
JMLR: Workshop and Conference Proceedings 57:15–29, 2016

Query Learning Automata with Helpful Labels

Adrian-Horia Dediu adrianhoriadediu@yahoo.com
Superdata, Bucharest, Romania

Joana M. Matos jmf.matos@fct.unl.pt
FCT – New University of Lisbon, Portugal

Claudio Moraga claudio.moraga@tu-dortmund.de

TU Dortmund University, Germany

Abstract

In the active learning framework, a modified query learning algorithm benefiting by a
nontrivial helpful labeling is able to learn automata with a reduced number of queries.
In extremis, there exists a helpful labeling allowing the algorithm to learn automata even
without counterexamples.

We also review the correction queries defining them as particular types of labeling. We
introduce minimal corrections, maximal corrections, and random corrections. An experi-
mental approach compares the performance and limitations of various types of queries and
corrections. The results show that algorithms using corrections require fewer queries in
most of the cases.

Keywords: Active Query Learning of Automata, Helpful Labeling of States, Correc-
tion Queries

1. Introduction

In 1987, Angluin (1987) introduced query learning, a well-known algorithm, namely L∗

which is considered the basis of a theory called exact query learning. In query learning,
we assume the existence of a Teacher who knows a target regular language and answers
(correctly) specific kinds of queries asked by the Learner. There are various types of queries
a Teacher can answer during the learning process. We give several examples: membership
(MQ for short), equivalence (EQ), subset, superset, disjointness, and exhaustiveness, as
described by Angluin (1988).

The algorithm L∗ uses the notion of a minimally adequate Teacher (MAT), which is a
fairly wide class of Teachers. A minimally adequate Teacher is able to answer correctly two
types of queries, for the initial algorithm proposed by Angluin, a MAT answers membership
and equivalence queries.

The motivation for studying such learning algorithms gave place to many discussions.
There are some radical voices arguing that if someone knows a target automaton, then there
is no point to learn it, we can simply transfer the automaton to some machine to use it
directly. There is also some criticism about the nature of counterexamples, saying that for
some practical applications, there is no way for the Teacher to identify them. Nevertheless,
there are known applications to learning maps, which represent the interactions of a robot
with his environment as a DFA (Rivest and Schapire (1993)). The states of the automaton
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represent locations on the map, the input alphabet specifies different actions of the robot,
and the output alphabet indicates observable parameters of the places. There is also a
new direction using learning algorithms for model checking and program verification, as for
example Neider (2014). The Teacher knows the initial conditions of a program as a regular
language I, the program itself is modeled by a transducer T that gives the output for some
input sequence and the Teacher also knows some invalid configurations of the data, again
specified as a regular language B. We need to learn if the closure of language I through the
transducer T , gives null intersection with B. For this purpose, Angluin’s algorithm works
perfectly.

The improvements brought to L∗ over the time were marked by slight changes in the
terminology. If the initial article Angluin (1987) talks about membership queries, as the
algorithm learns regular languages, the article by Vilar (1996) presents query learning of
subsequential transducers with translation queries. The article of Angluin et al. (2009) uses
output queries (OQ) since the algorithm learns also the output of the states. The same
article studies an interesting topic, the influence of the cardinality of the output alphabet on
the learning speed for various learning scenarios. The Teacher gives a new dimension for
the output symbols, adding labels either carefully chosen or simply randomly. In the case
of the target automaton is labeled by a Teacher, the new type of query is known as a label
query (LQ) which are used for several active and passive learning scenarios; we give the
formal definition in the next section. In this paper, we present label queries only for L∗ and
study how much help a Teacher can give without transforming the learning process into a
trivial one.

Correction queries (CQ) were introduced by Becerra-Bonache et al. (2005, 2006) and
have been studied intensively since then. We mention only several papers, such as T̂ırnăucă
and Knuutila (2007); Kinber (2008); Becerra-Bonache et al. (2008); Mitrana and Tirnăucă
(2011). Although the label queries appear in the literature after correction queries, the pre-
sentation of corrections queries as a particular type of label queries gives a new perspective,
allowing us to experiment several new types of corrections: minimal, maximal, and random
corrections.

