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Abstract

Independent forecasts obtained from different temporal aggregates of a given time series
may not be mutually consistent. State-of-the art forecasting methods usually apply ad-
justments on the individual level forecasts to satisfy the aggregation constraints. These
adjustments require the estimation of the covariance between the individual forecast errors
at all aggregation levels. In order to keep a maximum number of individual forecasts un-
affected by estimation errors, we propose a new forecasting algorithm that provides sparse
and smooth adjustments while still preserving the aggregation constraints. The algorithm
computes the revised forecasts by solving a generalized lasso problem. It is shown that
it not only provides accurate forecasts, but also applies a significantly smaller number of
adjustments to the base forecasts in a large-scale smart meter dataset.

1. Introduction

The frequency of a given time series does not necessarily provide the best representation
of it for modelling and forecasting tasks. Furthermore, rather than focusing on the given
frequency, it is often crucial to generate forecasts at multiple frequencies, e.g. daily, weekly
and monthly, for different decision making problems. In other words, the need is to generate
forecasts for multiple temporal aggregation of the observed time series (see Silvestrini and
Veredas (2008) for a literature review).

Forecasts for all frequencies can be computed by aggregating the forecasts of the observed
time series. However, forecasting at the highest available frequency is often challenging due
to the low signal-to-noise ratio, and potential useful information at other frequencies is
disregarded. Instead, it is possible to independently forecast the series at all frequencies,
called base forecasts. This approach allows us to use distinct methods to benefit from dif-
ferent levels of accuracy at various frequencies. However, using different information sets
and different forecasting methods can results in incoherent forecasts, i.e. forecasts at dif-
ferent frequencies may not add up consistently across aggregation levels. Since the optimal
forecasts are coherent by definition, it is necessary to impose coherency when generating
forecasts at multiple frequencies. Also, from a decision making perspective, coherent fore-
casts support consistent decisions across different planning horizons.

Athanasopoulos et al. (2015) showed that temporally aggregated time series can be
represented as a hierarchical time series. As a result, it is possible to use the optimal



combination framework developed by Hyndman et al. (2011) to produce coherent revised
forecasts from the base forecasts. We show that the revised forecasts are obtained by adding
an adjustment term to the base forecasts in order to satisfy the aggregation constraints.
A similar observation has been made for contemporaneous hierarchies in Ben Taieb et al.
(2017). However, with temporal hierarchies, the adjustments are applied to consecutive
observations of the time series, while, with contemporaneous hierarchies, they are applied
at the same time instant across time series.

If the base forecasts are unbiased, the adjustments will have a closed-form expression,
and will depend on the covariance matrix of the base forecast errors (Wickramasuriya
et al., 2015). We argue that the estimation errors in the error covariance matrix can lead
to increased variability in the revised forecasts. We propose to compute sparse and smooth
adjustments while still satisfying the aggregation constraints and minimizing forecast errors.
Sparsity will allow us to keep some base forecasts unaffected by adjustments. Smoothness
will provide an additional regularization by exploiting the fact that the adjustments are ap-
plied to consecutive observations of the time series. The revised forecasts are computed by
solving a generalized lasso problem (Tibshirani and Taylor, 2011) for which an efficient regu-
larization path algorithm is available (Arnold and Tibshirani, 2016). The proposed method
will be compared with state-of-the-art forecasting methods using a large scale electricity
smart meter data set.

2. Forecasting Temporal Hierarchies

Following the notations of Athanasopoulos et al. (2015), suppose we observe a time series
{ys;t =1, ..., T} with sampling frequency m and where T'= 0 (mod m). If k € {k,, ..., k1}
is a factor of m with k, = m and k; = 1, then the k-aggregate series with seasonal period

My, = m/k can be written as yj[-k] = Zziu(jfl)xkyt where j =1,...,T/k.

To avoid using a different index j for each aggregation level k, we can define a common

index 7 as the observation index of the most aggregated series, i.e. yz[m} wherei =1,...,T/m,
and an index z = 1,..., M which controls the increase within each period. Then, the
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matrix of order k, and 1, is a Mj-vector of ones.

In other words, the different k-aggregate series define a hierarchal time series, i.e. a mul-
tivariate time series with an hierarchical structure. Since each time series in the hierarchy
is a temporal aggregation of the bottom series, we shall call it a temporal hierarchy.

We will denote b; = yzm, a m~vector of observations at the bottom level, and a; = K, b;
a mg-vector of observations at all aggregation levels. Then, y; = (a; b;)’ is a M-vector that
contains all observations where M = mg, + m.



