
Trading Bitcoin and Online Time Series Prediction

Muhammad J Amjad mamjad@mit.edu
Operations Research Center
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Devavrat Shah devavrat@mit.edu
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technolog
Cambridge, MA 02139, USA

Editor: Oren Anava, Marco Cuturi, Azadeh Khaleghi, Vitaly Kuznetsov, Alexander Rakhlin

Abstract
Given live streaming Bitcoin activity, we aim to forecast future Bitcoin prices so as to execute

profitable trades. We show that Bitcoin price data exhibit desirable properties such as stationarity
and mixing. Even so, some classical time series prediction methods that exploit this behavior, such
as ARIMA models, produce poor predictions and also lack a probabilistic interpretation. In light
of these limitations, we make two contributions: first, we introduce a theoretical framework for
predicting and trading ternary-state Bitcoin price changes, i.e. increase, decrease or no-change; and
second, using the framework, we present simple, scalable and real-time algorithms that achieve a
high return on average Bitcoin investment (e.g. 6-7x, 4-6x and 3-6x return on investments for tests
in 2014, 2015 and 2016), while consistently maintaining a high prediction accuracy (> 60-70%) and
respectable Sharpe Ratio (> 2.0). Furthermore, when trained on a period eight months earlier than
the test period, our algorithms performed nearly as well as they did when trained on recent data!
As an important contribution, we provide a justification for why it makes sense to use classification
algorithms in settings where the underlying time series is stationary and mixing.

1. Introduction

The ubiquity of time series is a fact of modern-day life: from stock market data to social media
information; from search-engine metadata to webpage analytics, modern-day data exists as a
continuous flow of information indexed by timestamps. Our focus in this paper is on making scalable
and accurate forecasts in real-time, given a live stream of time series data. We specifically consider
nonparametric time series prediction algorithms, which can adapt to different structure that may be
present in data across heterogeneous application domains. We anchor our discussion to forecasting
Bitcoin price changes for algorithmic trading, an application that demands fast, accurate predictions.

1.1 The Problem

Let p[t] be the price of Bitcoin at time t ∈ Z+. We have two main problems of interest:
Prediction. For any time t, given the historical price time series up to time t, predict the price for
future time instances, s ≥ t+ 1.
Trading. For any time t, using current investment and predictions, decide whether to buy new
Bitcoins or sell any of the Bitcoins that are in possession.

Our work focuses on the problem of predictions and the purpose of a trading strategy is to
demonstrate the utility of accurate predictions. For this reason, we consider an extremely simple
trading strategy which shall be simulated under idealized conditions which ignore volume effects
and transaction costs. Accordingly, we limit the number of Bitcoins that can simultaneously be

1

possessed to one. Formally, at time t, let h[t] = 1, if we are in possession of a Bitcoin and h[t] = 0,
otherwise. Given h[t] and a prediction of whether the price will go up, down, or stay about the same,
the decision d[t] at time t is given by:

d[t] =

buy, if h[t] = 0 & price is predicted to increase, with high confidence
sell, if h[t] = 1 & price is predicted to decrease, with high confidence
hold, otherwise.

Effectively, we have a decision-making exercise relying on a prediction of the future. Therefore, it
is desirable for there to be a quantification of the confidence for each prediction such that the trading
algorithm can shield itself from low-confidence predictions.

1.2 Our Contribution

Our main contributions are two-fold: we develop a theoretical framework for time series analysis
based on reasonably generic properties of a time series, namely stationarity and mixing; and second,
we present simple, scalable, real-time algorithms for prediction and trading that yield high prediction
accuracy and highly profitable returns on investment in Bitcoin.

A time series being stationary means that its joint probability distribution is time-invariant.
Mixing means that the distribution at a specific time is primarily dependent on the recent past. Both
hold for a discrete time series tracking the first-differences of Bitcoin prices, as we show in Section
2.2 using the Dickey-Fuller and the Kwiatkowski-Phillips-Schmidt-Shin tests (stationarity) and the
Autocorrelation Function (ACF)/ Partial Autocorrelation Function (PACF) plots (mixing). Thus,
classical time series regression algorithms, e.g. ARIMA, that exploit stationarity and mixing could be
used to forecast price changes, yet as we show in Section 2.3, they have poor prediction performance.
They also lack a probabilistic interpretation that make them even less attractive options to be used
in conjunction with a trading strategy which would benefit from shielding itself from low-confidence
predictions.

To overcome these limitations, we propose a model for forecasting the price change, i.e. increase,
decrease, or no change, that relies on stationarity and mixing (Section 2.5). Effectively, we argue that
for such time series, the probability distribution of the future prices, {increase, decrease, no-change},
is a continuous function of the recent past that can be approximated from finite data. With this
insight, we present a collection of algorithms that estimate this conditional probability distribution:
classification algorithms like Random Forest, Logistic Regression and LDA; and an algorithm that
explicitly learns the empirical conditional probability distribution from data. Effectively, we provide
a justification, rooted in first principles, that allows classification algorithms to be effective in such
settings–a crucial link missing in related works. The performance of the resulting algorithms is
summarized next (details in Section 3.4):
Algorithm Comparison. Our proposed algorithms return several multiples of investment across
all tests, e.g. a 6-7x return on investment over a two month test period in 2014, a 4-6x return over
two months in 2015 and 3-6x return over 4 months in 2016, while consistently maintaining a 60-70%
accuracy and a Sharpe Ratio (Sharpe, 1998) over 2.0. In comparison, ARIMA based predictions
usually performed poorly across all metrics.
Sensitivity. We choose a training period eight months earlier than the testing period and notice
that while ARIMA loses money consistently, our algorithms perform nearly as well as they do when
trained on more recent data, producing a 4-6x return on investment with a ∼ 60-70% accuracy. This
points to the incredible robustness of our approach and fragility of ARIMA. Additionally, we can
achieve greater robustness by considering a set of the lengths of history, instead of single length d.
Stability. We use the Sharpe Ratio to understand how consistent the trading strategy (Maverick,
2015) is. Our algorithms yield a Sharpe ratio consistently near or above 2.0, which is considered very
good, while ARIMA lags far behind, at times < 0.

