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Supplemental Material for “Online Nonnegative
Matrix Factorization with General Divergences”

S-1. RELATED WORKS

A. Online Matrix Factorization Beyond the Squared-`2 Loss

In the literature of online matrix factorization [1]–[5], it is assumed that i.i.d. (independent and identically distributed) data
samples {vt}t∈N (drawn from a common distribution P) arrive in a streaming manner, and the storage space does not scale
with time. Under such setting, we aim to solve the following stochastic program, i.e., minimize the expected loss

min
W∈C

Ev∼P[˜̀(v,W)], (S-1)

where v is the (random) data vector with distribution P, W the basis matrix constrained in the set C and ˜̀ the loss function
with respect to (w.r.t.) a single data sample v. Most of the literature on online matrix factorization (including online NMF
[2], online dictionary learning [1] and online low-rank representation [5]) focus on the case where the data fidelity term is the
squared `2 loss, i.e., ˜̀ is defined as ˜̀(v,W) , min

h∈H
‖v −Wh‖2 + λψ(h), (S-2)

where h is the coefficient vector constrained in the set H and λψ(h) is some regularizer on h with penalty parameter λ > 0.
However, the literature with other forms of data fidelity terms is relative scarce. Among them, some works on real-time music
signal processing [6], [7] consider minimizing the IS divergence in an online manner. Other works on visual tracking [8], [9]
consider the online minimization of the Huber loss. However, almost all of methods proposed in these works are heuristic in
nature, in the sense that the global convergence of the sequence (or any subsequence) of the dictionaries {Wt}t∈N cannot be
guaranteed (either a.s. or with high probability). Furthermore, since most of these works are conducted on an ad hoc basis,
the approaches therein cannot be easily generalized to other divergences in a straightforward manner. As different divergences
are suited to different applications in practice (see Section 2.1), a unified framework is needed to systematically study the
convergence properties of NMF for various divergences.

B. Stochastic Projected Subgradient Descent (SPSGD) Applied to Online Matrix Factorization

As discussed in Section S-1-A, only differentiable data fidelity terms (the IS divergence and the Huber loss) are considered
in the literature of online matrix factorization. Thus, only the stochastic projected gradient descent (SPGD) method has been
employed in the prior works [1], [2], [8]–[10]. In particular, the efficacy of such method with the squared-`2 loss and the
Huber loss has been empirically verified in [1] and [8], [9] respectively. In [10], SPGD was employed on online dictionary
learning over distributed models, with both squared-`2 loss and the Huber loss. In [2], the authors leverage the robust stochastic
approximation method [11], a variant of SPGD, and consider both the squared `2 loss and the IS divergence. However, for
all the abovementioned works, convergence guarantees on the sequence (or any subsequence) of the dictionaries {Wt}t∈N
generated by the SPGD algorithm have not been established.

S-2. ALGORITHMS

A. Implementations of ΠC and ΠH

The projection operator ΠC in (5) can be implemented in a straightforward manner if the data point lies in C′ , {W ∈
RF×K+ | ‖Wi:‖1 ≥ ε,∀ i ∈ [F ]}. Otherwise, if there exists i ∈ [F ] such that ‖Wi:‖1 < ε, ΠC amounts to projecting Wi: onto
the probability simplex in RK+ . Efficient algorithms have been extensively discussed in the literature, for e.g., [12, Section 3].
Since ε < 1, the constraint wij ≤ 1, for any j ∈ [K] is automatically satisfied after such projection. The projection onto the
set H simply involves entrywise thresholding.

B. Choice of step sizes {βkt }k∈N in Algorithm 2

For the divergences d(·‖·) ∈ D1, the corresponding function dt is differentiable on H and ∇dt is Lipschitz on H with
Lipschitz constant Lt > 0. For these cases, there are two ways to choose the step sizes {βkt }k∈N such that the sequence of
iterates {hkt }k∈N converges to the set of critical points of (4) as k →∞.1 The first approach is the well-known Armijo rule,
which applies to all the continuously differentiable gt (see [13, Theorem 2.4] for details). The implementation of Armijo rule

1Given a finite-dimensional Banach space X , a sequence (xn) in X is said to converge to a set A ⊆ X if limn→∞ infa∈A ‖xn − a‖ = 0.
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Algorithm S-1 Armijo rule for step size selection
Input: Dictionary matrix Wt−1, data sample vt, coefficient vector hkt , maximum number of iterations q
Initialize α ∈ (0, 0.5), γ ∈ (0, 1), i := 0, ξ0 := 1
while dt(hkt − ξi∇dt(hkt )) > dt(h

k
t )− αξi‖∇dt(hkt )‖2 and i ≤ q

ξi+1 := γξi, i := i+ 1

end
Output: Final step size βkt , ξ

i

is shown in Algorithm S-1, where we set α = 0.01 and γ = 0.1 following the suggestions in [14]. We also set q = 10.
The second approach is to use constant step sizes, i.e., βkt = βt, for all k ∈ N. If βt ∈ (0, 1/Lt], then Algorithm 2 can be
interpreted as an MM algorithm [15], and the convergence is guaranteed by [16, Theorem 1]. (In this work, we set βt = 1/Lt
for simplicity.) We now provide some guidelines for choosing between these two approaches. The second approach is suitable
for the functions ∇dt whose smallest Lipschitz constant on any subset U ⊆ H,2 L∗t (U) does not vary much across all the
subsets of H. Examples of the corresponding divergences include the Huber loss and the squared `2 loss. However, the gradients
∇dt corresponding to some other divergences (e.g., the IS and the KL divergences) in general have much larger L∗t (U) when
U is in the vicinity of bdH than elsewhere. Since Lt ≥ supU⊆H L

∗
t (U), the constant step size βt will be very small even

when hkt lies in the “center” of H, where dt is relatively smooth. Under such scenario, it is more appropriate to use Armijo
rule especially when the evaluation of dt is not expensive. Now we consider the divergences d(·‖·) 6∈ D1, i.e., the `1 and `2
losses. For the `2 loss, the first approach above is still applicable since ‖·‖ is non-differentiable only at 0. For the `1 loss, we
employ the modified Polyak’s step size policy with tolerance parameter δtol (set to 0.01 in this work) [17], [18, Section 6.3.1]
due to efficiency considerations. Although this step size policy can only guarantee lim infk→∞ dt(h

k
t ) ≤ minh∈H dt(h) + δtol,

as shown in Section 6, it performs reasonably well empirically.

