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1 Proofs

Proof of Theorem 1. After the application of (6) and
(8) we can consider the two parts separately:

P
[
Rn(hn)− inf

h∈H
Rn(h) > α

]
(31)

≤ P

[
sup
h∈H

∣∣∣∣∣ 1n
n∑
t=1

(`(h, zt)−Rt−1(h))

∣∣∣∣∣ > α/4

]
(32)

+ P

[
1

n

n∑
t=1

dt−1,n > α/4

]
. (33)

The convergence of the probability in (32) is guaran-
teed by the result of [Rakhlin et al., 2014] for any
stochastic process. The convergence of (33) follows
from the de�nition of the convergent discrepancies and
is a content of Lemma 2.

Lemma 2. If double array dt,n is convergent, then
1
n

∑n
t=1 dt−1,n converges to 0 in probability.

Proof. The proof is similar to that of the Toeplitz
lemma, but adapted to our notion of convergence. Fix
ε > 0 and δ > 0. Then, by the de�nition of a conver-
gent array, for ε′ = δ′ = δε

4

∃n0,∃t0 : 0 ≤ t0 < n0,∀n ≥ n0,∀t0 ≤ t < n : (34)

P [dt,n > ε′] ≤ δ′. (35)

In particular, this means that for any n ≥ n0 and
∀t0 ≤ t < n we have E [dt,n] ≤ ε′ + δ′ = δε

2 , because of
the boundedness of dt,n.

Now, choose any n1 ≥ n0 that satis�es n0

n1
≤ ε

2 . Then
for any n ≥ n1 we get

P

[
1

n

n∑
t=1

dt−1,n > ε

]
≤ P

[
1

n

n∑
t=n0+1

dt−1,n >
ε

2

]
(36)

≤ 2

∑n
t=n0+1 E [dt−1,n]

nε
(37)

≤ δ, (38)

where the last line follows from the bound on the ex-
pectations.

To characterize a complexity of some function class we
use covering numbers and a sequential fat-shattering
dimension. But before we could give those de�nitions,
we need to introduce a notion of Z-valued trees.

A Z-valued tree of depth n is a sequence z1:n of map-
pings zi : {±1}i−1 → Z. A sequence ε1:n ∈ {±1}n
de�nes a path in a tree. To shorten the notations,
zt(ε1:t−1) is denoted as zt(ε). For a double sequence
z1:n, z

′
1:n, we de�ne χt(ε) as zt if ε = 1 and z′t if ε = −1.

Also de�ne distributions pt(ε1:t−1, z1:t−1, z
′
1:t−1) over

Z as P [ ·|χ1(ε1), . . . , χt−1(εt−1)], where P is a distri-
bution of a process under consideration. Then we can
de�ne a distribution ρ over two Z-valued trees z and
z′ as follows: z1 and z′1 are sampled independently
from the initial distribution of the process and for any
path ε1:n for 2 ≤ t ≤ n, zt(ε) and z′t(ε) are sampled
independently from pt(ε1:t−1, z1:t−1(ε), z′1:t−1(ε)).

For any random variable y that is measurable with
respect to σn (a σ-algebra generated by z1:n), we de-
�ne its symmetrized counterpart ỹ as follows. We
know that there exists a measurable function ψ
such that y = ψ(z1:n). Then we de�ne ỹ =
ψ(χ1(ε1), . . . , χn(εn)), where the samples used by χt's
are understood from the context.

Now we can de�ne covering numbers.

De�nition 5. A set, V , of R-valued trees of depth n is
a (sequential) θ-cover (with respect to the `∞-norm)
of F ⊂ {f : Z → R} on a tree z of depth n if

∀f ∈ F ,∀ε ∈ {±1}n,∃v ∈ V : (39)

max
1≤t≤n

|f(zt(ε))− vt(ε)| ≤ θ. (40)

The (sequential) θ-covering number of a function
class F on a given tree z is

N∞(F , θ, z) = min{ |V | : V is an θ-cover (41)

w.r.t. `∞-norm of F on z}. (42)
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Themaximal θ-covering number of a function class
F over depth-n trees is

N∞(F , θ, n) = sup
z
N∞(F , θ, z). (43)

To control the growth of covering numbers we use the
following notion of complexity.