2

1.3 Related Works

There are two sets of literatures related to our work: financial and time series data analysis. In
financial literature, one of the relevant approaches is technical analysis, which assumes that price
movements follow a set of patterns and one can use past price movements to predict future returns
(Lo and MacKinlay, 1988, 1999). Caginalp and Balenovich showed that some patterns emerge from
a model involving two distinct groups of traders with different assessments of valuation (Caginalp
and Balenovich, 2003). Some empirically developed geometric patterns, such as heads-and-shoulders,
triangle, and double-top-and-bottom, can be used to predict future price changes (Lo et al., 2000;
Caginalp and Laurent, 1988; Park and Irwin, 2004). In particular, in (Lo et al., 2000) authors utilize
the method of Kernel regression to identify various geometric patterns in the historical data. Price
is predicted using recent history. In that sense, (Lo et al., 2000) is closest to this work. However,
we note that (Lo et al., 2000) does not yield any meaningful prediction method or for that matter
eventually yield a profitable trading strategy. Our work, given the above literature, can be viewed as
an algorithmic version of the “art of technical trading”.

In the context of time series analysis, classical methods are a popular choice. For example, the
ARIMA models which tend to capture non-stationary components through finite degree polynomials;
or using spectral methods to capture periodic aspects in data, described in detail in works such as
(Brockwell and Davis, 2013; Hamilton, 1994; Robert H. Shumway, 2015). In contrast, our approach
is nonparametric and stems from a theoretical modeling framework based on stationarity and mixing.
A natural precursor to this work are (Chen et al., 2013) and (Shah and Zhang, 2014), where the
nonparametric classification has been utilized for predicting trends. Classification algorithms have
been used to predict stock price changes previously, e.g. Ch. 4.6.1 of (James et al., 2013), (Gong and
Sun, 2009), (Alrasheedi and Alghamdi, 2012). However, none of these works provide a theoretical
framework justifying why these algorithms are suited for this problem space. Additionally, they tend
to operate on a daily, weekly or monthly time-resolution which is in contrast to our goal of near
real-time predictions.

2. Modeling Bitcoin Time Series

We now describe the Bitcoin data and establish stationarity and mixing. Next, we show that the
classical modeling approach comes up short. Subsequently, we describe a modeling framework that
holds promise in this setting and end by presenting our model and algorithms that fit the framework.

2.1 Bitcoin Data

We are using Bitcoin data, accessed via the OKCoin exchange using their APIs okc. All prices are
reported in Chinese Yuans. The APIs return lists of bid[t] and ask[t] prices at the exchange, which
are the list of prices that buyers are willing to pay, and the list of prices that sellers are demanding
(for one Bitcoin), respectively at time t. We cached several months of data from the exchange in
2014, 2015 and 2016. Therefore, the experiments in this work are reported for those periods. At
every point in time, t, we create an estimate of price as, p[t] = (max(bid[t]) + min(ask[t]))/2. Hence,
the pair (t, p[t]) represents a time series of Bitcoin price estimates. As an example, refer to Figure 1
(Left) for the Bitcoin price time series during a four month period in 2014.

2.2 Stationarity and Mixing

Given that the classical modeling approaches assume stationarity, we check for it using the Augmented
Dickey-Fuller (DF) Test (Said and Dickey, 1984) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test (Kwiatkowski et al., 1992). Both are hypothesis tests where DF assumes non-stationarity as the
null hypothesis while KPSS assumes the opposite. They reveal that the Bitcoin price time series
is not stationary (p-value > 0.3 for DF; p-value < 0.01 for KPSS). However, as is often observed

3

Figure 1: Left: Price of Bitcoin in Chinese Yuan from 12/1/2014 to 3/31/2015. Center: A histogram of
first-differences of the price time series that is sampled every 5 seconds. Right: A QQ-plot against a Gaussian
(0.02, 0.04).

Figure 2: Left: ACF plot for the Bitcoin price time series, sampled at 10s. This implies q ≤ 8. Center:
PACF plot for the Bitcoin price time series, sampled at 10s. This implies p ≤ 8. Note: a value of 10s on the
x-axis implies a lag = 1. Right: ARIMA (4,1,4) predictions with actual series, showing 50 data points.

with econometric data, the time series produced by the first-differences, i.e. y[t] = p[t]− p[t− 1], is
stationary (p-value < 0.01 for DF; p-value > 0.1 for KPSS). Figure 1 (Center) shows the histogram of
the first-differences of the Bitcoin price time series, sampled at 5s intervals, and the QQ-plot (Right)
confirms that the data appears to follow a Gaussian distribution. Additionally, the Kolmogorov-
Smirnov test fails to reject the hypothesis that the first-differences follow a zero-mean Gaussian
marginal distribution, thereby confirming stationarity.