S-3. CONVERGENCE ANALYSIS

A. Proof of Lemma 4

First we rewrite (11) as
d

ds
W (s) = −∇f(W (s)) + z(s), W (0) = W0, s ≥ 0, (S-3)

where
z(s) , πC

[
W (s),−∇f(W (s))

]
+∇f(W (s)), s ∈ R+. (S-4)

From Lemma 3 and Lemma S-11, there exists an almost sure set A ∈ Ω such that for each ω ∈ A, {W t(ω, ·)}t∈N and
{Zt(ω, ·)}t∈N are asymptotically equicontinuous on R+. Due to the compactness of C, {W t(ω, ·)}t∈N and {Zt(ω, ·)}t∈N are
also uniformly bounded. Fix S ∈ (0,∞). By the (generalized) Arzelà-Ascoli Theorem (see Lemma S-13), there exists a
sequence {tk}k∈N such that tk ↑ ∞, a continuous W (ω, ·) and a continuous Z(ω, ·) such that W tk(ω, ·) u−→ W (ω, ·) and
Ztk(ω, ·) u−→ Z(ω, ·) on [0, S]. (Note that {tk}k∈N, W (ω, ·) and Z(ω, ·) may depend on S.) Define

G(s) , −
∫ s

0

∇f
(
W (τ)

)
dτ, s ∈ [0, S]. (S-5)

We now show Gtk(ω, ·) u−→ G(ω, ·) on [0, S]. By Lemma S-12 and continuity of ∇f , we have ∇f(W tk (ω, ·)) u−→ ∇f
(
W (ω, ·)

)
on [0, S]. Thus

lim
t→∞

sup
s∈[0,S]

∥∥Gtk(ω, s)−G(ω, s)
∥∥ ≤ lim

t→∞
sup
s∈[0,S]

∫ s

0

∥∥∇f(W (ω, τ))−∇f(W tk(ω, τ))
∥∥ dτ

≤ S lim
t→∞

sup
s∈[0,S]

∥∥∇f(W (ω, s))−∇f(W tk(ω, s))
∥∥

= 0.

From Lemma 3, we also have ∆tk
1 (ω, ·) u−→ 0 and N tk(ω, ·) u−→ 0 on [0, S]. Therefore, from (8), we have

W (ω, s) = W (ω, 0)−
∫ s

0

∇f
(
W (ω, τ)

)
dτ + Z(ω, s), s ∈ [0, S]. (S-6)

2For any t ∈ N, the smallest Lipschitz constant of ∇dt on U , L∗t (U) , inf{L | ‖∇dt(h1)−∇dt(h2)‖ ≤ L ‖h1 − h2‖ , ∀h1,h2 ∈ U}.
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Thus, to show
{
W (ω, ·), Z(ω, ·)

}
satisfies (the integral form) of (S-3) (on [0, S]), it remains to show Z(ω, s) =

∫ s
0
z(τ) dτ ,

s ∈ [0, S]. By the definition of {Zt(ω, ·)}t∈N, we have Z(ω, 0) = 0. Also, by the closedness of C, we have W (ω, s) ∈ C, for
all s ≥ 0. First we define the inward normal set at W ∈ C, N (W) as

N (W) ,

{{
N ∈ RF×K | ‖N‖ ≤M, 〈N,W′ −W〉 ≥ 0, ∀W′ ∈ C

}
, W ∈ bd C{

0 ∈ RF×K
}
, W ∈ int C

. (S-7)

From (S-7), we notice that N (W) is compact and convex for any W ∈ C. By the definition of Zt(ω, ·), it is also obvious
that for any t ∈ N and s ≥ 0, Zt(ω, s) ∈ N (W t(ω, s)).

By Lemma S-14, it suffices to show W (ω, ·) is Lipschitz on [0, S] and for any τ ∈ [0, S]

1) Z(ω, τ) = 0 if W (ω, s) ∈ int C for almost all s ∈ [0, τ ] (in the sense of Lebesgue measure),
2) Z(ω, τ) ∈ conv

[⋃
s∈[0,τ ]N

(
W (ω, s)

)]
.

First, we show Z(ω, ·) is Lipschitz on [0, S]. By Lemma 3, we have for any s0, s1 ∈ [0, S],∥∥Z(ω, s0)− Z(ω, s1)
∥∥ = lim

k→∞

∥∥Ztk(ω, s0)− Ztk(ω, s1)
∥∥

≤ lim
k→∞

∥∥Y tk(ω, s0)− Y tk(ω, s1)
∥∥+

∥∥∆tk
2 (ω, s0)−∆tk

2 (ω, s1)
∥∥

≤ lim
k→∞

∥∥∥∥∫ s1

s0

Ztk(ω, τ) dτ

∥∥∥∥+ 2 sup
s∈R+

∥∥∆tk
2 (ω, s)

∥∥
≤ lim
k→∞

|s0 − s1| sup
τ∈[s0,s1]

∥∥Ztk(ω, τ)
∥∥

≤M |s0 − s1| .

Since ∇f
(
W (ω, ·)

)
is bounded on [0, S], by (S-6), we conclude W (ω, ·) is Lipschitz on [0, S]. Next, since W (ω, s) ∈ int C for

almost all s ∈ [0, τ ], there exists {sn}n∈N in [0, τ ] such that sn ↑ τ and W (ω, sn) ∈ int C for all n ∈ N. Hence Z(ω, sn) = 0
for all n ∈ N. The continuity of Z(ω, ·) implies Z(ω, τ) = 0. To show the last claim, we leverage the upper semicontinuity
of the correspondence N (see Definition S-2). We first show N is upper semicontinuous on C by Lemma S-17. It suffices to
show ⋂

δ>0

conv

 ⋃
W′∈Bδ(W)

N (W′)

 ⊆ N (W), ∀W ∈ C, (S-8)

where Bδ(W) , {W′ ∈ C | ‖W −W′‖ < δ}. Suppose (S-8) is false, then for any δ > 0, there exists W0 ∈ C and N0

such that N0 ∈ conv
(⋃

W′∈Bδ(W0)N (W′)
)

and N0 6∈ N (W0). For any ε > 0, there exists N′ ∈ Bε(N0), λ ∈ [0, 1] and
W1,W2 ∈ Bδ(W0) such that N′ = λN1 + (1− λ)N2, where Ni ∈ N (Wi), i = 1, 2. Hence for any W′ ∈ C,

〈N0,W
′ −W0〉 = 〈N′,W′ −W0〉+ 〈N0 −N′,W′ −W0〉

= λ 〈N1,W
′ −W0〉+ (1− λ) 〈N2,W

′ −W0〉+ 〈N0 −N′,W′ −W0〉
= λ 〈N1,W

′ −W1〉+ λ 〈N1,W1 −W0〉+ (1− λ) 〈N2,W
′ −W2〉

+ (1− λ) 〈N2,W2 −W0〉+ 〈N0 −N′,W′ −W0〉
≥ −λ ‖N1‖ ‖W1 −W0‖ − (1− λ) ‖N2‖ ‖W2 −W0‖ − ‖N0 −N′‖ ‖W′ −W0‖
≥ −λδ ‖N1‖ − (1− λ)δ ‖N2‖ − ε ‖W′ −W0‖
≥ −(δM + εdiam C),

where diam C , maxX,Y∈C ‖X−Y‖. The compactness of C implies diam C < ∞. Let both δ → 0 and ε → 0 we have
〈N0,W