2. Preliminaries

We assume that the reader is familiar with the basic notions of formal languages and
complexity. We briefly present an overview of the basic concepts we use in this article.

Let Σ be a finite set of symbols, called the alphabet. A finite sequence of elements of Σ
is called a string over Σ. For a given string w, |w| represents the length of the string. We
denote by ε the empty string , with |ε| = 0. We define a binary operation between strings in
the following way. For two strings w = a1 . . . an and x = b1 . . . bm over Σ, the concatenation
of the two strings is the string a1 . . . anb1 . . . bm. The concatenation operation is denoted by
w · x (or simply wx when there is no confusion).

Let Σ∗ be the set of strings over Σ. A language L over Σ is a subset of Σ∗. The elements
of L are also called words. For any given nonnegative integer k, Σ≤k denotes the language
of words w with |w| ≤ k.

16



Query Learning Automata with Helpful Labels

Definition 1 (Deterministic finite automata, Freund et al. (1997)) A deterministic
finite automaton (DFA1) is a tuple M = (Q,Σ,Γ, τ, λ, q0), where Q is a finite set of states,
Σ is a finite and nonempty alphabet called the input alphabet, Γ is a finite and nonempty
alphabet called the output alphabet, τ is a partial function from Q × Σ to Q called the
transition function, λ is a mapping from Q to Γ called the output function, and q0 is a
fixed state of Q called the initial state.

We extend τ to a map from Q × Σ∗ to Q in the usual way. We take τ(q, ε) = q and
τ(q, α · a) = τ(τ(q, α), a), for all states q in Q, for all strings α in Σ∗, and for all characters
a in Σ, provided that τ(q, α) and τ(τ(q, α), a) are defined. For a state q and a string x over
the input alphabet, we denote by qx the state τ(q, x), and by q〈x〉, the sequence of length
|x|+1 of output labels observed upon executing the transitions from state q dictated by x,
that is, the string λ(q)λ(qx1), . . . , λ(qx1 . . . xn), where n is the length of the string x and
x1, . . . , xn are its characters.

A deterministic finite acceptor is a DFA with the output alphabet Γ = {0, 1}; if λ(q) = 1,
then q is an accepting state, otherwise, q is a rejecting state. A string x is accepted or
recognized by a finite acceptor with the initial state q0 if q0x is an accepting state. The
definition of automata with final states (see, for example, Hopcroft and Ullman (1979)) is
equivalent with our definition of finite acceptors, with the convention that final states are
the accepting states. For a finite acceptor A = (Q,Σ,Γ, τ, λ, q0), we define the language
L(A) as the set of strings accepted by the acceptor A.

A finite acceptor is a password automaton if it accepts a single word. In order to be
complete, a password automaton has a dead state, that is a non-final state from which we
cannot reach a final state. Note that for a given word w with length |w| = n, there exists
a password automaton with n+ 2 states accepting w.

A deterministic finite acceptor A = (Q,Σ, {0, 1}, τ, λ, q0) is a zero-reversible acceptor
if and only if A has at most one final state and for no two distinct states q1 and q2 do
there exist an input symbol b ∈ Σ and a state q3 ∈ Q such that τ(q1, b) = q3 = τ(q2, b)
(see Angluin (1982)).

For a DFA M = (Q,Σ,Γ, τ, λ, q0), two states p, q in Q are called k-distinguishable if
there exists a string w of length not greater than k such that p〈w〉 6= q〈w〉. If for any
string of length k, where k is a nonnegative integer, we have p〈w〉 = q〈w〉, the states
p, q are called k-indistinguishable. Note that k-indistinguishability defines an equivalence
relation between states. Two states are called equivalent (also indistinguishable) if they are
k-indistinguishable for every k.

For d a nonnegative integer, we define the d-signature tree of a state q as the finite
function mapping each input string x of length at most d to the output symbol of the
state qx. We denote the d-signature tree of state q by σd(q) and by σd(q)(x) the output
symbol of the state qx, where |x| ≤ d.