We find that y[t] is a mixing process. Recall that a stochastic process is mixing if its values
at widely-separated times are asymptotically independent (Shalizi, 2007). The Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) plots in Figure 2 (Left, Center) show
exponential decay, implying mixing.

In summary, based on the outcomes of all the tests it is safe to conclude that the first-differences
of the Bitcoin price time series is stationary and mixing.

2.3 Classical Modeling: ARIMA

A natural reference point in time series modeling is to consider the classical techniques like the ARIMA
models. Their effectiveness in understanding and predicting time series data such as weather forecasts
(Mahmudur Rahman and Rahman, 2013), sales of electricity (Ugiliweneza, 2007), unemployment
rates (Dobra and Alexandru, 2008) and for other econometric problems (Asteriou, 2016) have been
well documented. Thus, we try to understand how well they work in our setting.

In order to fit an ARIMA model, which assumes stationarity, we need to use our data to determine
the three parameters: p, d, q. p corresponds to the autoregressive component, q to the moving-
average and d is the degree of differencing Box and Reinsel (1994); Robert H. Shumway (2015). The
Dickey-Fuller and KPSS tests have already revealed that d > 0 for stationarity. Using the ACF and

4

PACF plots in Figure 2 (Left, Center) as our guides, we can safely assume that p, q ≤ 8. The lowest
AIC/BIC values for the best fit were given by (p, d, q) = {4, 1, 4} and (p, d, q) = {2, 1, 1}.

Figure 2 (Right) shows the point-predictions using ARIMA(4,1,4). The model is updated using
each new data point and predictions are shown in the plot. The plots are zoomed in to show a
handful of points to underscore how the predictions tend to be nearly one-step shifted versions of the
original. This does not appear very promising given that all predictions are approximately tracking
the latest data point in the past, providing little new information. Additionally, they do not provide
a probability for each prediction. This can potentially be a severe handicap when coupled with a
trading strategy that could benefit from a probabilistic framework for deciding the confidence with
which it can commit to new trades.

2.4 Back to First Principles

Given that the first-differences of Bitcoin price time series, y[·], is stationary and mixing, it suggests
that there exists a large enough d ∈ Z+ so that

P(y[t]|y[−∞ : t− 1]) ≈ P(y[t]|y[t− d : t− 1]), (1)

where y[a− d : a] = (y[a− d], . . . , y[a]) for any a ∈ Z, d ≥ 1. (1) states that the distribution of y[t],
conditioned on a finite but long enough history, is approximately the same as that for the sample
with entire past. Additionally, since y[t] is stationary, we have:

P(y[t]|y[t− d : t− 1]) ≈ P(y[s]|y[s− d : s− 1]),∀s. (2)

This is a critical observation because it leads us to conclude that for two entirely disparate points in
time if the finite-length history is similar then the process’ probabilistic evolution in the future will
also be similar.

From (1) and (2), a reasonable approximation for the y[·] process is a Markov Chain with state
z[·], where z[t] ≡ y[t − d : t], and the state transition probability is a measurable function from
Rd+1 → R with respect to Borel σ-algebra (cf. see Ch. 6 of Durrett (2010), for precise definition).
That is, for any given θ ∈ R, consider function Fθ : Rd → [0, 1] defined as

Fθ(y[t− d : t− 1]) = P(y[t] > θ|y[t− d : t− 1]), (3)

for any t ∈ Z (recall, Fθ does not depend on t as it is a stationary process). This is a measurable
function. A special class of measurable functions (which is quite general) is the space of continuous
functions. We shall assume that our class of model satisfies this restriction.

Key Model Assumption. For any θ ∈ R, Fθ as defined above is a continuous function.

2.5 Our Model

Given θ ∈ R, define

x[t] =

−1, if y[t] < −θ
1, if y[t] > θ

0, otherwise.
(4)

Given history length d ≥ 1, define a 3-dimensional probability vector Q[t] = (P(x[t] = σ|y[t − d :
t− 1]), σ ∈ {−1, 0, 1}). Then we posit that Q[t] = F (y[t− d : t− 1]), for some continuous function
F : Rd → [0, 1]3 for all t ∈ Z. This directly follows from our model assumption.

We note that our interest is truly in this 3-dimensional vector since we are interested in trading
Bitcoins, and the future decision in the simple trading strategy is primarily determined by whether
prices are going to go up, down or remain approximately the same. In general, for other decision
making tasks, one might be interested in more or less detailed aspects of the distribution of future
prices.

5

2.5.1 Prediction Algorithm using Classification

Given the model, the problem effectively reduces to ternary-state classification. In particular, we
can generate training data as follows: (x[t], y[t− d : t− 1]) for each t provides a sample to train the
model. This, when coupled with any classification algorithm, provides an algorithm for the purpose of
prediction. Classification algorithms afford a significant additional advantage: they can incorporate a
richer feature set. For our classification algorithms we perform an initial "feature extraction" based
on y[: t− 1]. Recalling that x[t] is calculated from y[t], y[t− 1] as defined in Equation 4, we extract
the following features:

1. x[t− 1]: the latest change in price. This captures the most recent movement in price.