Let H* = m x H be the maximum required forecast horizon for the observed series y;,
i.e. at the bottom level. Then, the required forecast horizon for each k-aggregate series is
H, = M;H.

Given I = T'/m historical observations yi, ..., ys of the temporal hierarchy, the optimal
h-period ahead forecats under mean squared error (MSE) loss are given by the conditional
mean (Gneiting, 2011), i.e. E[yrinlyr, ..., yr] = K Elbrinlyr,...,yr] where h=1,... H.

A natural way to compute the mean forecasts of yrip|y1, ..., yr, i.e. for all aggregation
levels, is the plug-in estimator, also called bottom-up (BU), given by ¢4, = Kby, where
brip is the mean forecast of byyp|yi,...,ys.

However, the BU method does not use any series at the aggregation levels, which are
often smoother and easier to forecast. A more general approach will generate forecasts for
all series at all levels independently, then will compute gy, = (Gr4n 51+h)’ which we call
the base forecasts.

This approach is sufficiently flexible since we can use different forecasting methods at
each level. However, since the forecasts have been generated independently at each level, the
aggregation constraints are not necessarily satisfied. The magnitude of constraint violation
can be measured using the coherency errors, which is given by

Fron = arin — Kobrin. (1)

Definition 1 The h-period ahead mean forecasts (ayin brip) are coherent if there are no
coherency errors, i.e. if i = 0.

3. Best Linear Unbiased Revised Forecasts

Given the possibly incoherent h-period ahead base forecast 4;,,, Hyndman et al. (2011)
proposed to compute coherent revised forecasts g, of the form

Yrin = KPY ., (2)

for an appropriately chosen weight matrix P € R™*M

This approach has multiple advantages: (1) the revised forecasts are generated by com-
bining forecasts from all levels, (2) the revised forecasts are coherent by construction, and
(3) multiple hierarchical forecasting methods are represented as particular cases, including
the bottom-up forecasts with P = [Omea|1me]-

Theorem 2 (Adapted from Wickramasuriya et al. (2015)) Let W}, be the positive definite
covariance matriz of the h-period ahead base forecast errors, €ryp, = Yrih — Yyip, €.

Wh.a Wh,ab:|

Wh = E[é1+hé/]+h] = |:W}/L7ab Wh,b (3)

Then, assuming unbiased base forecasts, the best (i.e. having minimum variance) linear
unbiased revised forecasts are given by

Urin = Kbr, (4)
brin =P Yrip, (5)
P = (K'W,'K)"'K'W, . (6)



Wickramasuriya et al. (2015) and Athanasopoulos et al. (2015) used (4) to compute
revised forecats for contemporaneous and temporal hierarchies, respectively. We will denote
this method MinT.

In practice, the error covariance matrix W}, is not available, and needs to be estimated
using historical observations of the base forecast errors. For contemporaneous hierarchies,
Wickramasuriya et al. (2015) have estimated Wi, and assumed W}, o« W7, since the esti-
mation of W}, is challenging for h > 1. To trade off bias and estimation variance, structural
assumptions on the entries of the sample covariance matrix have also been considered in
Athanasopoulos et al. (2015) and Hyndman et al. (2016).

4. Sparse and Smooth Adjustments

Wickramasuriya et al. (2015) showed that the optimal weight matrix P* given in (6) can
be written as

P*=[P; I-P/K,], (7)

where P depends on K, and Wj,.
Now, if we plug (7) in (5), we can rewrite the MinT bottom revised forecasts as

brin = brpn + P Ty,

where 71 are the coherency errors defined in (1). In other words, the MinT bottom revised
forecasts are obtained by adding the adjustment P;#7,j to the bottom base forecasts BI—l—h
before multiplying by matrix K to obtain the forecasts for all levels.

We propose to compute more general revised forecasts of the form 51+h = Bl+h + 0
where 0 is an adjustment term. This will allow us to apply structured regularization on the
adjustments in order to mitigate the effect of estimation errors in W,.

Proposition 3 The MinT bottom revised forecasts given by (5) can also be computed as the
Generalised Least Squares (GLS) solution of the following regression model:

Jr+n = KB+ €r4n, (8)
where B = E[bryiplyi, ..., yr] and erip ~ Nar (0, Wh).