We will assume that the target automata are minimal, accessible, and complete. For
automata that are non minimal, there exist states that the Learner is not able to distinguish.
For automata having inaccessible states, there is no way to get information about these

1. Angluin et al. (2009) use the term “automaton with output”. In formal language books, like Hopcroft
and Ullman (1979), this definition corresponds to a Moore automaton, and the notion of acceptors that
we define next, corresponds to a DFA.
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states. If the automata are not complete, there is a simple construction to make them
complete. We add a new virtual state qv not existing in Q, using as output a special symbol
# not existing in the output alphabet. All the undefined transitions are reassigned as going
to qv. The transitions from qv go to qv as well. The Teacher and the Learner are both aware
of this convention. Note that in the case of acceptors, there is no need to add a special
symbol # for the virtual state qv: it suffices to label qv with zero and the language of the
automaton remains the same.

In L∗, the Learner uses a table called the observation table to store the Teacher’s answers
and to construct a hypothesis automaton.

The set of indices for rows are discovered incrementally by the Learner. Starting with
the empty string, the Learner forms a nonempty, finite, prefix-closed set S over Σ. The
rows of the observation table are indexed by the set S ∪S ·Σ. The indices for columns form
a nonempty finite suffix-closed set of strings E over Σ. The Teacher’s answers, collected in
the observation table, represent a finite function C, mapping (S∪S ·Σ) ·E to Γ. We denote
the observation table by (S,E,C). If s is an element of (S ∪S ·Σ), then row(s) denotes the
finite function from E to Γ defined by row(s)(e) = C(s · e).

If M = (Q,Σ,Γ, τ, λ, q0) is a finite target DFA, then a labeling of M is a function `
mapping Q to a set Λ of labels, the label alphabet. We use M to construct a new automaton
M ` = (Q,Σ,Γ × Λ, τ, λ`, q0), where the output function λ`(q) = (λ(q), `(q)). That is, the
new output for a state is a pair of symbols, the output symbol together with the label
attached by the Teacher to that state. We call this pair of symbols the labeled output. If it
is clear from the context that we deal with a labeled automaton, then we call the labeled
output only output. We assume that ` is surjective. The Learner has access to output
queries for a labeled target automaton and this kind of query will be referred to as a label
query.

There exists a variant of the L∗ algorithm, also discussed by T̂ırnăucă and Knuutila
(2007), that initializes the content of the set E of an observation table in a different way.
Instead of using only the empty word ε, the algorithm initializes E with Σ≤j , for j a
nonnegative integer. We denote this variant of the algorithm by L∗j . Clearly, L∗0 corresponds
to the original L∗.

3. Helpful Label Queries

A Teacher performs a helpful labeling of the states of the target automaton creating the
possibility of a reduce number of queries for the learning algorithm. In this section we
show that there exists an algorithm that adds helpful labels to the states of an automaton,
such that the algorithm L∗1 can completely learn the automaton only with label queries
and without needing any equivalence query. We present first the theoretical background
followed by an experimental approach.

3.1. Theoretical Aspects

We present the theoretical complexity of the original L∗ and we compare with the trivial type
of labeling that assigns a different label to each state, to give an idea about the complexity
limits of L∗. We have omitted several simple proofs. For full proofs and examples, please
consult the PhD thesis Dediu (2015).
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Theorem 2 (Angluin (1987); Dediu (2015)) Given any minimally adequate Teacher
presenting an unknown minimal DFA M = (Q,Σ,Γ, τ, λ, q0), the Learner L∗ terminates
and correctly outputs a DFA isomorphic to M . If |Q| is the number of states of M and m
is an upper bound on the length of any counterexample provided by the Teacher, then the
total running time of L∗ is bounded by a polynomial in m and |Q|. The number of OQ is
O(|Q|2|Σ|m) and the number of EQ is at most |Q|.

For labeled automata, there are two trivial situations. One of the cases, if the Teacher
labels each of the states with the same symbol, then there is no influence on the learning
process. In the other case, if the Teacher labels the states in such a way that for each state
there results a different pair of symbols, then we easily obtain the following result.