2. Tσ,d[t− 1] =
∑t−1
s=t−d 1{x[s] = σ}: the tally-count of each quantized value in x[t− d : t− 1], for

every d and σ ∈ {−1, 0, 1}. This tally-count feature allows us to capture the recent distribution
of price-changes which provides more information than that contained in the first feature above
[1].

3. Cσ[t− 1] = maxk(k : σ = x[t− 1] = x[t− 2] = · · · = x[t− k]): consecutive run-length of each
quantized value σ ∈ {−1, 0, 1}. This feature allows us to capture trends of consecutive rises,
falls and no-changes in the price process leading up to the current point in time.

This collection of features allows us to capture information leading up to the current point in
time, ∀t. Features 2 and 3 allow us to capture a richer amount of information compared to the
y[t − d : t − 1] being used by ARIMA models. Intuitively, we expect a richer feature set to allow
these classification algorithms to perform better than ARIMA models which simply consider the past
prices as a single "feature".

Effectively, for classification algorithms we have Q[t] = F (y[t− 1], Tσ,d[t− 1], Cσ[t− 1]) and F (·) is
believed to have "simple" structure. The goal is to learn F (·) ∈ [0, 1], using a classification algorithm.

Connections and Contrast with Prior Work. Predicting quantized prices by using classification
algorithms has been tried previously, e.g. Ch. 4.6.1 of James et al. (2013), Gong and Sun (2009),
Alrasheedi and Alghamdi (2012). However, our work goes beyond the simple application of algorithms
and directly ties the efficacy of these algorithms to the general modeling framework which assumes
stationarity and mixing. Additionally, unlike past works, we do not restrict ourselves to prediction
alone; we couple it with a trading strategy. Furthermore, the scale of Bitcoin data at our disposal
provides a better stress test of these classification algorithms at a low latency, e.g. 5-10s, in contrast
to daily, weekly or monthly resolutions considered in prior works.

Which Classification Algorithms to use? For our choice of classification algorithms, we turn
to Random Forest (RF), Logistic Regression (LR) and Linear Discriminant Analysis (LDA). For
the Bitcoin time series, they carry promise because they attempt to learn the transition probability
distribution function, P(x[t]|hd[t]) given input data, and hence, satisfy the general framework. They
are also known to be efficient, scalable and robust.

2.5.2 Approximate Empirical Conditional (EC) Distribution

Another approach is to learn the actual conditional distribution, exactly. Of course, this is not
feasible given a continuous state-space and limited data, so we quantize the state-space to produce a
reasonable approximation. Specifically, we can learn the approximate distribution by considering
the empirical conditional (EC) distribution of x[·] given d-step history, hd ≡ x[t − d : t − 1]. For
a fixed d ≥ 1, σ ∈ {−1, 0, 1} and hd ∈ {−1, 0, 1}d, the EC distribution of interest, is denoted by
Pd(σ|hd). See Appendix A for a precise definition. We can build these probability maps for each
prefix, hd, and that is effectively the model. Note that this model relies only on the past d values
corresponding to each data point making it more comparable to ARIMA models. This also suggests

6

that due to the availability of only finite amount of data, learning the empirical distribution will
likely be outperformed by the classification algorithms which have the advantage of incorporating a
richer feature set, as discussed earlier.

2.5.3 Prediction Probabilities, Thresholds and Risk Profile

Our algorithms produce a prediction for each step in the future. At time t − 1, the prediction is
x̂[t] ∈ {−1, 0, 1} for the next time step. However, we require the model to produce a probability
associated with each prediction to give us a sense of confidence in each individual prediction. This is
useful because it can help the trading strategy avoid committing to trade-decisions for low-confidence
predictions. Specifically, we produce 0′s for all predictions below a tunable confidence threshold:

x̂[t] =

{
σ∗ if P∗(x[t] = σ∗|hd[t− 1]) ≥ γ,
0, otherwise,

(5)

where σ∗ = argmaxσ∈{−1,0,1} P(x[t] = σ|hd[t− 1]).
The use of γ is to threshold the quality of the estimator. If the estimator is not confident enough,

then we ignore the prediction and predict 0. In the context of trading algorithm, this means that
it does nothing, i.e. it performs no trades. That is, when the signal is not strong enough as per
prediction algorithm, the trading algorithm does not decide to make bets either way. Additionally, γ
is the only customization parameter of the entire system. It can be chosen to suit the risk profile.
For example, a low value of γ such as 0.5, would mean that we produce predictions that are more
likely to be incorrect on new data. On the other hand, a very high γ, say 0.9, might result in few or
no trades.

We use a validation set to determine the best γ for our tests. Given the inverse relationship
between accuracy and number of trades, we choose the γ value that maximizes the product of
accuracy and profit on the validation sets. This approach allows us to choose γ in a manner that
penalizes both high accuracy with low expected profit and low accuracy with high expected profit.

Combining Multiple Predictions. For the EC model (Section 2.5.2), suppose we use a set of
values of d ≥ 1, denoted as S. For each d ∈ S, let x̂d[t] be the prediction obtained for time t based
on history hd as discussed above. We produce a weighted combination of these predictions, denoted
as x̂w[t]:

x̂w[t] =
∑
d∈S

x̂d[t]× wd, where
∑
d∈S

wd = 1. (6)

One suggested way of computing the weights, wd, is detailed in Appendix B, using information-
theoretic ideas. Finally, we further quantize x̂w[t] to produce our prediction x̂[t] ∈ {−1, 0, 1}, similarly
to the discretization described in Section 2.5.

