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Abstract

Various grammar compression algorithms have been proposed in the last decade. A gram-
mar compression is a restricted CFG deriving the string deterministically. An efficient
grammar compression develops a smaller CFG by finding duplicated patterns and remov-
ing them. This process is just a frequent pattern discovery by grammatical inference. While
we can get any frequent pattern in linear time using a preprocessed string, a huge working
space is required for longer patterns, and the whole string must be loaded into the mem-
ory preliminarily. We propose an online algorithm approximating this problem within a
compressed space. The main contribution is an improvement of the previously best known
approximation ratio ( lg21m) to O T J\}lg —) where m is the length of an optimal pattern in
a string of length N and lg* is the iteration of the logarithm base 2. For a sufficiently large
N, lg* N is practically constant. The experimental results show that our algorithm extracts
nearly optimal patterns and achieves a significant improvement in memory consumption
compared to the offline algorithm.

Keywords: Grammar Compression, Online Algorithm, Approximation Algorithm, Fre-
quent Pattern Discovery

1. Introduction

A grammar compression of a string is a context-free grammar (CFG) that derives only the
string. In recent decades, various grammar compression algorithms have been proposed,
showing good performance, especially for a repetitive string in which long identical patterns
(substrings) can be observed many times. Such data are currently ubiquitous, for example,
in genome sequences collected from similar species and in versioned documents maintained
by Wikipedia and GitHub, etc. Because repetitive strings are growing rapidly, data pro-
cessing methods on grammar compression have been extensively studied as a promising way
to address repetitive strings (e.g., Larsson and Moffat (2000); Lehman and Shelat (2002);
Rytter (2003); Sakamoto (2005); Charikar et al. (2005); Maruyama et al. (2012, 2013b);
Tabei et al. (2013); Maruyama and Tabei (2014)).

* The full version is available from arXiv: CoRR abs/1607.04446. This work was supported by KAK-
ENHI(26280088, 26540119, 16K16009, 15J05902).
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Frequent pattern discovery is a classic problem in pattern mining for sequence data (e.g.,
Aggarwal and Han (2014)), where we focus on a string and say that a pattern (substring)
is frequent if it occurs at least twice. Longer patterns are often the target of discovery, as
they seem to characterize the input string better. Although we have linear time solutions
using a full-text index such as suffix tree and suffix array by Sadakane (2000), it requires
a huge working space for large-scale data. Even if we opt for space-efficient alternatives of
these data structures, such as FM-index by Ferragina and Manzini (2000), we still have to
load the whole string into memory, at least at the construction phase, because there are no
known algorithms to construct them in a streaming fashion. Due to these drawbacks, it is
difficult to apply these algorithms to stream data.

A reasonable approach to avoid this difficulty is to seek an approximate frequent pattern
instead of the exact solution. In the framework of grammar compression, an approximate
pattern is found as a frequent subtree. Then, a suitable parsing tree should preserve as
many occurrences of a common substring as possible. Edit-sensitive parsing (ESP) by
Cormode and Muthukrishnan (2007) matches the claim; ESP approximately solves the NP-
hard problem of the generalized edit distance for measuring the similarity of two strings, and
online algorithms and applications of ESP were widely proposed (e.g., Hach et al. (2012);
Maruyama et al. (2013a); Takabatake et al. (2014, 2015, 2016); Nishimoto et al. (2015)).

As seen above, grammar compression is closely related to the approximate pattern dis-
covery because a good compression ratio is achieved by finding frequent substrings and
replacing them by a variable that derives the substrings. Nakahara et al. (2013) focused
on a grammar compression algorithm (called ESP-comp) based on ESP and showed that
it approximately solves the frequent pattern discovery problem. That is, they showed that
for any frequent pattern P, there is a variable X such that (1) X derives a string of length

Q(lg'f“Pl) that is a substring of P and (2) X accompanies any occurrence of P in the string.
They confirmed by computational experiments that the algorithm efficiently finds long fre-
quent patterns from large repetitive data.

In this paper, we follow the previous work and show a new lower bound Q(WM) for
approximation, where N is the length of the string and lg* is the iteration of logarithm base
2. This improves the previous bound Q(Eﬁ) as lg* N <lg|P| in practice. In addition, we
establish an online approximation algorithm within a compressed space using ESP-comp.
Note that the previous algorithm was not online, i.e., the whole string must be loaded
into memory, but recent progress by Maruyama et al. (2013b) has enabled the computation
of ESP-comp in compressed space in a streaming fashion. We implement our algorithm
and show experimentally that the approximation is nearly optimal and the improvement of

memory consumption is significant for real data.