Proposition 3 (Angluin et al. (2009)) Let M ` = (Q,Σ,Γ×Λ, τ, λ`, q0) be a finite target
labeled automaton having ` : Q → Λ, a labeling function such that the resulting output
function λ` is injective. Then L∗ can learn the target automaton using |Q||Σ| + 1 label
queries and no counterexamples are needed.

Proposition 4 (Dediu (2015)) Let M = (Q,Σ,Γ, τ, λ, q0) be a minimal automaton. There
exists a labeling ` of M , with |λ`(Q)| < |Q|, such that for j ≥ 1, L∗j is able to learn the

target automaton with a number of label queries that is O(|Q||Σ|j) and without needing
counterexamples.

Proof Let n be the number of states, m the number of output symbols and k the number
of input symbols, such that m < n.

For a nonnegative integer j, let us denote by Rj the equivalence relation of being j-
indistinguishable on Q. We also denote by Πj the partition of states that Rj defines (Πj =
Q/Rj).

The partition Πj+1 is a refinement of Πj since two states that are indistinguishable by
any string of length j + 1, are also indistinguishable by any string of length j. Moreover,
the following Lemma was proved by Moore (1956).

Lemma 5 ( Moore (1956)) If |Πj | < n, then Πj+1 is a strict refinement of Πj.

We also have the following Lemma.

Lemma 6 All elements of each equivalence class π of Πj share the same j-signature tree.
For a string s such that q0s = q′ ∈ π, then for any string e ∈ Σ≤j and for any state q ∈ π
we have σj(q)(e) = row(s)(e).

This Lemma shows that there exists a one-to-one correspondence between j-signature
trees and rows in the observation table of L∗j . The Teacher does not need to have access to
the Learner’s observation table, or to construct one, the Teacher uses j-signature trees to
find a helpful labeling; however, the labeling has a direct effect on the Learner’s observation
table.

We associate to the partition of states Πj a labeling function `j in the following way.
For each element p from an equivalence class π of Πj , we assign a unique label, such that
the set {`j(p) | p ∈ π} becomes a permutation of the set {1 . . . |π|}. This labeling assures
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unique values for the j-signature tree of each state. We used the assumption that the range
of the labeling function consists of a subset of the natural numbers for simplicity and this
serves to our goal to prove the existence of a non-injective labeling. Of course, following
the spirit of this proof, one can use other labeling alphabets as well.

We count the number of labels needed to distinguish all the states for different values
of j. For j = 0, the labels in each equivalence class are integers from one to the number of
elements in each class, thus we have |λ`0(Q)| =

∑
p∈Π0

|p| = n. For j > 0, the partition Πj

is a strict refinement of Π0 (see Lemma 5), there exist two states p and q in Q such that
pR0q holds while pRjq does not hold. The states p and q have distinguishable j-signatures
and can have both assigned the same label, 1 ; thus the total number of elements in |λ`j (Q)|
must be less than n.

We analyze now the size of the observation table for L∗j . Note that L∗j needs in the
observation table as many rows as L∗, since the size of S ∪ S ·Σ is O((k+ 1)n). The set E
contains (kj+1 − 1)/(k − 1) strings. The queries corresponding to S ·E with the exception
of column ε exist also in S ·Σ ·E. Thus, the number of queries is O(nkj). To conclude the
proof, we give also the labeling algorithm.

Algorithm 1: Helpful labeling
foreach signature S in signatureTrees do

newLabel← 1 foreach state q with signature S do
addLabel(q,newLabel) newLabel← newLabel +1

The set signatureTrees keeps all the j-signature trees for all the states and the variable
newLabel keeps the label to assign to some state.

Remark 7 Note that for one state automata, clearly the output function is already injective,
there is no need to add supplementary labels for L∗ to learn them without counterexamples.

We did not search for a minimal number of labels, we were interested to find some
examples of automata with the largest number of helpful labels needed for a non-injective
labeling function, thus, we concentrated mostly on the case j = 1.