Proof The GLS solution of (8) is given by 8 = (K'W, ' K)"'K'W, "4, which coin-
cides with the bottom revised forecasts given by (5). |

Given an estimate W), of the matrix W}, the MinT bottom revised forecasts can be
computed as
BT = axg win {911~ KBYW, (9140 — KB} (9)
6 m
The solution is given by BMinT — b 7+h Where b I+h 18 defined in (5).
Now, if we apply the change of variable 3 = by, + 0 in (9), then the MinT adjustments
are given by

OMnT — arg min {(2I+h — KG)/Wh—l(EHh - KG)} . (10)
GGRWL



where 274 p = Yren — K Bl+h = (#144 0)’. As discussed previously, the solution is given by
oM T — Prip .

The amount of MinT adjustments GMinT depends on the magnitude of the consistency
errors 7745, and the matrix W,. Furthermore, since OMinT is 4 dense vector, the adjustments
will affect all entries of the vector b 7+h- In order to mitigate the effect of estimation errors in
Wh, and to keep a maximum number of entries in 5[+h unchanged, we propose to compute
sparse adjustments. An additional regularization will be applied by imposing a smoothness
constraint on successive adjustments.

We can compute sparse and smooth adjustments by penalizing the L1 norm of both the
adjustments and the differences in successive adjustments. This is also known as the sparse
fused lasso (Tibshirani et al., 2005). Finally, we will penalize each entry in the adjustment
vector adaptively depending on the magnitude of the MinT adjustments.

In other words, we will solve a sparse fused adaptive lasso (SFAL) problem, and compute
our adjustments using

f5TAL — aggglin {(z1+h - K0 W Y2rn — K6) + A1 | D16]|, + Ao | D26, }
E m

where A1, Ao > 0 are regularization parameters, and D; € R(m=1)xm anq Dy € R™*™ are

the penalty matrices associated to the fusion and lasso penalty, respectively.
The fusion penalty matrix is D; = UD where U € R(m=Dx(m=1) i5 5 diagonal matrix
with diagonal entries U,; = W with j =1,...,m—1, and D € R(m=Dxm ig the
J J

(first) difference matrix given by

-1 1 0 0 0
0 -1 1 0 O
D pu—
0 0 O -1 1
The lasso penalty matrix is given by Dy = diag <‘ G ] é}\,glinT| >
The fusion and lasso penalties can also be written as

— 1

HD10H1 :Z |éM1nT_éM1nT|’0] _0]—1‘7 (11)

D201 6MmT, Z 631 (12)

We can see in (11) that the fusion penalty assigns larger penalties to the successive
adjustments that are more similar to each other, which implies the differences are shrunk
toward zero faster. If the successive adjustments are significanlty different, a smaller weight
Is then assigned, which allows a larger change in the differences. A similar idea is used for
the lasso penalty in (12). Note that since 8 = b1+h — b1+h, a shrinkage of the adjustment 6
towards zero is equivalent to a shrinkage of the bottom revised forecasts b 7+r towards the
bottom base forecasts 131+h.



When A1 = Ay = 0, 85FAL in (10) and OM»T in (4) are equal, and when \; = oo or
Ao = 00, there will be no adjustments as in BU, i.e. GSFAL — 0 = 6BV, The goal of course
is the find the right trade-off between these two extremes by properly choosing the values
of A1 and A9 that minimize the forecast errors.

If W), = CC'’, the optimzation problem in (4) can also be formulated as a generalized
lasso problem (Tibshirani and Taylor, 2011). The adjustments can then be computed as

~ - 2
65TAL = argmin {Hth—XOH +/\||G0||1}, (13)
OcRm 2
bl —1z —1 . . . D]_
where lj1p, = C™ 2145, X = C7 K, A > 0 is a regularization parameter, and G = ~D
2

with v > 0 indicating the ratio of the lasso and fusion regularization.

For fixed values of A and +, the solution can be computed using a convex optimization
solver. Unfortunately, the efficient coordinate descent method often used to solve large-scale
lasso problems (Friedman et al., 2007) is not guaranteed to converge in our case since the
penalty term is not separable in 6.

We will consider the regularization path algorithm developed in Tibshirani and Taylor
(2011), which computes the solution of the generalized lasso for all values of the tuning
parameter A simultaneously. It is based on solving the dual of the generalized lasso, which
simplifies the computation of the path (Arnold and Tibshirani, 2016). In other words, for
a fixed value of v, we compute the solutions é:j’FAL()\) in (13) for A € (0, 00]. Although it is
not the most efficient approach in large scale problems, it is appropriate in the context of
temporal hierarchies since the number of observations M in (13) will be small even with a
high-frequency time series.