′ −W0〉 ≥ 0, for any W′ ∈ C. This contradicts N0 6∈ N (W0). Thus we conclude that N is upper semicontinuous
on C. Since N is compact-valued, G(N ) is closed by Lemma S-16. Again, take a sequence {sn}n∈N in [0, τ ] such that
sn ↑ τ . For any n ∈ N, since Ztk(ω, sn) → Z(ω, sn), Ztk(ω, sn) ∈ N (W tk(ω, sn)) and W tk(ω, sn) → W (ω, sn), by
the closedness of G(N ), we have Z(ω, sn) ∈ N (W (ω, sn)). Since Z(ω, sn) → Z(ω, τ), W (ω, sn) → W (ω, τ), we have
Z(ω, τ) ∈ N (W (ω, τ)) ⊆ conv

[⋃
s∈[0,τ ]N

(
W (ω, s)

)]
.

Now, fix a sequence {Sn}n∈N ⊆ (0,∞) such that Sn ↑ ∞, and let
{
Wn(ω, ·), Zn(ω, ·)

}
be the (continuous) limit functions

corresponding to Sn. Fix i ∈ N. For any Si < Sj , there exist
{
W j(ω, ·), Zk(ω, ·)

}
such that W i(ω, ·) = W j(ω, ·) and

Zi(ω, ·) = Zj(ω, ·) on [0, Si]. Thus there exists {tk}k∈N such that W tk(ω, ·) u−→W∞(ω, ·) and Ztk(ω, ·) u−→ Z∞(ω, ·) on R+.
Moreover, the continuous limit functions

{
W∞(ω, ·), Z∞(ω, ·)

}
satisfy (S-3) on R+.

The above implies the solution set of (S-3) is nonempty. Moreover, the compactness of C implies the limit set of (S-3),
L(−∇f, C,W0) 6= ∅. For any convergent subsequence {Wtl(ω)}l∈N, there exist a non-decreasing sequence {t′l}l∈N ⊆ {tk}k∈N
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with t′l ↑ ∞ and {τl}l∈N ↑ ∞ such that tl = m(τl + st′l), for all l ∈ N. Therefore,

lim
l→∞

dist
(
Wtl(ω),L(−∇f, C,W0)

)
= lim
l→∞

inf
W∈L(−∇f,C,W0)

∥∥∥W t′l(ω, τl)−W
∥∥∥

≤ lim
l→∞

inf
W∈L(−∇f,C,W0)

∥∥∥W t′l(ω, τl)−W∞(ω, τl)
∥∥∥+

∥∥W∞(ω, τl)−W
∥∥

≤ lim
l→∞

sup
s≥0

∥∥∥W t′l(ω, s)−W∞(ω, s)
∥∥∥+ lim

l→∞
inf

W∈L(−∇f,C,W0)

∥∥W∞(ω, τl)−W
∥∥

(a)
= lim

l→∞
dist

(
W∞(ω, τl),L(−∇f, C,W0)

)
(b)
= 0,

where in (a) we use the fact that W tk(ω, ·) u−→ W∞(ω, ·) on R+ and in (b) we use the definition of L(−∇f, C,W0). Thus
we conclude that liml→∞Wtl(ω) ∈ clL(−∇f, C,W0). Hence we prove Wt(ω)→ L(−∇f, C,W0) as t→∞.

B. Proof of Lemma 5

We leverage the Lyapunov stability theory [19, Section 6.6] to prove the lemma. First, define L : C → R such that
L(W) , f(W) − minW∈C f(W), W ∈ C. By Definition S-1, we have that L is a Lyapunov function (with possibly
non-unique zeros on C). By [19, Theorem 6.15] (see Lemma S-15),

L(−∇f, C,W0) ⊆
⋃

W (·)∈P(−∇f,C,W0)

{
W (s)

∣∣∣ d
ds
L(W (s)) = 0

}
,

where
d

ds
L(W (s)) =

〈
∇f(W (s)), πC

[
W (s),−∇f(W (s))

]〉
, s ≥ 0.

Given 〈∇f(W), πC [W,−∇f(W)]〉 = 0, it is obvious that πC [W (s),−∇f(W (s))] = 0, if there exists δ > 0 such that
W − δ∇f(W) ∈ C. Otherwise, by the convexity of C,

dist 2(W −∇f(W), C)
≥ ‖πC [W,−∇f(W)] +∇f(W)‖2

= ‖πC [W,−∇f(W)]‖2 + ‖∇f(W)‖2

= ‖πC [W,−∇f(W)]‖2 + ‖(W −∇f(W))−W‖2

≥ ‖πC [W,−∇f(W)]‖2 + dist 2(W −∇f(W), C),

where for any Y ∈ RF×K , dist (Y, C) , ‖ΠCY −Y‖. Hence we conclude πC [W,−∇f(W)] = 0. Thus we conclude
L(−∇f, C,W0) ⊆ S(−∇f, C).

We show the second claim in a similar way. Before we proceed, let us first define a supporting hyperplane (see [20,
Section 2.5.2]) at any W ∈ bd C, TW as3

TW , {W′ ∈ RF×K | 〈T,W′ −W〉 = 0}, (S-9)

where the (outward) normal T ∈ RF×K of TW satisfies 〈T,W′ −W〉 ≤ 0, for all W′ ∈ C. Given πC [W,−∇f(W)] = 0,
we only focus on the case where W ∈ bd C and for any δ > 0, W − δ∇f(W) 6∈ C, otherwise the claim trivially holds. By
the definition of πC [W,−∇f(W)] and convexity of C, there exists a supporting hyperplane TW such that

πC [W,−∇f(W)] = ΠTW(W −∇f(W))−W. (S-10)

Since πC [W,−∇f(W)] = 0, we have ΠTW(W − ∇f(W)) = W. This implies that −∇f(W) is the (outward) normal of
TW. The definition of TW implies (12).

C. Proof of Lemma 3

We first present two corollaries of Lemma 1 and 2.

Corollary S-1. We have supt∈N E
[
‖∇W`(vt,Wt−1)‖2

]
≤ M2. In addition, there exists a real constant M ′ > 0 such that

for each ω ∈ Ω, supt∈N ‖∇f(Wt−1(ω))‖ ≤M ′.

3Note that more than one supporting hyperplanes may exist at W ∈ bd C. The supporting hyperplane that TW refers to depends on the context.
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Corollary S-2. {Nt}t∈N is a martingale difference sequence adapted to {Ft}t≥0. Moreover, there exists a real constant
M ′′ > 0 such that supt∈N E

[
‖Nt‖2

]
≤M ′′2.