De�nition 6. A Z-valued tree z of depth n is θ-
shattered by a function class F ⊆ {f : Z → R} if
there exists an R-valued tree s of depth n such that

∀ε ∈ {±1}n,∃f ∈ F s.t. 1 ≤ t ≤ n, (44)

εt(f(zt(ε))− st(ε)) ≥ θ/2. (45)

The (sequential) fat-shattering dimension fatθ(F) at
scale θ is the largest d such that F θ-shatters a Z-
valued tree of depth d.

An important result of [Rakhlin et al., 2014] is the fol-
lowing connection between the covering numbers and
the fat-shattering dimension.

Lemma 3 (Corollary 1 of [Rakhlin et al., 2014]). Let
F ⊆ {f : Z → [−1, 1]}. For any θ > 0 and any n ≥ 1,
we have that

N∞(F , θ, n) ≤
(

2en

θ

)fatθ(F)

. (46)

In the proofs we denote L(H) as F .

Proof of Theorem 2. After equations (6), (8) and (10),
we are left to study the large deviations of the following
quantity

Θ(Jn) = sup
f∈F

∣∣∣∣∣
n∑
t=1

wt(Jn) (f(zt)− Et−1 [f ])

∣∣∣∣∣ (47)

with the weights de�ned as in (11). Let us
de�ne events Ar = {Jn = r} and Br(j) =
{r ≤

∑n
t=1 g(Mt−1,j) ≤ r + 1}, such that Ek,m =

{∪r≤kAr} ∩ {∪r≥mBr(Jn)}. Then we have

P [Θ(Jn) ≥ α] ≤ P [Θ(Jn) ≥ α ∧ Ek,m] + P
[
Eck,m

]
.

(48)
Now we can take a union bound for the �rst summand
over Ar's and get

P [Θ(Jn) ≥ α ∧ Ek,m] (49)

≤
k∑
j=1

P [Θ(j) ≥ α ∧ {∪r≥mBr(j)}] . (50)

Taking another union bound for each j, we end up
with

P [Θ(j) ≥ α ∧ {∪r≥mBr(j)}] (51)

≤
∑
r≥m

P [Θ(j) ≥ α ∧Br(j)] . (52)

Now we study the last probability for a �xed r and
j. On Br(j) we can lower bound the denominator of
the weights

∑n
t=1 g(Mt−1,j) ≥ r leading to Θ(j) ≤

Θr(j) = 1
r supf∈F |

∑n
t=1 g(Mt−1,j) (f(zt)− Et−1 [f ])|.

Let λ > 0 and denote V = 1
r2

∑n
t=1 g

2(Mt−1,j), E =
1
r

∑n
t=1 g(Mt−1,j). Then, since

1
r g(Mt−1,j) ∼ σt−1 by

the de�nition of an M-bound, Lemma 4 gives us

E
[
eλΘr(j)−λ2V−2λβE−ln 2N∞(F,β,n)

]
≤ 1. (53)

Let C = {Θr(j) ≥ α ∧Br(j)} and note that E ≤
r+1
r ≤ 2 and V ≤ r+1

r2 ≤
2
r on Br(j) by the bound-

edness of g. Then we have the following chain of in-
equalities

1 ≥ E
[
eλΘr(j)−λ2V−2λβE−ln 2N∞(F,β,n)

]
(54)

≥ E
[
eλΘr(j)−λ2V−2λβE−ln 2N∞(F,β,n)I [C]

]
(55)

≥ eλα−λ
2 2
r−4λβ−ln 2N∞(F,β,n)P [C] . (56)

Hence, by optimizing over λ, we get

P [Θ(j) ≥ α ∧Br(j)] ≤ 2N∞(F , β, n)e−
1
2 r(α−4β)2 .