5. Experiments

5.1 Experimental Setup

We consider the smart meter data set used in Ben Taieb et al. (2017) to evaluate multiple
forecasting methods for contemporaneous hierarchies. The data set contains half-hourly
measurements of electricity consumption gathered from over 14,000 households from Jan-
uary 2008 to September 2010. We focus on 5000 meters which do not have missing values,
with data available between April 20, 2009 and July 31, 2010; hence, each time series has
T = 22,464 observations. This dataset is particularly suitable for temporal aggregation due
to the high-frequency time series and large number of observations.

We focus on one-day ahead demand forecasting, i.e. we generate 48 half-hour forecasts
for the next day with a forecast origin at 23:30 (m = 48 and H = 1). For each half-hourly
series, we compute the k-aggregate series for all factors of m = 48, from daily to half-
hourly observations (k € {48,24,16,12,8,6,4,3,2,1}). The length of the k-aggregate series
is T, = 2220 with respective forecast horizon being Hj, € {1,2,3,4,6,8,12,16,24, 48}.
We construct a temporal hierarchy, as proposed in Section 2, and end up with I = 468
historical observations where b; € R*, y; € R'?* and i = 1,...,I. Finally, we split the
data into training, validation and test sets; the first 12 months with 346 days for training,
the next month with 30 days for validation and the remaining months with 92 days for
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Figure 1: Multiple temporal aggregation for a week of observations.

testing. Figure 1 gives the temporal hierarchy for one series over one week at multiple levels
of aggregation.

5.2 Forecasting methods

We will compare our forecasting algorithm SFAL with BU, BASE and MinT. The base forecasts
are independently generated for each series at each aggregation level. For the lower level
series where k € {2,1}, we generate the base forecasts using an exponential smoothing
based method, called TBATS (Livera et al., 2011) that allows to capture the within-day
and within-week seasonalities in the half-hourly and hourly demand. The parameters of the
TBATS model are estimated by maximum likelihood and model selection is performed using
AIC. For the upper level series where k € {48,24,16,12,8,6,4,3}, we use the automated
forecasting algorithms based on exponential smoothing and ARIMA models, as described in
Hyndman and Khandakar (2008). Finally, in order to stabilize the variance and guarantee
the non-negativity of the base forecasts, we apply a log transformation.

For both SFAL and MinT, we estimate the matrix W), using the shrinkage estimator
proposed by Schifer and Strimmer (2005) with a block-diagonal target. The estimate is
recomputed every 10 days in both validation and test sets. The same estimator has been
considered in Wickramasuriya et al. (2015) for contemporaneous hierarchies.

The SFAL forecasts in (13) depends on two regularization parameters A and - that control
the smoothness and sparsity of the adjustments. We consider each value of v in the lasso
regularization path, and for a given value of v, we generate the regularizaion path of the
associated generalized lasso problem. We then select the best values of the two parameters
by minimizing validation errors.

5.3 Forecast Evaluation

Given the forecasts :l)lw and the actual observations y

the mean squared forecast error (MSFE) at level k as

[¥]

; for day ¢ at level k, we compute

1 Ntest 2

MSFE(K) = — > [|g! — o], (14)

y’L - y’L
Ttest i—1 2

where nest is the number of days in the test set. This is equivalent to the MSFE averaged
over the M}, forecast horizons and the n;.s different forecast origins.

The base forecasts at each level of aggregation form a natural benchmark. However,
these base forecasts are not necessarily coherent, and do not take into account information
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Figure 2: Absolute coherency errors over the forecast horizon for all days in the test set at
multiple levels of aggregation.

at other levels. Although the revised forecasts are coherent, an additional desirable property
would be that the revised forecasts are at least as accurate as the base forecasts.

In order to quantify the gain/loss of the revised forecasts with respect to the base
forecasts, we consider the Skill Score (SKS) at level k, which is defined as

SCOREgase(k) — SCORE(k) 1 SCORE(k)
SCOREgBasg(k) - SCOREgasg(k)’
where SCORE(k) = MSFE(k). Finally, the SKS of the 5000 series is averaged to obtain an

Average Skill Score (ASKS) given by ASKS(k) = =5 25000 SKS;(k) where SKS;(k) is the
skill score of the jth series at level k.

SKS(k) = (15)

5.4 Results

Figure 2 shows the coherency errors defined in (1) in absolute value for one series of the smart
meter data set. Each panel is associated to one level of aggregation and gives the absolute
coherency errors for each day in the test set (row) over the forecast horizon (column). We
can see that the magnitude of the coherency errors increases with the aggregation level. This
is expected since the magnitude of the forecast errors also increases with the aggregation
level. For the considered series, the first horizons have lower coherency errors which can be
explained by the lower demand during night hours compared to day hours.

