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1 Proof of Proposition 1

The following proposition shows the convexity of the function logB(α+ x, β +K − x).

Proposition 1. For any α > 0, β > 0, − logB(α+ x, β +K − x) is concave for 0 ≤ x ≤ K.

Proof. Note that logB(α + x, β + K − x) = log Γ(α + x) + log Γ(β + K − x) − log Γ(α + β + K).
Using the fact that the logarithm of Gamma function is convex on positive real numbers, for any
0 ≤ x1, x2 ≤ K and t ∈ [0, 1], we have

log Γ(α+ tx1 + (1− t)x2) + log Γ(β +K − tx1 − (1− t)x2)

= log Γ(t(α+ x1) + (1− t)(α+ x2)) + log Γ(t(β +K − x1) + (1− t)(β +K − x2))

≤ t log Γ(α+ x1) + (1− t) log Γ(α+ x2) + t log Γ(β +K − x1) + (1− t) log Γ(β +K − x2)

= t(log Γ(α+ x1) + log Γ(β +K − x1)) + (1− t)(log Γ(α+ x2) + log Γ(β +K − x2))).

Thus the proposition follows.

2 Assumptions and Proof for Theorem 1

2.1 Assumptions

We follow Liu et al. (2011) to introduce the assumptions on the density and on the kernel function.
Let p∗ be the true density and Xi be the domain of p∗i . Fix β > 0, let Σ(β, L, r, x0) be the

locally Hölder class of functions with degree β, Hölder constant L, radius r and center x0. Given
a set A, define Σ(β, L, r, A) = ∩x0∈AΣ(β, L, r, x0). We need the following two assumptions on the
true density.

Assumption 1 (Assumption on the density). For any 1 ≤ i < j ≤ d, we assume

1. there exists L1 > 0 and L2 > 0 such that for any c > 0 the true bivariate and univariate
densities satisfy

p∗(xi, xj) ∈ Σ(β, L2, c(log n/n)
1

2β+2 ,Xi ×Xj)
and

p∗(xi) ∈ Σ(β, L1, c(log n/n)
1

2β+2 ,Xi);
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2. there exist two constants c1 and c2 such that

c1 ≤ inf
x1×x2∈Xi×Xj

p∗(xi, xj) ≤ sup
x1×x2∈Xi×Xj

p∗(xi, xj) ≤ c2

almost surely.

Next, we state the assumptions on the kernel functions.

Assumption 2 (Assumptions on the kernel). We assume the kernel K satisfies

1.
∫
K(u)du = 1,

∫
K2(u)du ≤ ∞ and supuK(u) ≤ c for some constant c.

2. K is a finite linear combination of functions g whose epigraphs epi(g) = {(s, u) : g(s) ≥ u},
can be represented as a finite number of Boolean operations (union and intersection) among
sets of the form {(s, u) : Q(s, u) ≥ φ(u)}, where Q is a polynomial on R × R and φ is an
arbitrary real function.

3. K has a compact support and for any ` ≥ 1 and 1 ≤ `′ ≤ bβc∫
|t|β |K(t)|dt <∞, and

∫
|K(t)|`dt <∞,

∫
t`
′
K(t)dt = 0.

The assumptions on the kernel are mild. For example, the boxcar kernel satisfies the three
assumptions.

2.2 Proof

Here we give the proof of Theorem 1.

Proof. Denote F̂
SF,(t)
d,λ as the spanning tree structure learned from the tth iteration of Algorithm 2,

with the edge weight being w̌tij = Î(Xi;Xj)− λ∑d
l=1 Θ

(t−1)
il

− λ∑d
l=1 Θ

(t−1)
jl

. Here, Θ(t−1) is the adjacency

matrix for F̂
SF,(t−1)
d,λ . Following a similar argument in Liu et al. (2011), note that the event F̂

SF,(t)
d,λ 6=

F ∗d implies that there must exist some pair of edges (i, j) and (i′, j′) such that

(w̌tij − w̌ti′j′) · (I(Xi;Xj)− I(Xi′ ;Xj′)) ≤ 0.