We first show N t u−→ 0 on R+ a.s.. Fix t ∈ N. Since {ηtNt}t∈N is a martingale difference sequence (adapted to {Ft}t≥0),{
Mt ,

∑t
l=1 ηlNl

}
t∈N

is a martingale. We shall prove {Mt}t∈N converges a.s. to a random variable M. First, we see
{Mt}t∈N is square-integrable since

sup
t∈N

E
[
‖Mt‖2

]
= sup

t∈N
E

∥∥∥∥∥
t∑
l=1

ηlNl

∥∥∥∥∥
2


= sup
t∈N

t∑
l=1

η2
l E
[
‖Nl‖2

]
+
∑
k 6=l

ηkηlE [〈Nk,Nl〉]

(a)
= sup

t∈N

t∑
l=1

η2
l E
[
‖Nl‖2

]
(b)

≤ M ′′
2

sup
t∈N

t∑
l=1

η2
l

<∞,

where (a) follows the orthogonality of the martingale difference sequence and (b) follows from Corollary S-2. Moreover, by
the continuities of (v,W) 7→ ∇W`(v,W) (on V × C) and ∇f (on C) and compactness of V and C, there exists a constant
C ∈ (0,∞) such that supt∈N E

[
‖Nt‖2 |Ft−1

]
≤ C2 a.s.. Therefore,

∞∑
t=2

E
[
‖Mt −Mt−1‖2 |Ft−1

]
=

∞∑
t=2

η2
t E

[
‖Nt‖2 |Ft−1

]
≤ C2

∞∑
t=2

η2
t

<∞ a.s.

Thus by Lemma S-7, there exists a (finite) random variable M such that Mn
a.s.−−→ M. Then there exists an almost sure set

A ∈ Ω such that for all ω ∈ A,

lim
t→∞

sup
s≥0

∥∥N t(ω, s)
∥∥ = lim

t→∞
sup
s>0

∥∥∥∥∥∥
m(st+s)∑
i=t+1

ηiNi(ω)

∥∥∥∥∥∥
= lim

t→∞
sup
j≥t+1

‖Mj(ω)−Mt(ω)‖

≤ lim
t→∞

sup
j≥t+1

‖Mj(ω)−M(ω)‖+ ‖Mt(ω)−M(ω)‖

≤ 2 lim
t→∞

sup
j≥t
‖Mj(ω)−M(ω)‖

= 0.

This implies N t u−→ 0 on R+ a.s.. Moreover, by Lemma S-9, {N t}t∈N is asymptotically equicontinuous on R+ a.s..
We have ∆t

1
u−→ 0 on R+ a.s. because for all ω ∈ A,

lim
t→∞

sup
s≥0

∥∥∆t
1(ω, s)

∥∥ = lim
t→∞

sup
s≥0

∥∥∥∥∥∥
∫ s

0

∇f(W t(ω, τ)) dτ −
m(st+s)−1∑

i=t

ηi+1∇f(Wi(ω))

∥∥∥∥∥∥
≤ lim

t→∞
sup
j≥t

sup
s′∈[sj ,sj+1]

∥∥∥∥∫ sj+1

s′
∇f(W t(ω, τ)) dτ

∥∥∥∥
≤ lim

t→∞
sup
j≥t

ηj+1 ‖∇f(Wj(ω))‖

≤M
′
lim sup
t→∞

ηt

= 0,
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where the second last step follows from Corollary S-1. By Lemma S-9, {∆t
1}t∈N is asymptotically equicontinuous on R+ a.s..

By the definition of Gt in (9), we observe for each t ∈ N and ω ∈ A, Gt(ω, ·) is continuous on R+ and continuously
differentiable on R+ \ Q with d

dsG
t(ω, s) = −∇f(W t(ω, s)), s ∈ R+ \ Q, where Q , {st}t≥0. By Corollary S-1, we have

supt∈N sups≥0 ‖∇f(W t(ω, s))‖ ≤ M ′. This implies each Gt(ω, ·) is Lipschitz with Lipschitz constant Lt and {Lt}t∈N is
bounded. Then by Lemma S-10, we conclude that {Gt(ω, ·)}t∈N is equicontinuous on R+. Since for each t ∈ N and ω ∈ A,
F t(ω, ·) = Gt(ω, ·) + ∆t(ω, ·), by Lemma S-11, {F t}t∈N is asymptotically equicontinuous on R+ a.s..

Using a similar argument, we can show for all ω ∈ A, ∆t
2(ω, ·) u−→ 0 on R+. By the definition of Zt, we have for any

t ∈ N and ω ∈ A, ‖Zt(ω)‖ ≤ ‖∇W`(vt(ω),Wt−1(ω))‖ ≤ M . Hence each Y t(ω, ·) is Lipschitz with Lipschitz constant
L′t and {L′t}t∈N is bounded. Thus again by Lemma S-10, {Y t(ω, ·)}t∈N is equicontinuous on R+. Consequently, we have
{Zt(ω, ·)}t∈N is asymptotically equicontinuous on R+.

D. Proof of Lemma 1

It is easy to check that i) (v,W) 7→ d(v‖Wh) is differentiable on V × C, for each h ∈ H, ii) (v,W,h) 7→ d(v‖Wh) is
continuous on V×C×H and iii) (v,W,h) 7→ ∇Wd(v‖Wh) and (v,W,h) 7→ ∇vd(v‖Wh) are both continuous on V×C×H.
Furthermore, Assumption 2 implies h∗(v,W) is a unique minimizer of (4) for each (v,W) ∈ V×C. Then by the compactness
of H and the maximum theorem (see Lemma S-3), h∗(v,W) is continuous on V×W . By Danskin’s theorem (see Lemma S-4)
and again by the compactness of H, `(v,W) is differentiable on V×W and ∇W`(v,W) = ∇Wd(v‖Wh∗(v,W)), which is
continuous on V ×W . Since V ×W is compact (by Assumption 1), there exists M ∈ (0,∞) such that ‖∇W`(v,W)‖ ≤M ,
for all (v,W) ∈ V ×W .

E. Proof of Lemma 2

Since both v 7→ `(v,W) and v 7→ ∇W`(v,W) are continuous on V (by Lemma 1) and V is compact, both of them are
Lebesgue integrable. Thus, by Leibniz integral rule (see Lemma S-6), we have ∇f(W) = Ev [∇W`(v,W)] for each W ∈ C.
The continuity of ∇f on C is implied by the continuity of ∇W`(v,W) on V ×W .