3. Experiments and Results

3.1 Experimental Setting

We conducted several experiments to evaluate the predictions produced by all algorithms discussed
earlier. The experiments were simulated using the OkCoin data from 2014, 2015 and 2016. γ was
chosen using a validation set, unless noted otherwise. d was typically chosen from among {3,4,5}.
Lastly, we fixed the price sampling rate to 5s and θ = 0.

3.2 Objectives

The primary objective of our experiments is to compare our prediction algorithms with ARIMA
as a baseline. Additionally, we want to study the sensitivity of and trade-offs introduced by the

7

Figure 3: Cumulative Profit and Bitcoin Price in 2014, 2015, 2016 with d ∈ 3, 4, 5. γ selected via validation.
Each time step represents 5s.
(Left): Training: 2/16/14 - 3/14/14, Validation: 3/15/14 - 3/31/14, Test: 4/1/14 - 6/11/14.
(Center): Training: 12/1/14 - 12/31/14, Validation: 1/1/15 - 1/15/15, Test: 1/16/15 - 3/31/15.
(Right): Training: 2/26/16 - 4/15/16, Validation: 4/16/16 - 5/15/16, Test: 5/16/16 - 9/15/16.

model parameters, e.g. d, γ. Performance sensitivity to the choice of training periods is another
objective of evaluation. Finally, the experiments must also enable us to gauge the stability of the
algorithms vis-a-vis the trading strategy.

3.3 Evaluation Criteria

We use the following metrics for evaluating the performance of all models under consideration:
Prediction Accuracy. Foremost, our priority is to evaluate the accuracy of the predictions produced
by each algorithm. Our accuracy measure is simply the proportion of predictions we get correct from
among the {-1, 1} predictions we make. Note that this means we ignore evaluating the accuracy
when x̂[t] = 0 because our trading strategy ignores them. For m predictions, starting at time t:

Accuracy =

∑m−1
j=0 1{x̂[t+ j] = x[t+ j]}1{x̂[t+ j] 6= 0}∑m

j=1 1{x̂[t+ j] 6= 0}
(7)

Cumulative Profit. Given that we are simulating a trading strategy for Bitcoin, the most natural
metric for evaluation is the cumulative profit across the period of execution.
Investment Returns. Simply reporting cumulative profit can hide an important factor in the
evaluation of a trading strategy: the investment required to achieve the profit or returns. We also
report the profit as a ratio of the average investment required during the period of the experiment.
Sharpe Ratio. We use the Sharpe Ratio to quantify how well (or worse) the policy does compared
to the risk-free returns and with how much volatility. A Sharpe Ratio in excess of 1.0 should be
considered pretty good, greater than 2.0 is considered great and so on. In our case we define one
period of trading to be the equivalent of a month. Please see Appendix C for details on how we
calculate it.

3.4 Results

Compare Algorithms. The standout conclusion is that the classification algorithms outperform
both EC and ARIMA on all metrics. Refer to Figure 3 and Table 1, Table 5 (Appendix E) and Table
6 (Appendix E) for the experiments in 2014, 2015 and 2016. They generated approximately 4-6x in
returns, with a Sharpe Ratio over 2.6 and accuracy over 70% in results for the 45 day test period
in 2015. For the experiment in 2014, they generated approximately 7x return with Sharpe Ratio
over 2.5 with an accuracy > 65%. For this problem space, a 70% accuracy is great, as discussed in

8

Figure 4: Comparison of the cumulative Profit for the same Test period in 2015 with a recent training
period and an eight month old training period. d ∈ 3, 4, 5 and γ selected on the same validation set. Each
time step represents 5s.
(Left): Training: 12/1/14 - 12/31/14, Validation: 1/1/15 - 1/15/15, Test: 1/16/15 - 3/31/15.
(Right): Training: 2/16/14 - 3/14/14, Validation: 1/1/15 - 1/15/15, Test: 1/16/15 - 3/31/15.

Profit Return Sharpe Accu.

Arima 1366.7 0.9 0.43 0.49
EC 5721.1 3.7 2.17 0.64
RF 6049.9 3.9 2.56 0.78
LDA 7469.0 4.8 2.82 0.73
LR 9090.9 5.9 3.32 0.70

Table 1: Using a recent training period. Train-
ing: 12/1/14 - 12/31/14, Validation: 1/1/15 -
1/15/15, Test: 1/16/15 - 3/31/15. d ∈ 3, 4, 5; γ
is selected via validation.

Profit Return Sharpe Accu.

Arima -4758.5 -3.1 -2.0 0.43
EC 5721.4 3.7 2.2 0.64
RF 7903.1 5.1 3.4 0.69
LR 8019.4 5.2 3.5 0.71
LDA 7934.1 5.1 3.3 0.69

Table 2: Using an eight month old Training
period, same validation and test periods as those
in Table 1. Training: 2/16/14 - 3/14/14. d ∈
3, 4, 5; γ is selected via validation.

Ch. 4.6.1 of James et al. (2013). Among the classification models, all choices under consideration
perform comparably. This is a significant result because it establishes the efficacy and robustness
of the classification algorithms for time series modeling while conforming it to a general modeling
framework constructed from first principles.