3.2. Comparative Results

Our test set contains randomly generated automata using a binary alphabet and a number
of states between 2 and 20. We have 11 different automata for each number of states. In
fact, the tested automata are all available in Bonache (2005), see the annex for a complete
list. In Table 1, for each number of states, we collect the minimum, the average, and the
maximum number of membership queries (asked by L∗), as well as the number of label
queries (asked by L∗1 with a helpful labeling). These results are presented graphically in
Figure 1, the axis y is logarithmic for better visualization.

3.3. Remarks

The number of label queries is concordant with Proposition 4, not depending on the au-
tomaton structure.
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Table 1: Comparative results between L∗ and L∗1 with a helpful labeling showing number
of queries depending on the number of states

States Min MQ Avg MQ Max MQ LQ

2 5 5.00 5 11
3 11 14.00 17 15
4 14 20.45 27 19
5 23 33.18 54 23
6 31 57.09 83 27
7 39 68.18 90 31
8 44 76.00 111 35
9 49 80.00 125 39

10 65 137.73 269 43
11 77 139.09 229 47
12 90 159.45 215 51
13 101 151.73 263 55
14 143 234.36 615 59
15 95 205.27 389 63
16 167 277.91 509 67
17 175 295.45 506 71
18 231 356.91 629 75
19 183 278.64 405 79
20 215 330.73 854 83

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5

50

500

Max MQ

Avg MQ

Min MQ

LQ

States

Q
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s

Figure 1: Membership and label queries depending on the number of states

From the proof of Proposition 4, it clearly results that the complexity of a helpful
Teacher labeling a DFA for allowing L∗j to learn the target automaton without needing
counterexamples is polynomial, for j ≥ 1.

During our experiments we observed that for the automaton P167 having 17 states, we
need 16 different output symbols to allow L∗1 to work without counterexamples. We can see
this automaton represented in Figure 2.

From the experimental results, we see that only if the number of states is less than five,
L∗1 (with a helpful labelling) does not perform better than L∗.
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Figure 2: For the automaton P167 having 17 states, we need 16 different output symbols
to allow L∗1 to work without counterexamples

4. Reviewed Correction Queries

In this section, we study a labeling method combined with some partial guidance along the
learning path, which we call correction. The target automata are only acceptors, as the
answer to a correction query u gives a word w such that uw is in the target language. That
is, when the Learner asks u, the Teacher answers, “you mean uw.” There are two particular
cases: if w = ε, then this answer could be interpreted as “yes, u is in the target language”;
if there is no such word w, then the answer is a special symbol not belonging to the input
alphabet.

4.1. Theoretical Approach

Let M = (Q,Σ, {0, 1}, τ, λ, q0) be a finite target acceptor, and # a special symbol not
existing in the input alphabet Σ. If θ is a labeling of M that maps Q to Σ≤|Q|−1 ∪ {#},
then θ is called a correction function if the following conditions hold.

θ(q) =


ε if λ(q) = 1, (1)

bθ(q′) if ∃ q′ ∈ Q, b ∈ Σ, qb = q′ and θ(q′) is defined, (2)

# otherwise. (3)

We assume that once a state is assigned with a label, that is a correction string, that
state is never reassigned with another correction string.

For an acceptor labeled with a correction function, there is no need for the Teacher
to communicate the output of the states together with the labeling. The output can be
deduced by the Learner, employing condition (1): if the label of a state q is ε, then the
state has the output λ(q) = 1; otherwise, the output is λ(q) = 0.
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After labeling the final states, there might be several states for which the condition
(2) holds, which means that for a given automaton there might exist several correction
functions. The condition (2) creates the possibility of reducing the number of queries: once
the Teacher answers with the label of a state, the Learner can deduce the output for all the
states along the path until the final state.

Given an acceptor M = (Q,Σ, {0, 1}, τ, λ, q0), we present a simple algorithm to construct
a correction function for it (Algorithm 2). Let F be the set of final states, that is, F = {q ∈
Q | λ(q) = 1}. Let n be |Q|, the number of states of the acceptor. The algorithm works
with a set of candidate assignments Θ containing pairs formed by a state and a string (q, w)
such that qw ∈ F . The correction function θ(q) is initially assigned with either the empty
string ε for the final states or with the special symbol #. The symbol # plays a double
role. First, for some state labeled with #, it shows that a correction was not yet assigned.
The second role of the symbol # is to indicate the dead state at the end of the algorithm.
We note that once a label other than # was assigned, it is never reassigned. When there
are no more candidates to assign, eventually remains only the dead state already assigned
with # as the correction.