(57)

Now, coming back to (51), we can evaluate it by com-
puting the sum to obtain

P [Θ(J) ≥ α ∧ Ek,m] ≤ 2kN∞(F , β, n)

(α− 4β)2
e−

1
2m(α−4β)2 .

(58)

Lemma 4. Let y1:n be a process such that each yt ∼
σt−1 and denote E =

∑n
t=1 |yt|, V =

∑n
t=1 y

2
t . Then

for a �xed λ, β > 0 and c = ln 2N∞(F , β, n)

E
[
eλ supf∈F |

∑n
t=1 yt(f(zt)−Et−1[f ])|−λ2V−2λβE−c

]
≤ 1

(59)

Proof. Let z′1:n be a decoupled tangent sequence to
z1:n, i.e. a sequence that satis�es Et−1 [f(zt)] =
Et−1 [f(z′t)] = E [f(z′t)| z1:n]. Then

E
[
eλ supf∈F |

∑n
t=1 yt(f(zt)−Ei−1[f ])|−λ2V−2λβE−c

]
(60)

≤ E
[
eλ supf∈F |

∑n
t=1 yt(f(zt)−f(z′t))|−λ2V−2λβE−c

]
.

(61)

The Lemma 5 gives us that (61) equals to

EρEε
[
eλ supf |

∑n
t=1 ỹtεt(f(zt(ε))−f(z′t(ε)))|−λ2Ṽ−2λβẼ−c

]
(62)

≤ Ez∼ρEε
[
e2λ supf |

∑n
t=1 ỹtεtf(zt(ε))|−λ2Ṽ−2λβẼ−c

]
,

(63)
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where ỹ is a symmetrized version of y, Ẽ =
∑n
t=1 |ỹt|,

Ṽ =
∑n
t=1 ỹ

2
t and we used Jensen inequality to get the

second line. Now we take a β-cover of F with respect
to `∞-norm to get the following bound on (63)

Ez∼ρN∞(F , β, n)Eε
[
e2λ|∑n

t=1 ỹtεtf(zt(ε))|−λ2Ṽ−c
]
(64)

=
1

2
Ez∼ρEε

[
e2λ|∑n

t=1 ỹtεtf(zt(ε))|−λ2Ṽ
]

(65)

Introduce events Y+ = {
∑n
t=1 ỹtεtf(zt) ≥ 0} and

Y− = {
∑n
t=1 ỹtεtf(zt) < 0}. Then the last line is

equal to

1

2
Ez∼ρEε

[
e2λ|∑n

t=1 ỹtεtf(zt(ε))|−λ2Ṽ I [Y+]
]

(66)

+
1

2
Ez∼ρEε

[
e2λ|∑n

t=1 ỹtεtf(zt(ε))|−λ2Ṽ I [Y−]
]

(67)

≤ 1

2
Ez∼ρEε

[
e2λ

∑n
t=1 ỹtεtf(zt(ε))−λ2Ṽ

]
(68)

+
1

2
Ez∼ρEε

[
e−2λ

∑n
t=1 ỹtεtf(zt(ε))−λ2Ṽ

]
(69)

≤ 1, (70)

where the last line follows by the standard martingale
argument, since ỹtεtf(zt(ε)) is a martingale di�erence
sequence (for a �xed tree z).

Lemma 5. Let z1:n be a sample from a process and
z′1:n its decoupled sequence. Let y1:n be a process such
that each yt ∼ σt−1, then for any measurable functions
ϕ : R→ R and ψ : Zn → R, we have

E

[
ϕ

(
sup
f∈F

∣∣∣∣∣
n∑
t=1

yt (f(zt)− f(z′t))

∣∣∣∣∣
)
ψ(z1:n)

]
(71)

= EρEε

[
ϕ

(
sup
f∈F

∣∣∣∣∣
n∑
t=1

ỹtεt (f(zt)− f(z′t))

∣∣∣∣∣
)
ψ̃

]
,

where ψ̃ is a symmetrized version of ψ(z1:n).

Proof. The proof is direct extension of Theorem 3 from
Rakhlin et al. [2011] by using the fact yt ∼ σt−1.

