0,1, \ldots, n\}$. We consider the following minimization problem which is special case of the formulation (22):

$$
\ell(w)=\frac{1}{2 n+2} \sum_{i=0}^{n}\left(\min \left\{0,\left\langle w, x_{i}\right\rangle\right\}+\min \left\{0,\left\langle w,-x_{i}\right\rangle\right\}\right) .
$$

The goal is to find a vector $w^{*} \in \mathbb{R}^{d}$ such that $\left\|w^{*}\right\|_{2} \leq 1$ and it minimizes the function $\ell(w)$.
Notice that for every index i, at most one of $\min \left\{0,\left\langle w, x_{i}\right\rangle\right\}$ and $\min \left\{0,\left\langle w,-x_{i}\right\rangle\right\}$ is non-zero. Thus, we may write the minimization problem as

$$
\begin{align*}
\min _{\|w\|_{2} \leq 1}(2 n+2) \ell(w)=\min _{\|w\|_{2} \leq 1} \sum_{i=0}^{n}\left(\min _{\alpha_{i} \in\{-1,1\}}\left\langle w, \alpha_{i} x_{i}\right\rangle\right) & =\min _{\alpha \in\{-1,1\}^{n+1}} \min _{\|w\|_{2} \leq 1} \sum_{i=0}^{n}\left\langle w, \alpha_{i} x_{i}\right\rangle \\
& =\min _{\alpha \in\{-1,1\}^{n+1}}-\left\|\sum_{i=0}^{n} \alpha_{i} x_{i}\right\|_{2} \\
& =-\left(\max _{\alpha \in\{-1,1\}^{n+1}} \sum_{j=1}^{d}\left(\sum_{i=0}^{n} \alpha_{i} x_{i j}\right)^{2}\right)^{1 / 2} \tag{24}
\end{align*}
$$

We claim that maximizing $\sum_{j=1}^{d}\left(\sum_{i=0}^{n} \alpha_{i} x_{i j}\right)^{2}$ with respect to α is equivalent to maximizing the number of satisfiable clauses. In order to prove this claim, we consider an arbitrary assignment to α to construct a solution to the MAX-2SAT problem. For $i=1,2, \ldots, n$, let $z_{i}=$ true if $\alpha_{i}=\alpha_{0}$, and let $z_{i}=$ false if $\alpha_{i}=-\alpha_{0}$. With this assignment, it is straightforward to verify the following: if the clause c_{j} is satisfied, then the value of $\sum_{i=0}^{n} \alpha_{i} x_{i j}$ is either $3 / \sqrt{d}$ or $-3 / \sqrt{d}$. If the clause is not satisfied, then the value of the expression is either $1 / \sqrt{d}$ or $-1 / \sqrt{d}$. To summarize, we have

$$
\begin{equation*}
\sum_{j=1}^{d}\left(\sum_{i=0}^{n} \alpha_{i} x_{i j}\right)^{2}=1+\frac{8 \times(\# \text { of satisfied clauses })}{d} \tag{25}
\end{equation*}
$$

Thus, solving problem (24) determines the maximum number of satisfiable clauses:

$$
(\max \# \text { of satisfied clauses })=\frac{d}{8}\left(\left(\min _{\|w\|_{2} \leq 1}(2 n+2) \ell(w)\right)^{2}-1\right)
$$

By examining equation (24) and (25), we find that the value of $(2 n+2) \ell(w)$ ranges in $[-3,0]$. Thus, the MAX-2-SAT number is exactly determined if $(2 n+2) \ell(\widehat{w})$ is at most $1 / d$ larger than the optimal value. This optimality gap is guaranteed by inequality (23), which completes the reduction.

E Proof of Proposition 2

We reduce the PAC learning of intersection of T halfspaces to the problem of learning a neural network. Assume that $T=\Theta\left(d^{\rho}\right)$ for some $\rho>0$. We claim that for any number of pairs taking the form $\left(x, h^{*}(x)\right)$, there is a neural network $f^{*} \in \mathcal{N}_{2}$ that separates all pairs with margin γ, and moreover that the margin is bounded as $\gamma=1 / \operatorname{poly}(d)$.

To prove the claim, recall that $h^{*}(x)=1$ if and only if $h_{1}(x)=\cdots=h_{T}(x)=1$ for some $h_{1}, \ldots, h_{T} \in H$. For any h_{t}, the definition of H implies that there is a $\left(w_{t}, b_{t}\right)$ pair such that if $h_{t}(x)=1$ then $w_{t}^{T} x-b_{t}-1 / 2 \geq 1 / 2$, otherwise $w_{t}^{T} x-b_{t}-1 / 2 \leq-1 / 2$. We consider the two possible choices of the activation function:

- Piecewise linear function: If $\sigma(x):=\min \{1, \max \{-1, x\}\}$, then let

$$
g_{t}(x):=\sigma\left(c\left(w_{t}^{T} x-b_{t}-1 / 2\right)+1\right)
$$

for some quantity $c>0$. The term inside the activation function can be written as $\left\langle\widetilde{w}, x^{\prime}\right\rangle$ where

$$
\widetilde{w}=\left(c \sqrt{2 d+2} w_{t},-c \sqrt{2 d+2}\left(b_{t}+1 / 2\right), \sqrt{2}\right) \quad \text { and } \quad x^{\prime}=\left(\frac{x}{\sqrt{2 d+2}}, \frac{1}{\sqrt{2 d+2}}, \frac{1}{\sqrt{2}}\right)
$$

Note that $\left\|x^{\prime}\right\|_{2} \leq 1$, and with a sufficiently small constant $c=1 / \operatorname{poly}(d)$ we have $\|\widetilde{w}\|_{2} \leq 2$. Thus, $g_{t}(x)$ is the output of a one-layer neural network. If $h_{t}(x)=1$, then $g_{t}(x)=1$, otherwise $g_{t}(x) \leq 1-c / 2$. Now consider the two-layer neural network $f(x):=c / 4-T+\sum_{t=1}^{T} g_{t}(x)$. If $h^{*}(x)=1$, then we have $g_{t}(x)=1$ for every $t \in[T]$ which implies $f(x)=c / 4$. If $h^{*}(x)=-1$, then we have $g_{t}(x) \leq 1-c / 2$ for at least one $t \in[T]$ which implies $f(x) \leq-c / 4$. Thus, the neural network f separates the data with margin $c / 4$. We normalize the edge weights on the second layer to make f belong to \mathcal{N}_{2}. After normalization, the network still has margin $1 / \operatorname{poly}(d)$.

- ReLU function: if $\sigma(x):=\max \{0, x\}$, then let $g_{t}(x):=\sigma\left(-c\left(w_{t}^{T} x-b_{t}-1 / 2\right)\right)$ for some quantity $c>0$. We may write the term inside the activation function as $\left\langle\widetilde{w}, x^{\prime}\right\rangle$ where $\widetilde{w}=\left(-c \sqrt{d+1} w_{t}, c \sqrt{d+1}\left(b_{t}+1 / 2\right)\right)$ and $x^{\prime}=(x, 1) / \sqrt{d+1}$. It is straightforward to verify that $\left\|x^{\prime}\right\|_{2} \leq 1$, and with a sufficiently small $c=1 / \operatorname{poly}(d)$ we have $\|\widetilde{w}\|_{2} \leq 2$. Thus, $g_{t}(x)$ is the output of a one-layer neural network. If $h_{t}(x)=1$, then $g_{t}(x)=0$, otherwise $g_{t}(x) \geq c / 2$. Let $f(x):=c / 4-\sum_{t=1}^{T} g_{t}(x)$, then this two-layer neural network separates the data with margin $c / 4$. After normalization the network belongs to \mathcal{N}_{2} and it still separates the data with margin $1 / \operatorname{poly}(d)$.

To learn the intersection of T halfspaces, we learn a neural network based on n i.i.d. points taking the form $\left(x, h^{*}(x)\right)$. Assume that the neural network is efficiently learnable. Since there exists $f^{*} \in \mathcal{N}_{m}$ which separates the data with margin $\gamma=1 / \operatorname{poly}(d)$, we can learn a network \widehat{f} in poly $(d, 1 / \epsilon, 1 / \delta)$ sample complexity and time complexity, and satisfies $\mathbb{P}\left(\operatorname{sign}(\widehat{f}(x)) \neq h^{*}(x)\right) \leq \epsilon$ with probability $1-\delta$. It contradicts with the assumption that the intersection of T halfspaces is not efficiently learnable.

References

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. The Journal of Machine Learning Research, 3:463-482, 2003.
S. Kakade and A. Tewari. Lecture note: Rademacher composition and linear prediction. 2008.
S. M. Kakade, K. Sridharan, and A. Tewari. On the complexity of linear prediction: Risk bounds, margin bounds, and regularization. In Advances in Neural Information Processing Systems, volume 21, pages 793-800, 2009.
M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and processes, volume 23. Springer Science \& Business Media, 2013.
C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Journal of computer and system sciences, 43(3):425-440, 1991.
G. Pisier. Remarques sur un résultat non publié de B. Maurey. Séminaire Analyse Fonctionnelle, pages 1-12, 1980.
R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms. Machine Learning, 80(2-3):141-163, 2010.
Y. Zhang, J. D. Lee, and M. I. Jordan. ℓ_{1}-regularized neural networks are improperly learnable in polynomial time. arXiv:1510.03528, 2015.

[^0]: * In the standard MAX-2-SAT setup, each clause is the disjunction of two literals. However, any disjunction clause can be reduced to three conjunction clauses. In particular, a clause $z_{1} \vee z_{2}$ is satisfied if and only if one of the following is satisfied: $z_{1} \wedge z_{2}, \neg z_{1} \wedge z_{2}, z_{1} \wedge \neg z_{2}$.