Algorithm 2: Constructing a correction function
Initialize θ(q) ← ε for all q ∈ F and θ(q) ← # for all q ∈ Q \ F Initialize Θ ← (q, c) for
q ∈ Q, c ∈ Σ, θ(q) = # and qc ∈ F while Θ is nonempty do

select (r, w), a pair from Θ remove all pairs containing r from Θ assign θ(r) ← w
Add to Θ all pairs (p, bw), p ∈ Q, b ∈ Σ, θ(p) = # and pb = r

Theorem 8 Algorithm 2 terminates in O(|Q|2|Σ|) for any acceptor M with the states Q
and input alphabet Σ, and gives as output a correction function. For any correction function
C of M , there exists an execution of Algorithm 2 that outputs C.

Proof We note that once an element containing a state r is removed from Θ, there are
no other states adding a tuple containing r to Θ. The algorithm ends, the cycle “while”
assigns each time one state r, after that it removes all the other candidates r. The number
of non-final states is clearly bounded by n and in Θ there cannot exist more than n|Σ|
candidates.

Algorithm 2 follows exactly the definition of a correction function. For each final state
the label is ε as assigned in Line 2. The dead states do not have outgoing transitions other
than to themselves, hence, the correction function remains as initially assigned with #. It
can be easily shown by induction on the length of the correction, that all the states p other
than the dead states are added together with a word w to Θ, where pw is a final state. For
each state existing in Θ, one correction is assigned in Line 2.

We show now that Algorithm 2 can output any correction function function C of M .
For final states, both C and Algorithm 2 assign the same value, ε. For the other states
(except the dead state), the correction function C is defined recursively. We note that the
candidate set Θ keeps all the possibilities of assignments initially for states with outgoing
transitions to final states, and then for all assigned states. Thus, for the states with out-
going transitions to the final states, Algorithm 2 should select and assign to θ one of the
possible values, namely the one indicated by C. We can show by induction on the length
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of the correction word that for each state q, Algorithm 2 can select for the assignment to θ
(Line 2) the pair (q, w) such that C(q) = w. Finally, for the dead states, C is defined to be
#; Algorithm 2 assigns # in Line 2 and never reassigns it, as for dead states there are no
outgoing transitions to other states with corrections assigned.

If in Line 2 there is more than one element available in Θ, then there exists more than
one correction function for the given automaton. When constructing a correction function,
Algorithm 2 can select constantly one candidate using, e.g., any of the following strategies.

• Select one state from the candidate assignments with a minimum length of the word
reaching a final state. If the algorithm works in this way, then we call the resulting
correction function a minimal correction.

• If the algorithm selects always one of the candidates with the maximum length of the
word reaching a final state, then we call the resulting correction function a maximal
correction.

• Selecting a random candidate, we get a random correction.

For the selection of a minimal or a maximal correction there can be also several choices
depending on the order within the input alphabet; however we believe that the order within
the input alphabet should not influence the results of the learning algorithm. Actually,
we tested a version of lexicographic correction and the results were similar to those of a
minimal correction.

We present a minimal, a maximal, and a random correction for the automaton P167
(Table 2).