Proof of Corollary 1. The proof follows from the The-
orem 2 if we set β = α

8 and use the Lemma 3.

Proof of Lemma 1. The proof follows from the follow-
ing bound

dt,n = sup
f∈L(H)

|Etf − En [xf ]| (72)

≤ En

[
sup

f∈L(H)

|Etf − xf |

]
. (73)

And then the convergence of the discrepancies follows
from the de�nition of the uniformly convergent mar-
tingale.

2 Exceptional set examples

Markov chains. First, we bound the probability of
Ak:

P [Jn > k] ≤ P [Fzn > k] ≤ |S|max
s

P [Fs > k] . (74)

On the event Bk,m we have the following chain of in-
equalities.

n∑
t=Jn

I [dt,Jn ≤ bn] ≥
n∑
t=k

I [dt,Jn ≤ bn] (75)

≥
n∑
t=k

I [dt,Jn = 0] (76)

≥
n∑
t=k

I [zt = zJn ] , (77)

which gives us

P

[
Jn ≤ k ∧

n∑
t=Jn

I [dt,Jn ≤ bn] < m

]
(78)

≤ P

[
Jn ≤ k ∧

n∑
t=k

I [zt = zJn ] < m

]
(79)

≤ |S|max
s

P

[
Jn ≤ k ∧

n∑
t=k

I [zt = s] < m ∧ zJn = s

]
.

(80)

Now, for a given state s,
∑n
t=k I [zt = s] can be lower

bounded by the number of times we hit the state s
again. Let T is , i ≥ 1, be independent copies of the
recurrence times. Then

∑n
t=k I [zt = s] ≥ m for any

m ≥ 0, such that
∑m
i=1 T

i
s ≤ n− k. We also have the

following sequence of inclusions.{
1 ≤ i ≤ m : T is ≤ b

n− k
m
c ∧ Jn ≤ k ∧ zJn = s

}
(81)

⊆

{
m∑
i=1

T is ≤ n− k ∧ Jn ≤ k ∧ zJn = s

}
(82)

⊆

{
n∑
t=k

I [zt = s] ≥ m ∧ Jn ≤ k ∧ zJn = s

}
. (83)

And this gives us

P

[
Jn ≤ k ∧

n∑
t=k

I [zt = s] < m ∧ zJn = s

]
(84)

≤ P
[
∃ 1 ≤ i ≤ m : T is > b

n− k
m
c
]

(85)

≤ mP
[
Ts > b

n− k
m
c
]
. (86)
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Dynamical systems. The bound on P [Ak] follows
from the fact that Jn ≤ F (Cn). For the Bk,m we get

P [Bk,m] ≤ k max
1≤j≤k

P

Jn = j ∧
n∑
t=j

I [dt,j ≤ bn]

 .
(87)

And similarly to the Markov chain example,

P

Jn = j ∧
n∑
t=j

I [dt,j ≤ bn]

 ≤ P
[
T (Cj) > b

n− j
m
c
]
.

(88)

General stationary processes. The bound for this
case is done analogously to the previous two examples,
thus we omit the argument.

3 Counter-example for learnability

Theorem 3. Let Z = {0, 1}, H = [0, 1] and `(h, z) =
(h−z)2. Also, let C be a class of all stationary ergodic
processes taking values in Z. Then for any learning
algorithm that produces a sequence of hypotheses hn,
there is a process P ∈ C such that

P
[
lim sup
n→∞

(
Rn(hn)− inf

h∈H
Rn(h)

)
>

1

16

]
≥ 1

8
. (89)

Proof. Using the fact that the minimizer of
En
[
(h− zn+1)2

]
is Enzn+1, we can rewrite for

any hn ∼ σn

Rn(hn)− inf
h∈H

Rn(h) (90)

= En
[
(hn − zn+1)2

]
− inf
h∈H

En
[
(h− zn+1)2

]
(91)

= En
[
(hn − zn+1)2

]
− En

[
(Enzn+1 − zn+1)2

]
(92)

= (hn − Enzn+1)2. (93)

A minor modi�cation of the proof of Theorem 1 of
[Györ� et al., 1998] gives that for every algorithm that
produces a sequence hn of hypotheses, there is a sta-
tionary and ergodic process such that

P
[
lim sup
n→∞

(hn − Enzn+1)2 >
1

16

]
≥ 1

8
, (94)

which shows that no algorithm can be a limit learner
for the class of all stationary and ergodic binary pro-
cesses.