F. Discussions

We first remark that for the divergences in class D1 ∩ D2, it might be possible to analyze the convergence of Algorithm 1
under the stochastic MM framework, by choosing the quadratic majorant of the sample average of f , as per discussion in
[21, Section 4]. However, our analysis based on stochastic approximation theory and projected dynamical systems [19], [22]
serve as a more direct approach, since we need not transform Algorithm 1 as a stochastic MM algorithm a priori. Next,
we discuss the difficulties to tackle the divergences in class D1∆D2. In such case f may be nonsmooth and nonconvex.
Without additional assumptions,4 proving asymptotic convergence guarantees to stationary points is still an open question in
the literature. Moreover, nonconvexity makes solving (4) NP-hard. If we assume there exists an oracle that can solve (4), a
possible approach to prove convergence to critical points would be to generalize the convergence analysis for the SPSGD
method to the nonconvex problems.5

S-4. APPLICATIONS AND EXPERIMENTS

A. Discussions on Choices of Parameters

The mini-batch size τ controls the frequency of dictionary update. In the online NMF literature there are no principled
ways to select τ , since this parameter is typically data dependent [1]. In our experiments, we set τ = 20 since it yielded
satisfactory performances. For the latent dimension K, there are several ways to choose it. The most direct way leverages
domain knowledge. For example, if the data matrix is the term-document matrix, then K corresponds to the number of topics
(categories) that the documents belong to (such that each document can be viewed as a linear combination of keywords in each
topic). Since this number is known for most text datasets, the value of K can be directly obtained. Otherwise, some works
[27], [28] propose to choose K using Bayesian modeling. However, the computational burden introduced by the complex
modeling is prohibitive especially for large-scale data. Hence, we set K = 40 unless a more accurate estimate can be obtained
from the domain knowledge. Lastly we discuss the choice of the step size ηt. From Section 3.2, a straightforward expression
for ηt would be ηt = a/(τt + b), where a and b are both positive numbers. In the initial phase where t is small, the step
size approximately equals the constant a/b. Therefore the value of b determines the duration of this phase. Similar to τ , the
choice of b is also data-dependent and lacks clear guidelines. As such, we fixed b = 1× 104 as we found this value gave us
satisfactory results in practice. Moreover, we also set a = 1 × 104. We will show that our algorithms are insensitive to the
values of these parameters in Section S-4-C.

4For example, in [21], [23]–[25], the authors assume the objective function f in (3) can be decomposed into two parts, one being nonconvex but smooth
and the other being nonsmooth but convex. However, such assumption does not cover our case.

5In such case, the subgradient should be defined as in the context of nonconvex analysis, e.g., see [26, Section 3.1].
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TABLE S-1
DIVERGENCES IN CLASS D AND THEIR CORRESPONDING NOISE GENERATION PROCEDURES

Data Generation Expressions of Distributionsa Parameter Value
IS vij ∼ G (vij ;κ, v

o
ij/κ) G (x;κ, θ) , xκ−1e−x/θ/(θκΓ(κ)), x ∈ R+ κ = 1000

KL vij ∼P(vij ; v
o
ij) P(k;λ) , λke−λ/k!, k ∈ N ∪ {0} —

Squared-`2 vij ∼ N (vij ; v
o
ij , ς

2) N (x;µ, ς2) , 1/
√

2πς2 exp{−(x− µ)2/(2ς2)}, x ∈ R ς = 30

Huber, `1, `2 vij ∼ U (vij ; v
o
ij , λ), (i, j) ∈ Q U (vij ; v

o
ij , λ) , 1/(2λ), x ∈ [voij − λ, voij + λ] λ = 2000

a The function Γ(·) in the expressions of distributions denotes the Gamma function.

B. Synthetic Data Generation

To generate the (noisy) data matrix V, we first generated the ground-truth data matrix Vo ,WoHo, where Wo ∈ RF×K
o

+

and Ho ∈ RK
o×N

+ denotes the ground-truth dictionary and coefficient matrices respectively. We set F = 2×103, N = 1×105

and Ko = 40.6 The entries of Wo and Ho were generated i.i.d. from the shifted half-normal distribution HNκ(σ2).7 We
set κ = 1 to prevent entries of Wo and Ho from being arbitrarily small. Next we contaminated Vo with entrywise i.i.d.
noise to obtain V. For the IS, KL and squared-`2 divergences, the distributions of the noise were chosen to be multiplicative
Gamma, Poisson and additive Gaussian respectively, so that solving the (batch) NMF problem (1)is equivalent to the ML
estimation of Vo from V [29]. The parameters of these distributions were chosen such that the signal-to-noise ratio (SNR),
SNR , 20 log10(‖Vo‖/‖V − Vo‖) was approximately 30 dB. In particular, we chose σ = 5 to ensure the SNR for the
Poisson noise satisfied the condition.8 Since the other divergences considered (Huber, `1 and `2) are mainly used in the robust
NMF, we added outliers to the ground-truth Vo as follows. We first randomly selected an index set Q , Πi∈[N ]Qi such that
for any i ∈ [N ], Qi ∈ [F ] × {i} and |Q| = 0.3F . Then each entry voij with (i, j) ∈ Q was contaminated with (symmetric)
uniform noise with magnitude λ. We chose λ = 2E[voij ] = 2Ko(κ + σ

√
2/π)2 ≈ 2000. The noise generation procedures for

all the abovementioned divergences are summarized in Table S-1. The final data matrix V was obtained by projecting V onto
a compact set V , [0, 4000]F×N since 4000 ≈ 4E[voij ].

C. Insensitivity to Key Parameters

To examine the sensitivity of OL to the key parameters τ , K and a, for each of the six divergences, we varied one parameter
at each time in log-scale while keeping the other two fixed as in the canonical setting. From the plots of objective values versus
time with different values of τ , K and a (shown in Figures S-1, S-2 and S-3 respectively), we observe that the convergence
speeds of OL for all the divergences exhibit small (or even unnoticeable) variations across different values of τ , K and a. This
shows the performance of our online algorithm is relatively insensitive to these key parameters. Therefore, in the following
experiments on real data, we will use the canonical values of τ , K and a unless mentioned otherwise. Note that similarly to
Figure 1, the results shown in Figures S-1, S-2 and S-3 are also relatively insensitive to different initializations of W.

D. Additional results for Section 6.4

The topics learned from the Guardian dataset by OL-KL, B-KL and OL-Wang2 (ten representative words per topic) are
shown in Table S-2. The topics learned from the Wikipedia dataset by these algorithms are shown in Table S-3. The average
document clustering accuracies and running times of all the three algorithms (with standard deviations) on the Wikipedia
dataset are shown in Table S-4. The results obtained from the Wikipedia dataset convey similar messages as those on the
Guardian dataset.

E. Additional results for Section 6.5

The additional foreground-background separation results on the Hall dataset with four algorithmsOL-Huber, OL-Wang, B-
Huber and OL-Guan are shown in Figure S-4. The foreground-background separation results on the Escalator dataset with
these algorithms are shown in Figure S-5. The average running times (with standard deviations) of all the four algorithms on
the Escalator dataset are shown in Table S-5. The results obtained from the Escalator dataset convey similar messages
as those on the Hall dataset.