Table 1 gives the average skill score (in %) for the different methods, while the associated
bootstrapped standard errors are given in Table 2. Recall that the skill score represents the
percentage decrease in MSFE with respect to the base forecasts, i.e. the higher the value
the better.

Table 1 shows that the BU forecasts are outperformed by the base forecasts at all aggre-
gation levels with a higher decrease in performance for higher levels. Recall that BU does not
apply any adjustment to the base forecasts before aggregation, and hence it is an extreme
case of SFAL with A = oo in (13).

In contrast to BU, both MinT and SFAL improve over the base forecasts for the first k-
aggregate series with k € {1,2,3,4}. This suggests that the combination of forecasts from
multiple aggregation levels helps decrease the forecast errors in the first aggregation levels.
However, the magnitude of improvements generally decreases with the level. In particular,



Table 1: Average skill score (in %) at different levels of aggregation.

ASKS k
1 2 3 4 6 8 12 16 24 48
BU 0.00 —-1.72 —-14.03 —-26.54 —37.85 —41.80 —52.50 —43.83 —60.03 —90.8
MinT  5.21 1046 9.35 1.93 -3.47 -571 =819 -—5.11 —-9.27 —13.3
SFAL 8.12 11.51 9.33 1.54 —-4.00 —-6.18 —894 —-528 —9.38 —13.8
Table 2: Bootstrapped standard errors associated to Table 1.
SE k
1 2 3 4 6 8 12 16 24 48
BU 0.000 0.195 0.963 0.962 1.222 1.293 1.434 1.480 1.80 2.58
MinT 0.295 0.236 0.450 0.305 0.617 0.799 0.918 0974 1.08 1.14
SFAL 0.261 0.216 0.451 0.307 0.607 0.759 0.892 0.927 1.00 1.07

both methods no longer improve over the base forecasts for k > 4; however the decrease in
accuracy is significantly smaller than that of BU.

The higher errors for the aggregated forecasts compared to the base forecasts is expected
since the bottom forecasts often have a higher variance due to the low signal-to-noise ratio
of the bottom series. The base forecasts for the aggregated series benefit from lower fore-
cast variance due to the higher signal-to-noise ratio. Nevertheless, compared to the base
forecasts, the aggregated forecasts are coherent. This suggests that there is a fundamental
tradeoff between forecast accuracy at higher aggregation levels and the coherency of the
forecasts.

Finally, if we compare SFAL with MinT, we can see that SFAL has higher skill score than
MinT for k € {1,2} and comparable skill score for & > 3. This shows that SFAL is able to
generate forecasts at least as accurate as MinT at higher aggregation levels, and at the same
provide sparse adjustments with better forecast accuracy at the bottom level.

The first panel of Figure 3 shows the histogram of the number of adjustments in 48
half-hours averaged over the test set for each of the 5000 series. We can see that SFAL
generates revised forecasts with more than 10 (out of 48) half-hours without adjustments
for about 60% of the time series.

Finally, to illustrate the sparsity in the adjustments, the middle and right panels of
Figure 3 compare the adjustments applied to the base forecasts by MinT (middle panel) and
SFAL (right panel) for one time series for each day in the test set (row) at each half-hour
(column).

6. Conclusion

We proposed a new algorithm to generate multi-period ahead coherent forecasts for multiple
temporal aggregation of a given time series. By applying adjustments to possibly incoher-
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Figure 3: Histogram of the average number of adjustments in 48 half-hours (left panel).
Absolute value of adjustments for MinT (middle panel) and SFAL (right panel).

ent base forecasts, the algorithm provides revised forecasts that satisfy the aggregation
constraints.

Since these adjustments are applied to consecutive observations, a fusion penalty is
added to the objective function in order to obtain smooth adjustments. An additional lasso
penalty allows for the estimation of sparse adjustments. These regularised adjustments are
computed by solving a generalized lasso problem. Such a regularization allows a reduction
in the number of adjustments applied to the base forecasts, and brings more robustness to
estimation errors in the covariance of the base forecast errors.

The experiments performed on a large-scale smart meter dataset confirm the effective-
ness of the proposed algorithm compared to the state-of-the art methods. In particular, our
algorithm produces daily adjustments that are about 20% sparser compared to the bench-
mark method, and provide even better forecast accuracy in the first aggregation levels.

In addition to electricity demand, many other applications, from renewable energies to
tourism demand, will also benefit from more accurate and coherent temporally aggregated
forecasts.
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