EC tends to fare much better than ARIMA models, e.g. over the 2.5 months in the test period in
2014 (Left plot), a return of 5.7x with Sharpe Ratio of 1.62 compared to a 3.2x return and 1.6 Sharpe
Ratio of the ARIMA mode. For the test in 2015, EC generates a 3.7x return with Sharpe of 2.2
compared to ARIMA generating 0.9x return with Sharpe of 0.43. This trend extends to prediction
accuracy as well. During the test period in 2016, ARIMA and EC perform comparably (refer to
Figure 3). Under most circumstances, ARIMA performs poorly on all metrics. The parameters used
in these experiments, p = 4, d = 1, q = 4, were determined using cross-validation on the training set.

Sensitivity: Training Period. Refer to Figure 4 (Right) and Table 2 . Even though there is a lag
of about eight months between the training and testing periods, EC and all classification algorithms
continue perform very well, while ARIMA loses money consistently. This incredible finding shows
that patterns of historical evolution of y[t] repeat fairly often and are observed frequently across long
periods of time and are captured well by EC and classification algorithms.

Sensitivity: Single vs Multiple d. Table 3 shows the noticeable robustness introduced by using
multiple d values instead of just one. When using d ∈ {3, 4, 5} instead of just using one, we notice
that the cumulative profits and accuracy are better or, at least, no worse than those produced by

9

RF EC
d Profit Accu. Profit Accu.

3 8555.5 0.78 9082.5 0.65
4 8545.7 0.78 8248.6 0.63
5 8604.8 0.79 7114.4 0.65
3,4,5 8624.9 0.79 9091.4 0.65

Table 3: Effects of choosing multiple values
of d. γ = 0.65 is fixed and no validation is
used. Training Period: 12/1/14 - 1/1/15; Test
Period: 1/1/15 - 3/31/15. Only showing RF
and EC.

RF EC
γ # Trades Accu. # Trades Accu.

0.60 18634 0.69 25780 0.58
0.65 9982 0.73 19312 0.60
0.70 4262 0.77 17190 0.62
0.75 2230 0.81 6216 0.68

Table 4: Tension between the number of Trades
and Accuracy shown by varying γ is varying (no
validation) with d ∈ 3, 4, 5 fixed; Training Period:
12/1/14 - 1/1/15; Test Period: 1/1/15 - 3/31/15.
Only showing RF and EC.

choosing single values of d. Note that for this experiment γ was fixed to showcase the effect of
choosing single vs multiple values of d.

Trade-Off: Accuracy vs # Trades. As discussed in Section 2.5.3, the choice of γ determines the
risk-profile of the trading algorithm. γ should be chosen via cross-validation or simply by tuning it
on a validation set like we do for our experiments discussed earlier. However, in order to confirm
our intuition about the tradeoffs between accuracy and number of trades (which influences profits),
we conducted some experiments by keeping d fixed and varied γ. We can see from the results in
Table 4 for EC and RF, the higher we set γ the greater our accuracy. However, the higher the γ the
lower the resulting number of trades because a higher γ also means more predictions of 0 resulting in
fewer trades. This confirms the tension between more/less trades and smaller/greater accuracy we
intuitively expected.

Stability: Sharpe Ratio. Tables 1, Table 2, Table 5 (Appendix E) and Table 6 (Appendix E)
show the Sharpe Ratio for all algorithms. ARIMA does not perform as well as the others. The
classification algorithms and EC consistently manage a Sharpe Ratio near or in excess of 2.0 which
should be considered a very good indicator of the over all stability of the trading scheme during the
entire testing period spanning several months.

4. Conclusion

After establishing the appropriate learning framework, we first indicate the limitations of classical
time series methods like the ARIMA models. Next, we build a general modeling framework from first
principles which is expected to work well in this setting. We discuss two approaches that conform to
the framework: Classification algorithms and directly learning the empirical conditional distribution
(EC). They all outperform ARIMA on all evaluation metrics, with classification algorithms performing
the best on experiments spanning 2014-2016. Our results establish that we can achieve a Sharpe Ratio
over 2.0 with consistency, and maintain a prediction accuracy near or above 70% while generating
several multiples of average investment as return over tests each spanning 2-4 months. For a discussion
on a few significant issues not considered in this work, please see Appendix D.

References
Okcoin api. https://www.okcoin.com/about/publicApi.do.

M. Alrasheedi and A. Alghamdi. Predicting up/down direction using linear discriminant analysis and logit
model: The case of sabic price index. Research Journal of Business Management 6, pages 121–133, 2012.

Stephen G. Asteriou, Dimitros; Hall. Applied Econometrics (Ch 13: . ARIMA Models and the Box–Jenkins
Methodology). Palgrave Macmillan, 3rd edition, 2016.

10

Mayank Bawa, Tyson Condie, and Prasanna Ganesan. Lsh forest: self-tuning indexes for similarity search.
In International World Wide Web Conference, 2005.

Jenkins Box and Reinsel. Time Series Analysis, Forecasting and Control. Prentice Hall, Englewood Clifs, NJ,
3rd edition, 1994.

Peter J Brockwell and Richard A Davis. Time series: theory and methods. Springer Science & Business
Media, 2013.

Gunduz Caginalp and Donald Balenovich. A theoretical foundation for technical analysis. Journal of Technical
Analysis, 2003.

Gunduz Caginalp and Henry Laurent. The predictive power of price patterns. Applied Mathematical Finance,
5:181–206, 1988.

George H. Chen, Stanislav Nikolov, and Devavrat Shah. A latent source model for nonparametric time series
classification. In Advances in Neural Information Processing Systems, 2013.