6Note that in general K 6= Ko, i.e., the latent dimension K given a priori in the algorithm may not match the ground-truth Ko.
7HNκ

(
σ2

)
denotes the shifted half-normal distribution with scale parameter σ2 and offset κ > 0, i.e., HNκ(y;σ2) =

√
2

σ
√
π

exp(− (y−κ)2

2σ2 ) for y ≥ κ
and 0 otherwise.

8By assuming the entries of Vo are i.i.d. and using the law of large numbers, all the distribution parameters (and σ) can be analytically estimated. See
[27] for details.
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Fig. S-1. Objective values versus time (in seconds) of our online algorithms with different values of τ for all the six divergences. K and a are in the canonical
setting.
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Fig. S-2. Objective values versus time (in seconds) of our online algorithms with different values of K for all the six divergences. τ and a are in the canonical
setting.
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Fig. S-3. Objective values versus time (in seconds) of our online algorithms with different values of a for all the six divergences. τ and K are in the canonical
setting.

|←−−−−−−− (a) −−−−−−−→|←−−−−−−− (b) −−−−−−−→|←−−−−−−− (c) −−−−−−−−→|←−−−−−−− (d) −−−−−−−→|

Fig. S-4. Additional foreground-background separation results on the Hall dataset with four algorithms: (a) OL-Huber, (b) OL-Wang, (c) B-Huber and
(d) OL-Guan. The leftmost column shows the original video frames.
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TABLE S-2
TOPICS LEARNED FROM THE Guardian DATASET BY THREE ALGORITHMS: OL-KL, B-KL AND OL-Wang2.

Business Politics Music Fashion Football
company labour music fashion league

sales ultimately album wonder club
market party band weaves universally
shares government songs week welsh

business unions vogue war team
group bank song look season
price cameron track woolf players

ultimately voluntary pop wealthy manager
growth minister workings style game
bank workings sound hair football

(a) OL-KL

Business Politics Music Fashion Football
bank labour music fashion league

company party album wonder club
ultimately cameron band weaves universally

growth ultimately vogue week team
market unions songs look welsh

business voluntary song wealthy season
sales people pop war players

government minister workings woolf manager
tax war rock style game

economy miliband sound hair football
(b) B-KL

Business Politics Music Fashion Football
bank labour music fashion league

growth party album week club
shares unions band wonder welsh

company miliband vogue weaves season
market voluntary songs war universally
sales ultimately song wealthy team

economy cameron pop woolf players
group government rock look manager

business minister sound clothes game
price tory singer workings winding

(c) OL-Wang2
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TABLE S-3
TOPICS LEARNED FROM THE Wikipedia DATASET BY THREE ALGORITHMS: OL-KL, B-KL AND OL-Wang2.

Music Military Space Medicine Sports Transportation
album raids orbited patricia player stationary

songwriters navigation stanford treating racer rains
muse army plains tumors season trainer

recordings unit observatory disease teaching line
band motors sunglasses syndromes winner services

releasing battle planners protective omar route
singles spurs earth thermonuclear league warehouses
vienna shines moons systematic scores shipyard

performs air mars problem stafford canal
player operates sold rna championships pass

(a) OL-KL

Music Military Space Medicine Sports Transportation
songwriters mission space patricia player stationary

album warehouses orbited treating stanford rains
recordings unit plains cells season services

muse army moons disease teaching shines
releasing air observatory syndromes omar trainer

band spurs stafford specifically scores line
singles aircraft earth blood league shipyard
vienna battle sold muse rotten operates

performs offerings planners thermonuclear game pass
tough navigation racer symphony games route

(b) B-KL

Music Military Space Medicine Sports Transportation
album racer orbited patricia player stationary

songwriters navigation stanford treating season rains
band warehouses plains symphony teaching line

releasing shipyard space disease league trainer
recordings shines planners syndromes game services

muse unit observatory muse scores raids
singles spurs earth cells games pass
vienna winner sunglasses blood tourists route
chart aircraft moons thermonuclear winner london
tracks army mars surgically cup platforms

(c) OL-Wang2

TABLE S-4
CLUSTERING ACCURACIES AND RUNNING TIMES OF OL-KL, B-KL AND OL-Wang2 ON THE Wikipedia DATASET.

Algorithms Accuracy Time (s)
OL-KL 0.712 ± 0.01 53.18 ± 0.51
B-KL 0.716 ± 0.01 303.75 ± 0.61

OL-Wang2 0.656 ± 0.04 55.08 ± 0.41

TABLE S-5
RUNNING TIMES OF OL-Huber, OL-Wang, B-Huber AND OL-Guan ON THE Escalator DATASET.

Algorithms Time (s) Algorithms Time (s)
OL-Huber 63.35 ± 0.74 OL-Wang 71.73 ± 0.97
B-Huber 375.22 ± 2.48 OL-Guan 127.12 ± 1.35
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|←−−−−−−− (a) −−−−−−−→|←−−−−−−− (b) −−−−−−−→|←−−−−−−− (c) −−−−−−−−→|←−−−−−−− (d) −−−−−−−→|

Fig. S-5. Foreground-background separation results on the Escalator dataset with four algorithms: (a) OL-Huber, (b) OL-Wang, (c) B-Huber and (d)
OL-Guan. The leftmost column shows the original video frames.
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S-5. TECHNICAL LEMMAS

A. Convergence of PGD and MM algorithms

Lemma S-1 (Adapted from [16, Theorem 1]). Given a real Hilbert space Y and a function f : Y → R, consider the following
optimization problem

min
x∈X

f(x), (S-11)

where X ⊆ Y is nonempty, closed and convex and f is differentiable on X . For any x ∈ X , define a differentiable function
u(x, ·) : X → R such that u(x, ·) is a majorant for f at x.9 Fix an arbitrary initial point x0 ∈ X and consider the sequence
of iterates {xk}k∈N generated by the following MM algorithm

xk := min
y∈X

u(xk−1, y), ∀ k ∈ N. (S-12)

Then {xk}k∈N has at least one limit point and moreover, the any limit point of {xk}k∈N is a stationary point of (S-11).

Lemma S-2 (Adapted from [13, Theorem 2.4]). Consider a real Hilbert space Y . Let X ⊆ Y be a nonempty compact convex
set and f : Y → R be continuously differentiable on Y . Fix an arbitrary initial point x0 ∈ X and consider the sequence of
iterates {xk}k∈N generated by the following projected gradient algorithm

xk := ΠX

{
xk−1 − βk∇f(xk−1)

}
, ∀ k ∈ N, (S-13)

where the sequence of step sizes {βk}k∈N is chosen according to the Armijo rule [30]. Then {xk}k∈N has at least one limit
point and moreover, the any limit point10 of {xk}k∈N is a stationary point of the optimization problem minx∈X f(x).