4 Connection to time series prediction

The goal of this section is to show the connection of
our framework to existing theoretical approaches to
time series prediction. In particular, we consider two

frameworks, which are close enough to conditional risk
minimization. In both cases, we show that the condi-
tional risk minimization solves harder problem in a
sense that its solutions can be used to solve these par-
ticular problems, but it requires more assumptions to
be valid.

We start with a framework of time series predic-
tion by statistical learning, considered for example in
[Alquier et al., 2013, McDonald et al., 2012]. Fixing
some point n in time, we consider a hypotheses class
H̃ ⊆ {h : Zn → Z}, where each hypotheses h gives us
a prediction of the next step by evaluating the whole
history. For any loss function ` : Z × Z → [0, 1], we
consider the following risk minimization problem:

min
h∈H̃

E [`(h(z1:n), zn+1)] . (95)

To set up the conditional risk minimization,
we de�ne a class of constant functions H =
{hz′(z) = z′,∀z′ ∈ Z}. Then if the process belongs to
a class learnable with H and `, we can guarantee that
there is an algorithm to choose a point z′n, such that
with probability 1− δ

E [`(z′n, zn+1)| z1:n] ≤ inf
z′

E [`(z′, zn+1)| z1:n] + εn(δ),

(96)
where εn(δ) is a sequence of errors guaranteed by the
algorithm for a given con�dence δ and εn(δ)→ 0. Con-
verting this to the bound on the expectation, we get

E [`(z′n, zn+1)] ≤ E
[
inf
z′

E [`(z′, zn+1)| z1:n]
]

(97)

+ εn(δ) + δ. (98)

Notice that

E
[
inf
z′

E [`(z′, zn+1)| z1:n]
]

(99)

≤ E
[

inf
h∈H̃

E [`(h(z1:n), zn+1)| z1:n]

]
(100)

≤ inf
h∈H̃

E [`(h(z1:n), zn+1)] . (101)

Therefore, if the process is from a learnable class, there
is an algorithm that always give good predictions ac-
cording to this framework as well.

The second setting, which was considered by [Win-
tenberger, 2014], is very close to the online sequence
prediction. In order to reduce the notations and sim-
plify the presentation, we assume that the learner has
an access to a (usually �nite) hypothesis class H and
at every step t he should choose a distribution πt over
H in a way that minimizes the regret:

n∑
t=1

Et−1 [`(Eπth, zt)]−min
h∈H

n∑
t=1

Et−1 [`(h, zt)] . (102)
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Again, if the process belongs to a learnable class with
H and `, then there is an algorithm, which produce
the sequence ht that satis�es with probability 1− δ

Et−1 [`(ht, zt)] ≤ min
h∈H

Et−1 [`(h, zt)] + εt(δ/n) (103)

for all 1 ≤ t ≤ n. Summing up over t, we get

n∑
t=1

Et−1 [`(ht, zt)] (104)

≤
n∑
t=1

min
h∈H

Et−1 [`(h, zt)] +

n∑
t=1

εt(δ/n) (105)

≤ min
h∈H

n∑
t=1

Et−1 [`(h, zt)] +

n∑
t=1

εt(δ/n). (106)

Thus giving us
∑n
t=1 εt(δ/n) bound on the regret with

high probability. For nice sequences (like i.i.d.) εt(δ/n)

is of order O
(√

logn
t

)
, which gives a regret bound of

order O
(√
n log n

)
. On the downside, we can get guar-

antees only for a class of learnable processes, while the
results of [Wintenberger, 2014] hold for any stochas-
tic process. The reason for this is that conditional
risk minimization is inherently more di�cult problem,
since it requires to optimize at every step and not in
the cumulative sense.