Ion Dobra and Adriana AnaMaria Alexandru. Modelling unemployment rate using box-jenkins procedure.
Journal of Applied Quantitative Methods, 2008.

Rick Durrett. Probability: Theory and Examples. Cambridge University Press, 4.1 edition, 2010.

Jibing Gong and Shengtao Sun. A new approach of stock price trend prediction based on logistic regression
model. IEEE International Conference on New Trends in Information and Service Science. NISS ’09.,
pages 1366–1371, 2009.

James Douglas Hamilton. Time series analysis, volume 2. Princeton university press Princeton, 1994.

Gareth James, Daniella Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning.
Springer, 2013.

D. Kwiatkowski, P. C. B. Phillips, P. Schmidt, and Y. Shin. Testing the null hypothesis of stationarity
against the alternative of a unit root. Journal of Econometrics, pages 159–178, 1992.

Andrew W. Lo and A. Craig MacKinlay. Stock market prices do not follow random walks: Evidence from a
simple specification test. Review of Financial Studies, 1:41–66, 1988.

Andrew W. Lo and A. Craig MacKinlay. A Non-Random Walk Down Wall Street. Princeton University
Press, Princeton, NJ, 1999.

Andrew W. Lo, H. Mamaysky, and J. Wang. Foundations of technical analysis: Computational algorithms,
statistical inference, and empirical implementation. Journal of Finance, 4, 2000.

Shah Yaser Maqnoon Nadvi Mahmudur Rahman, A.H.M. Saiful Islam and Rashedur M Rahman. Comparative
study of anfis and arima model for weather forecasting in dhaka. Onternational Conference on Informatics,
Electronics and Vision (ICIEV), 2013.

J.B. Maverick. What is a good sharpe ratio. http://www.investopedia.com/ask/answers/010815/what-good-
sharpe-ratio.asp, 2015.

Cheol-Ho Park and Scott H. Irwin. The profitability of technical analysis: A review. AgMAS Project Research
Report No. 2004-04, 2004.

Rajesh Motwani Piotr Indyk. Approximate nearest neighbors: Towards removing the curse of dimensionality.
In STOC ’98 Proceedings of the thirtieth annual ACM symposium on Theory of computing. ACM, 1999.

David S. Stoffer Robert H. Shumway. Time Series Analysis and It’s Applications. Blue Printing, 3rd edition,
2015.

S. E. Said and D. A. Dickey. Testing for unit roots in autoregressive-moving average models of unknown
order. Biometrica, 1984.

11

Scikit-Learn. Lsh forest implementation.

Devavrat Shah and Kang Zhang. Bayesian regression and bitcoin. CoRR, 2014.

Cosma Shalizi. Lecture Notes on Stochastic Processes (Advanced Probability II). (unpublished),
http://www.stat.cmu.edu/ cshalizi/754/notes/all.pdf, 2007.

William F Sharpe. The sharpe ratio. Streetwise–the Best of the Journal of Portfolio Management, pages
169–185, 1998.

Beatrice Ugiliweneza. User of arima time series and regressors to forecast the sale of electricity. SESUG
Proceedings, 2007.

12

Appendices
A. Empirical Conditional (EC) Distribution: Model

Given d ≥ 1, the EC distribution of interest, is defined as follows: for any σ ∈ {−1, 0, 1} and any
hd ∈ {−1, 0, 1}d,

Pd(σ|hd) =
Nd((σ,hd))∑

γ∈{−1,0,1}Nd(γ,hd)
, (8)

where Nd((σ,h) = |{t : x[t] = σ, x[t− d : t− 1] = hd[t− 1]}| given data x[·].
This is effectively an exercise is creating discrete-space probability maps, learned from data by

counting the occurrences of specific prefixes, hd ∈ {−1, 0, 1}d followed by each x[t] = σ = {−1, 0, 1}.

B. Empirical Conditional (EC) Distribution: Prediction with Multiple
d ≥ 1.

We produce a ‘weighted’ combination of predictions, denoted as x̂w[t]:

x̂w[t] =
∑
d∈S

x̂d[t](wd) (9)

where, wd = (1− Id(hd))Qd(hd). We borrow from Information-theoretic ideas and let Id denote the
amount of Information contained for a given d; Qd(hd[t]) simply denotes the fraction of times a
particular prefix, hd[t], is observed. More formally, we first compute the conditional entropy:

H(hd) = −
∑

σ∈{−1,0,1}

Pd(σ|hd) log3 Pd(σ|hd). (10)

Let Nd(h) = |{t : x[t− d : t− 1] = h}| be the number of times hd is d-step prefix. Then, we have:

Q(hd) =
Nd(hd)∑

gd∈{−1,0,1}d Nd(gd)
. (11)

In above, we use notation 0/0 = 0. We then denote the information content in the sequence by:

Id =
∑

hd∈{−1,0,1}d
Q(hd)H(hd) =

∑
hd∈{−1,0,1}d

Id(hd), (12)

C. Sharpe Ratio

We compute the Sharpe ratio of the trading strategy. To recall, the Sharpe ratio of a strategy can
be computed as follows: over N periods, let profiti be the profit (or loss) made in the ith period
1 ≤ i ≤ N . Let p0 and pN be the price of the Bitcoin at the beginning and at the end of this interval
(i.e. N periods). Then, Sharpe ratio is defined as:

Sharpe Ratio =
1
N

∑N
i=1 profiti − |p0 − pN |

1
N

∑
i profit2i − [1N

(∑N
i=1 profiti)]

2
(13)

13

D. Discussion: Issues not considered

We now comment on a few significant issues not considered in this work:

Scaling of Trading strategy. As noted in Section 1.1, our simple trading strategy is a proof-of-
concept trading strategy simulated under idealized conditions. This trading strategy only trades 1
Bitcoin and this helps avoid two major issues. Firstly, there is no question of any technical constraints
or exchange-based restrictions to consider as we never trade more than a single Bitcoin. An actual
trading scheme would have to consider the impact of restrictions when thinking of trading more
Bitcoins or deciding to short Bitcoins before owning them. Secondly, we avoid considering the impact
of our own trading decisions on the equilibrium of the market. Such a simplification can safely be
made when dealing with just a solitary Bitcoin. However, when increasing the quantities of Bitcoin
we decide to trade, one has to develop an understanding of how one’s trading decisions potentially
impact the market.

Latency to Exchange. In our work, we have performed trade simulations to evaluate our prediction
algorithm. While our predictions can be used in a real-time trading scheme, there are some important
infrastructural challenges to consider. Foremost is the latency between placing orders on an exchange
and the fulfillment of that order. Given that we were sampling our pricing data fairly frequently
(5s intervals), ensuring that decisions can be made and executed in near real-time is not an trivial
task and is a function of infrastructural limitations of the exchange and the network in between the
exchange the the client.

How Large should d be? An important question is how large should d be? Given d, the number of
prefixes scale as 3d. Therefore, with large d, the the data may not be sufficient to provide useful proxy
for empirical distribution. On the other hand, if d is too small, the history may not be informative
enough for the purpose of prediction. Therefore, it is important to use the right compromise choice
for d. One such rule is to keep d ≤ log3(T/100) when T time units of data is available. Based on our
experiments, this allows for sufficient data for making meaningful empirical estimation.

Computational Complexity of the Model Index. Given that the storage of our prefixes scales
as 3d, if d becomes large, e.g. d > 20, the growth constraints on memory start to become major
hurdles. Even though d should remain small for reasonably large historical pricing information (see
the paragraph above), it is worth considering the approach one might take to overcome the challenges
posed by large d. One approximate solution is to build the storage index more cleverly, such as using
Locality Sensitive Hashing (LSH) as proposed in Bawa et al. (2005). The crux of the the work on
LSH trees is to find clever hash maps that enable a compressed index which guarantees with high
probability that for ε > 0, if we wish to find k neighbors, such that the distance from a new point q
to the i− th nearest neighbor is at most (1 + ε) times the distance from q to its true i− th nearest
neighbor’ Piotr Indyk (1999). In essence, LSH trees can replace the index/dictionaries we use to
store the empirical conditional probabilities for our model. These LSH trees can then can produce
approximate nearest neighbors of a prefix under consideration with lower memory and computational
complexity compared to an exact match. Several good implementations of LSH Forest are available
to use, such as the one provided by Scikit-Learn Scikit-Learn.

Quantized Predictions. Our model and algorithms only predict quantized ternary values: {-1, 0,
1} to indicate the direction of price movements. However, we have not focused on quantifying the
magnitude of the change and our confidence in predicting such. One can imagine using the empirical
conditional probabilities to weigh the predictions on a floating point scale that maps our predictions
back on the space of Bitcoin prices (or changes). This is a topic of interest for future explorations
and extensions of this work.

14

E. Results for Experiments in 2014 and 2016

The tables below correspond to the results presented in the left and right plots in Figure 3.

Profit Return Sharpe Accu.

Arima 10650.9 2.6 1.22 0.66
EC 11981.0 2.9 1.41 0.64
RF 18329.2 4.5 1.64 0.79
LDA 22507.9 5.6 1.32 0.76
LR 24077.3 6.0 2.01 0.72

Table 5: Test in 2016.
Training: 2/26/16 - 4/15/16, Validation:
4/16/16 - 5/15/16, Test: 5/16/16 - 9/15/16.
d ∈ 3, 4, 5; γ is selected via validation.

Profit Return Sharpe Accu.

Arima 9964.0 3.2 1.67 0.48
EC 17851.9 5.7 1.62 0.65
RF 22696.5 7.4 1.89 0.65
LDA 20698.9 6.7 1.66 0.74
LR 21583.4 6.9 1.67 0.73

Table 6: Test in 2014.
Training: 2/16/14 - 3/14/14, Validation: 3/15/14
- 3/31/14, Test: 4/1/14 - 6/11/14. d ∈ 3, 4, 5; γ
is selected via validation.

15

	Introduction
	The Problem
	Our Contribution
	Related Works

	Modeling Bitcoin Time Series
	Bitcoin Data
	Stationarity and Mixing
	Classical Modeling: ARIMA
	Back to First Principles
	Our Model
	Prediction Algorithm using Classification
	Approximate Empirical Conditional (EC) Distribution
	Prediction Probabilities, Thresholds and Risk Profile

	Experiments and Results
	Experimental Setting
	Objectives
	Evaluation Criteria
	Results

	Conclusion
	Appendices
	Empirical Conditional (EC) Distribution: Model
	Empirical Conditional (EC) Distribution: Prediction with Multiple d 1.
	Sharpe Ratio
	Discussion: Issues not considered
	Results for Experiments in 2014 and 2016