B. Optimal-value functions

Lemma S-3 (The Maximum Theorem; [31, Theorem 14.2.1 & Example 2]). Let P and X be two metric spaces. Consider a
maximization problem

max
x∈B(p)

f(p, x), (S-14)

where B : P ⇒ X is a correspondence and f : P ×X → R is a function. If B is compact-valued and continuous on P and f
is continuous on P×X , then the correspondence S(p) = arg maxx∈B(p) f(p, x) is compact-valued and upper hemicontinuous,
for any p ∈ P . In particular, if for some p0 ∈ P , S(p0) = {s(p0)}, where s : P → X is a function, then s is continuous at
p = p0. Moreover, we have the same conclusions if the maximization in (S-14) is replaced by minimization.

Lemma S-4 (Danskin’s Theorem; [32, Theorem 4.1]). Let X be a metric space and U be a normed vector space. Let
f : X × U → R have the following properties

1) f(x, ·) is differentiable on U , for any x ∈ X .
2) f(x, u) and ∇uf(x, u) are continuous on X × U .

Let Φ be a compact set in X . Define v(u) = infx∈Φ f(x, u) and S(u) = arg minx∈Φ f(x, u), then v(u) is (Hadamard)
directionally differentiable and its directional derivative along d ∈ U , v′(u, d) is given by

v′(u, d) = min
x∈S(u)

〈∇uf(x, u), d〉 . (S-15)

In particular, if for some u0 ∈ U , S(u0) = {x0}, then v is (Hadamard) differentiable at u = u0 and ∇v(u0) = ∇uf(x0, u0).

Lemma S-5 (Minimization of convex functions; [20, Section 3.2.5], [33]). Let X and Y be two inner product spaces and
X × Y be their product space such that for any (x, y) and (x′, y′) in X × Y , 〈(x, y), (x′, y′)〉 = 〈x, x′〉 + 〈y, y′〉. Consider
functions h : X × Y → R and f : X → R such that

f(x) , inf
y∈Y

h(x, y), ∀x ∈ X . (S-16)

If h is convex on X × Y and Y is convex, then f is convex on X . If we further assume S(x0) , arg miny∈Y h(x0, y) 6= ∅,
then the subdifferential of f at x0 ∈ X ,

∂f(x0) =
⋃

y0∈S(x0)

{g ∈ X | (g, g′) ∈ ∂h(x0, y0), where 〈g′, y − y0〉 = 0,∀ y ∈ Y} . (S-17)

9By this, we mean u(x, x) = f(x) and u(x, y) ≥ f(y) for any y ∈ X .
10The limit point is defined in the topological sense, i.e., x ∈ X is a limit point of {xk}k∈N if for any neighborhood U of x, there are infinitely many

elements of {xk}k∈N in U .
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Proof.

g ∈ f(x0)⇐⇒ f(x) ≥ f(x0) + 〈g, x− x0〉 ,∀x ∈ X
⇐⇒ h(x, y) ≥ h(x0, y0) + 〈(g, g′), (x− x0, y

′ − y0)〉 ,∀x ∈ X ,∀ y ∈ S(x),∀ y0 ∈ S(x0),∀ y′ ∈ Y,
∀ g′ ∈ X s.t. 〈g′, y′ − y0〉 = 0

⇐⇒ h(x, y) ≥ h(x0, y0) + 〈(g, g′), (x− x0, y − y0)〉 ,∀x ∈ X ,∀ y ∈ Y,∀ y0 ∈ S(x0),∀ g′ s.t. 〈g′, y − y0〉 = 0

⇐⇒ (g, g′) ∈ ∂h(x0, y0),∀ y0 ∈ S(x0),∀ g′ s.t. 〈g′, y − y0〉 = 0,∀ y ∈ Y.

�

C. Miscellaneous
Lemma S-6 (Leibniz Integral Rule). Let X be an open set in Rn and let (Ω,A, µ) be a measure space. If f : X × Ω → R
satisfies

1) For all x ∈ X , the mapping ω 7→ f(x, ω) is Lebesgue integrable.
2) For all ω ∈ Ω, ∇xf(x, ω) exists on X .
3) For all x ∈ X , the mapping ω 7→ ∇xf(x, ω) is Lebesgue integrable.

Then
∫

Ω
f(x, ω) dµ(ω) is differentiable on X and for each x ∈ X ,

∇x
∫

Ω

f(x, ω) dµ(ω) =

∫
Ω

∇xf(x, ω) dµ(ω). (S-18)

Remark S-1. This is a simplified version of the Leibniz Integral Rule. See [34, Theorem 16.8] for weaker conditions on f .

Lemma S-7 (Almost sure convergence of square-integrable martingales; [35, Theorem 5.4.9]). Let {Xn}n≥1 be a martingale
in a normed space X adapted to the filtration {Fn}n≥0 such that supn∈N E

[
‖Xn‖2

]
< ∞. Define the quadratic variation

process {〈X〉n}n≥2 as

〈X〉n ,
n∑
i=2

E
[
‖Xi −Xi−1‖2 |Fi−1

]
, ∀n ≥ 2. (S-19)

Then there exists a random variable X such that on the set {limn→∞ 〈X〉n <∞}, the sequence {Xn}n≥1 converges a.s. to
X and ‖X‖ <∞ a.s..

Lemma S-8 (Expectation of convex functions; [33]). Let (U ,A , ν) be a probability space and h : X × U be a function
such that for each u ∈ U , x 7→ h(x, u) is convex on X , where X is a convex set equipped with an inner product 〈·, ·〉.
Define f(x) , Eu(x, u), for any x ∈ X . Then f is convex on X . Fix any x0 ∈ X . Then for any gx0

(u) ∈ ∂xh(x0, u),
Eu[gx0(u)] ∈ ∂f(x0).

D. Asymptotic Equicontinuity and Uniform Convergence
In this section, unless otherwise mentioned, we assume the sequences of functions {fn}n∈N and {gn}n∈N are defined on a

common metric space (X , d) and mapped to a common metric space (Y, ρ).

Lemma S-9 (Uniform convergence implies asymptotic equicontinuity). If a sequence of functions {fn}n∈N converges uniformly
to a continuous function f on X , then it is asymptotically equicontinuous on X .

Proof. Fix ε > 0. Since fn
u−→ f , there exists N ∈ N such that for all n ≥ N , supx∈X |fn(x)− f(x)| < ε/6. Fix x0 ∈ X .