Table 2: Correction functions examples for the automaton P167

Automaton Correction

State τ(a) τ(b) λ minimal maximal random

1 9 6 0 b2a2 b3a2b2a3 aba2

2 17 14 0 a2 ba2b2a3 a2

3 17 12 0 a2 ba3 a2

4 12 12 0 aba2 ba3 ba3

5 7 1 0 b3a2 ab5a2b2a3 a2ba2

6 16 2 0 ba2 b2a2b2a3 ba2

7 9 11 0 aba2 b5a2b2a3 aba2

8 7 11 1 ε ε ε
9 10 13 0 ba2 ab2a3 ba2

10 10 4 0 baba2 b2a3 b2a3

11 5 1 0 b3a2 b4a2b2a3 baba2

12 13 2 0 ba2 a3 a3

13 17 4 0 a2 a2 a2

14 9 3 0 ba2 a2b2a3 ba2

15 6 1 0 aba2 ab2a2b2a3 aba2

16 3 15 0 a3 bab2a2b2a3 a3

17 8 7 0 a a a

Labels 9 16 10
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The Learner has access to the labels assigned to states of a target automaton by a
correction function and this kind of query will be referred to as a correction query (CQ for
short).

We enumerate now several properties of correction functions.

Lemma 9 (Dediu (2015)) If for a state q of an acceptor there exists a word w such that
qw is a final state, then a correction function maps q to a string other than #.

Proposition 10 (Dediu (2015)) Let q be a state of an acceptor and w = θ(q) the value
assigned to q by a correction function. Then on the path from q obtained by following w,
there are no loops.

We conclude this section showing several learnability properties via correction queries
for some particular classes of automata.

Theorem 11 (Dediu (2015)) Let M = (Q,Σ,Γ, τ, λ, q0) be a password automaton with
|Σ| ≥ 2. Then for M there exists a unique correction function and L∗ can learn the target
automaton using (|Q|−1)(|Σ|−1)+2 correction queries and no counterexamples are needed.

Theorem 12 Let M = (Q,Σ,Γ, τ, λ, q0) be a complete zero-reversible automaton with input
alphabet |Σ| ≥ 2. Then for M there might exist several correction functions. Each correction
function is injective and L∗ can learn the target automaton using |Q||Σ| + 1 − (|Q| − 1)
correction queries and no counterexamples are needed.

Proof The existence of multiple correction functions is simple, let us take for example the
automaton (Q = {1, 2},Σ = {a, b},Γ = {0, 1}, τ, λ, q0 = 1), where τ(1, a) = τ(1, b) = 2,
λ(1) = 0 and λ(2) = 1. Then we have two possible correction functions, for the initial state
they could return either a or b. The injectivity results from the definition of zero-reversible
automata; there exists at most one final state, following the correction path from the final
state, we can reach a unique state. With an injective labeling, according to Proposition 3,
there are |Q||Σ| + 1 queries needed. However, from a correction query we can deduce the
answers of the Teacher for all the states on the path until the final state, thus there are
needed less correction queries. For each state q ∈ Q\{q0}, from a correction bα, with b ∈ Σ
and α ∈ Σ∗, we can deduce exactly one correction for the state qb.

For zero-reversible automata that are not complete, a correction function is not injective
anymore. We recall that for the undefined transitions the correction function returns #
and the same for the dead state. However, the learning algorithm needs the same number
of queries as for a complete automaton; for each undefined transition, in the complete
automaton the correction uniquely identify the state of the transition. For the dead state
there is no need for supplementary correction queries, according to the definition, all its
transitions are labeled by #.
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4.2. Experimental Results

We use the same test set as for the label queries. There are 11 different automata for
each number of states between 2 and 20. We experimented with three different correction
functions: one minimal, another random, and the last one a maximal correction.

We also represent graphically the comparative results. We take the average MQ/CQ
per number of states, according to our tests (Table 3), and we represent graphically their
values. Figure 3 shows on the same graph the average number of MQ and CQ depending
on the number of states, while Figure 4 shows the number of queries for three different
corrections.