Recall that T is a set of pairs of edges ((i, j), (i′, j′)) such that I(Xi;Xj) 6= I(Xi′ ;Xj′) and with
positive probability, flipping the relative order of I(Xi;Xj) and I(Xi′ ;Xj′) changes the learned
forest structure in the population Chow-Liu algorithm. Apply a union bound to obtain

P((w̌tij − w̌ti′j′) · (I(Xi;Xj)− I(Xi′ ;Xj′)) ≤ 0, for some (i, j), (i′, j′))

≤ d4 max
((i,j),(i′,j′))∈T

P((w̌tij − w̌ti′j′) · (I(Xi;Xj)− I(Xi′ ;Xj′)) ≤ 0).

Under the assumption that

min
((i,j),(i′,j′))∈T

|I(Xi;Xj)− I(Xi′ ;Xj′)| > 6Ln,
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we obtain

max
((i,j),(i′,j′))∈T

P((w̌tij − w̌ti′j′) · (I(Xi;Xj)− I(Xi′ ;Xj′)) ≤ 0) ≤ max
i6=j

P(|I(Xi;Xj)− w̌tij | > 3Ln).

Further observe that

|I(Xi;Xj)− w̌tij | ≤ |I(Xi;Xj)− Î(Xi;Xj)|+ |Î(Xi;Xj)− w̌tij |

≤ |I(Xi;Xj)− Î(Xi;Xj)|+ 2λ.

The second inequality follows from the fact that
∑d
l=1 Θ

(t−1)
ul ≥ 1 for u = i or j. Under the

assumption that λ < Ln, we have

max
i 6=j

P(|I(Xi;Xj)− w̌tij | > 4Ln) ≤ max
i 6=j

P(|I(Xi;Xj)− Î(Xi;Xj)| > Ln).

Putting together the above arguments to obtain

P(F̂
SF,(t)
d,λ 6= F ∗d ) ≤ d4 ·max

i 6=j
P(|I(Xi;Xj)− Î(Xi;Xj)| > Ln)

≤ o(exp(4 log d− c · (log n)1/(1+β) log d))

= o(1),

where the last inequality follows from Lemma 23 in Liu et al. (2011) and the definition of Ln.

3 More Results on Synthetic Data Analysis

When the true graphs are not trees, the forest-based method can be shown to yield optimal (in
the sense of KL divergence) forest approximation of the true graph. For joint learning of multiple
graphs, we conduct additional analysis on synthetic Gaussian data where the true graph structure
is “random”. Given the adjacency matrix Θ, the graph patterns are generated as below: each pair
of off-diagonal elements are randomly set Θij = Θji = 1 for i 6= j with probability 0.02, and 0
otherwise. This leads to about 0.01 · d(d − 1) edges in the graph. The rest of simulation setup is
similar to that in the main manuscript. In particular, we generate a set of K = 3 random graphs
each with d = 100 nodes, which share common subgraph with 80 nodes. The result turns out that
the average F1 score for FDE is 0.83 and the average F1 score for J-FDE is 0.92.

4 More Results on Real Data Analysis

When we fit forest graphical models to real datasets, we do not necessarily assume or expect the true
structures to be forest. What we do believe though is that a forest provides a close approximation
to the truth. For the stock and webpage data, we think our fitted graphs serve as a concise and
interpretable “skeleton” for the true graphs.

Stock price data Figure 1 shows the estimated graphs by Glasso and SFGlasso on stock price
data, where we use the refit method to determine the tuning parameters, as in the simulation
studies. The resulting estimated graphs are much less interpretable comparing to that obtained by
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Figure 1: Estimated graphs for Glasso and SFGlasso applied on the stock price data. The stocks
are colored according to their Global Industry Classification Standard categories.

SF-FDE. The forest-based method usually provides a “skeleton” for the true graph, which helps to
understand the structure and to identify possible hubs and clusters. Figure 2 displays the estimated
graphs by J-FDE on stock price data. Common edges across the 4 graphs are colored in red.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

(a) 2009 (b) 2010 (c) 2011 (d) 2012

Figure 2: Estimated graphs by J-FDE on stock price data. Common edges across the 4 graphs are
colored in red.

University webpage data Figure 3 shows the estimated graph by SF-FDE on webpage data.
Given the discrete data in this analysis, it is not appropriate to apply Gaussian-based methods.
This further highlights the advantages of our nonparametric forest-based method.
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Figure 3: Estimated graph by SF-FDE on webpage data.

5 R Package for Scale-Free Graphical Model Estimation

An implementation of the proposed scale-free graphical model estimation method is available as an
R package at http://github.com/zhejosephliu/scalefreeForest.
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