Then there exists δ > 0 such that supx′∈Nδ(x) ρ(f(x), f(x′)) < ε/6, where Nδ(x) , {x′ ∈ X : d(x, x′) < δ}. Thus for all
n ≥ N , supx′∈Nδ(x) ρ(fn(x), fn(x′)) ≤ ρ(fn(x), f(x)) + supx′∈Nδ(x) ρ(f(x), f(x′)) + supx′∈Nδ(x) ρ(fn(x′), f(x′)) < ε/2.
This shows lim supn→∞ supx′∈Nδ(x) ρ(fn(x), fn(x′)) < ε. Since this holds for all x ∈ X , we complete the proof. �

Lemma S-10 (Lipschitzness implies equicontinuity). Given a sequence of continuous functions {fn}n∈N. If each fn is Lipschitz
on X with Lipschitz constant Ln and there exists M ∈ (0,∞) such that supn≥1 Ln ≤ M , then {fn}n∈N is equicontinuous
on X .

Lemma S-11 (Finite sum preserves asymptotic equicontinuity). Let {fn}n∈N and {gn}n∈N be both asymptotically equicontin-
uous on X . Assume the metric ρ is translation-invariant (for e.g., induced by a norm). Then {fn + gn}n∈N is asymptotically
equicontinuous on X .

Proof. Fix an ε > 0 and x ∈ X , there exist δ1 > 0 and δ2 > 0 respectively such that

lim sup
n→∞

sup
x′∈X :d(x,x′)<δ1

ρ(fn(x), fn(x′)) < ε/2,

lim sup
n→∞

sup
x′∈X :d(x,x′)<δ2

ρ(gn(x), gn(x′)) < ε/2.
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Take δ = min(δ1, δ2), we have

lim sup
n→∞

sup
x′∈X :d(x,x′)<δ

ρ((fn + gn)(x), (fn + gn)(x′))

≤ lim sup
n→∞

sup
x′∈X :d(x,x′)<δ

ρ((fn + gn)(x), fn(x′) + gn(x)) + ρ(fn(x′) + gn(x), fn(x′) + gn(x′))

≤ lim sup
n→∞

sup
x′∈X :d(x,x′)<δ

ρ(fn(x), fn(x′)) + ρ(gn(x), gn(x′))

< ε.

�

Lemma S-12 (Continuous transformation preserves uniform convergence). Assume X to be compact. Let g : Y → Z be a
continuous function, where (Z, r) is a metric space. If {fn}n∈N uniformly converges to a continuous function f on X , then
{g ◦ fn}n∈N uniformly converges to g ◦ f on X .

Proof. First, since X is compact and f is continuous on X , f(X ) is compact in Y . Since g is continuous on Y , g is uniformly
continuous on f(X ). Fix ε > 0. there exists a δ > 0 such that for all y, y′ ∈ f(X ) and ρ(y, y′) < δ, r(g(y), g(y′)) < ε.
Since fn

u−→ f on X , there exits a K ∈ N such that for all n ≥ K and x ∈ X , ρ(f(x), fn(x)) < δ. Consequently,
r(g(fn(x)), g(f(x))) < ε. This implies g ◦ fn

u−→ g ◦ f on X . �

Lemma S-13 (Generalized Arzelà-Ascoli Theorem [36]). If the sequence of functions {fn}n≥1 is asymptotically equicontinuous
and uniformly bounded on X (assumed to be compact), then there exists a subsequence {fnk}k≥1 that converges uniformly to
a continuous function f on X .

E. Projected Dynamical Systems and Lyapunov Stability Theory

Lemma S-14 (Adapted from [37, Theorem 3.1, Chapter 4]). Assume (S-6) holds with Z(ω, 0) = 0 and W (ω, s) ∈ C, for all
s ≥ 0. Denote λ as the Lebesgue measure on R. If W (ω, ·) is Lipschitz on R+ and for any τ > 0,

1) Z(τ) = 0 if W (ω, s) ∈ int C for all s ∈ T , where T is any set in [0, τ ] with λ(T ) = τ ,
2) Z(τ) ∈ conv

[⋃
s∈[0,τ ]N

(
W (ω, s)

)]
,

where N is defined in (S-7), then

Z(s) =

∫ s

0

z(τ) dτ, (S-20)

where z : R+ → RF×K is defined in (S-4).

Definition S-1 (Lyapunov function and its Lie derivative; [19, Section 6.6]). Consider the PDS given in (6). Assume the
normed space (X , ‖·‖) is equipped with the inner product 〈·, ·〉. Fix x0 ∈ K and choose a neighborhood of x0 in K, denoted
as U(x0). A continuously differentiable function L : U(x0)→ R+ is called a Lyapunov function if L(x0) = 0, L(x) > 0 for
any x ∈ U(x0) \ {x0} and for any x(·) ∈ P(g,K, x0),

L(x(t1)) ≤ L(x(t0)), ∀ t0, t1 ∈ I, t0 < t1, s.t. {x(t0), x(t1)} ⊆ U(x0) \ {x0}. (S-21)

Moreover, for any x(·) ∈ P(g,K, x0), the Lie derivative of L on I, d
dsL(x(s)) is given by

d

ds
L(x(s)) = 〈∇xL(x(s)), x′(s)〉 , ∀ s ∈ I. (S-22)

Lemma S-15 (All limit points are stationary; [19, Theorem 6.15]). Consider the PDS given in (6). Let L : U ⊆ K → R+ be
a Lyapunov function with possibly non-unique zeros (i.e., L may only be positive semidefinite on U). Suppose each solution
x(·) ∈ P(g,K, x0) is contained in U , then L is constant on L(g,K, x0) ∩ U . In other words, the Lie derivative of L vanishes
on L(g,K, x0) ∩ U .

F. Correspondence and Upper Semicontinuity

For further details, see [38, Chapter 1].

Definition S-2 (Correspondence and its graph). Given two metric spaces (X , d) and (Y, ρ), a correspondence F : X ⇒ Y
maps esch x ∈ X to a subset F(x) in Y . The graph of F , G(F) is defined as

G(F) , {(x, y) ∈ X × Y | y ∈ F(y)} . (S-23)

Definition S-3 (Upper semicontinuous correspondence). A correspondence F as defined in Definition S-2 is called upper
semicontinuous at x0 ∈ X if for any open set U ⊆ Y such that F(x0) ⊆ U , there exists an open set V ⊆ X such that x0 ∈ V
and F(x) ⊆ U for any x ∈ V .
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Lemma S-16 (Closed graph property; [38, Proposition 2 & Colrollary 1]). Let the correspondence F be given in Definition S-2.
1) If for each x ∈ X , F(x) is closed, and F is upper semicontinuous, then G(F) is closed (in X × Y).
2) If (Y, ρ) is a compact metric space, and G(F) is closed, then F is upper semicontinuous.

Lemma S-17 (Sufficient conditions for upper semicontinuity; [38, Section 1.1]). Let the correspondence F be given in
Definition S-2. Assume F is compact-valued on X . Fix x ∈ X . If F satisfies

⋂
δ>0

conv

 ⋃
z∈Bδ(x)

F(z)

 = F(x), (S-24)

then F is upper semicontinuous at x. Here conv S denotes the closed convex hull of a set S and Bδ(x) , {z ∈ X | d(x, z) < δ}.
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