Table 3: Average number of queries (MQ/CQ) per number of states

States MQ (L*) CQ (minimal) CQ (random) CQ (maximal)

2 5.00 3.82 3.82 3.82
3 14.00 8.09 7.27 7.36
4 20.45 10.36 10.45 10.27
5 33.18 19.36 19.18 18.55
6 57.09 25.18 22.55 22.18
7 68.18 34.64 34.82 29.82
8 76.00 43.00 40.45 40.27
9 80.00 49.00 50.55 47.64

10 137.73 46.55 39.82 38.27
11 139.09 65.91 65.09 60.09
12 159.45 65.36 63.82 45.91
13 151.73 90.73 83.09 80.64
14 234.36 151.73 150.64 146.45
15 205.27 125.82 114.09 116.09
16 277.91 107.18 82.27 87.36
17 295.45 141.18 150.36 128.18
18 356.91 185.18 185.45 182.64
19 278.64 147.45 142.82 155.27
20 330.73 147.18 142.55 125.82

4.3. Remarks

Analyzing the results, we observe that, for almost all our test problems, the number of
correction queries is lower than the number of MQ needed to learn the automata. For
several exceptions, the negative influence comes from different choices of counterexamples.
In addition, the maximal correction performs better in almost all cases, because for a
maximal correction there are more chances to have more labeling symbols attached as
corrections.

5. Concluding Remarks

We believe that the minimal number of labels needed to learn automata without counterex-
amples can be considerably reduced for various classes of automata, as in general the same
state appears in different d-signature trees on different levels, from the root to the leaves.
The algorithm that we present to assign helpful labels is not optimal, in the sense that we
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Figure 4: Comparative results, CQ minimal, random and maximal

did not try to minimize the number of labels needed. We give only several ideas to reduce
the number of labels. For example, after assigning a label to one state, we can reevaluate
the signature trees, and only after that to assign a new label. The order of assignment is
also important, if we assign first a label to a state appearing more often in signatures, that
can also contribute to obtain a lower number of labels needed.

We can also try to generalize corrections for DFA (that is for more than two symbols
in the output alphabet). In fact, Becerra-Bonache and Dediu (2009), propose a method to
learn DFA using a query similar with a correction query; however, the method is not a pure
generalization of correction queries.
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correction and equivalence queries. In Proceedings of the 8th International Conference
on Grammatical Inference: Algorithms and Applications, volume 4201 of Lecture Notes
in Computer Science, pages 281–292, Berlin, 2006. Springer-Verlag.

Leonor Becerra-Bonache, Colin de la Higuera, Jean-Christophe Janodet, and Frédéric Tan-
tini. Learning balls of strings from edit corrections. Journal of Machine Learning Re-
search, 9:1841–1870, 2008.

Leonor Becerra Bonache. On the learnibility of mildly context-sensitive languages using pos-
itive data and correction queries, 2005. URL http://www.tdx.cat/bitstream/handle/

10803/8780/DissertationLeonorBecerra.pdf?sequence=1&isAllowed=y. Ph.D. the-
sis, Rovira i Virgili University, Tarragona, Spain.

Adrian-Horia Dediu. Learning automata with help, 2015. URL http://www.tdx.cat/

bitstream/handle/10803/314182/Tesi-Horia%20Dediu.pdf?sequence=1. Ph.D. the-
sis, Rovira i Virgili University, Tarragona, Spain.

28

http://doi.acm.org/10.1145/322326.322334
http://doi.acm.org/10.1145/322326.322334
http://www.tdx.cat/bitstream/handle/10803/8780/DissertationLeonorBecerra.pdf?sequence=1&isAllowed=y
http://www.tdx.cat/bitstream/handle/10803/8780/DissertationLeonorBecerra.pdf?sequence=1&isAllowed=y
http://www.tdx.cat/bitstream/handle/10803/314182/Tesi-Horia%20Dediu.pdf?sequence=1
http://www.tdx.cat/bitstream/handle/10803/314182/Tesi-Horia%20Dediu.pdf?sequence=1


Query Learning Automata with Helpful Labels

Yoav Freund, Michael J. Kearns, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and
Linda Sellie. Efficient learning of typical finite automata from random walks. Inf. Com-
put., 138(1):23–48, 1997.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

Efim Kinber. On learning regular expressions and patterns via membership and correction
queries. In Alexander Clark, François Coste, and Laurent Miclet, editors, Proceedings
of the 9th International Colloquium on Grammatical Inference: Algorithms and Appli-
cations, Saint-Malo, France, September 22–24, 2008, volume 5278 of Lecture Notes in
Computer Science, pages 125–138, Berlin, 2008. Springer-Verlag.
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