2. Definition
2.1. Notation

Let ¥ be a finite alphabet, and o be |X|. All elements in ¥ are totally ordered. Let us
denote by X* the set of all strings over X, and by 3¢ the set of strings of length ¢ over X,
i.e., X1 ={w € ¥* : |w| = ¢q} and an element in 37 is called a g-gram. The length of a
string S is denoted by |S|. The empty string € is a string of length 0, namely |e|] = 0. For
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a string S = af7, «a, B and v are called the prefix, substring, and suffix of S, respectively.
The i-th character of a string S is denoted by S[i] for i € [1,|S]]. For a string S and interval
[i,7] (1 <i < j <|S]), let S[i,j] denote the substring of S that begins at position i and
ends at position j, and let S[i,j] be € when i > j. For a string S and integer ¢ > 0, let
pre(S,q) = S[1,q] and suf(S,q) = S[|S| — ¢+ 1,|5]|]. For strings S and P, let fregs(P)
denote the number of occurrences of P in S, i.e., freqs(P) = |{i : S[i,i + |P| — 1] = P}|.
We assume a recursive enumerable set X of variables with X N X = (). All elements in
YU X are totally ordered, where all elements in ¥ must be smaller than those in &'. In this
paper, we call a sequence of symbols from ¥ U X a string. Let us define lg(l) u = 1gu, and
gty =1g (lg(i) u) for i > 1. The iterated logarithm of u is denoted by lg* u, and defined
as the number of times the logarithm function must be applied before the result is less than
or equal to 1, i.e., 1g* v = min{i : 1lg®u < 1}.

2.2. Grammar Compression

We consider a special type of context-free grammar (CFG) G = (X,V, D, X;) where V is a
finite subset of X', D is a finite subset of V' x (V UX)*, and X, € V is the start symbol.
A grammar compression of a string S is a CFG deriving only S deterministically, i.e., for
any X € V there exists exactly one production rule in D and there is no loop. Because
each G has its Chomsky normal form, we can assume that any grammar compression is in
Straight-line program (SLP) by Karpinski et al. (1997): any production rule is in the form
of Xj, = X; X, where X;, X; e XUV and 1 <i4,j <k <n+o.

The size of an SLP is the number of variables, i.e., |V| and let n = |V|. wval(X;) for
variable X; € V denotes the string derived from X;. For w € (V U X)*, let val(w) =
val(w[1]) - - - val(w[|w]]).

The parse tree of G is a rooted ordered binary tree such that (i) the internal nodes are
labeled by variables and (ii) the leaves are labeled by alphabet symbols. In a parse tree,
any internal node Z corresponds to a production rule Z — XY, and has the left child with
label X and the right child with label Y.

A phrase dictionary D is a data structure for directly accessing the phrase X;X; for any
Xy if X, — X; X, exists. On the other hand, a reverse dictionary D! is a data structure
for directly accessing X, for X;X; if X;, — X; X exists.

2.3. Approximate Frequent Pattern

A substring P = S[i, j] is said to be frequent if it appears at least twice, i.e., freqgs(P) > 2.
We focus on an approximation of the problem to find all frequent patterns defined as follows.

Problem 1 Let T be a parsing tree of a grammar compression deriving S € ¥*. A variable
X in T is called a core of P if for each occurrence S|i,j| = P, there exists an occurrence
of X in T deriving a substring S[¢,r] for a subinterval [¢,r] of [i,j]. Then, P is said to

be approximated by X with § if % > 6. The problem of approzimated frequent pattern

(AFP) is to compute T that guarantees a core X of any frequent pattern P in S with an
approzimation ratio § > 0.

AFP is well-defined with a small § because for any S and its frequent substring P any

alphabet symbol forming P satisfies the condition with § = ﬁ. Nakahara et al. (2013) pro-
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1
1g? | P
tree by an online algorithm in a compressed space with a larger  improving the best known
approximation ratio. In our algorithm, a grammar compression is represented by ESP (edit
sensitive parsing) and succinctly encoded by POSLP (post-order SLP). We next review the

related techniques.

posed an offline algorithm with approximation €( ). We aim to construct the parsing

2.4. Edit Sensitive Parsing

Originally, ESP (Edit Sensitive Parsing) was introduced by Cormode and Muthukrishnan
(2007) and widely applied in data compression and information retrieval (e.g., Hach et al.
(2012); Takabatake et al. (2014, 2015, 2016); Nishimoto et al. (2015)). ESP is a parsing
technique intended to efficiently construct a consistent parsing for same substrings as follows.

For each substring S[i, j], we can decompose it into a sequence of subtrees rooted by
symbols X1, Xs, ..., X,. For each frequent P (e.g., S[i, j] = S[k,¢] = P), we can find a con-
sistent decomposition for the occurrences by the trivial decomposition of X; = S[i], Xy =
Sli+1],...,X, = S[j]. For this problem, ESP tree guarantees a better decomposition:
(X1, Xa,...,X,) is embedded into any occurrence of P with a small ¢ e.g., Nakahara et al.
(2013) showed that ¢ = Q(|P|/1g?|P|) and we improve it to Q(|P|/lg* |P|lg|P|) in this
paper. Any symbol in the decomposition is regarded to a necessary condition of an occur-
rence of P. Using this fact, we can find an approximate pattern from ESP tree. Using this
result, we can efficiently compute a smaller grammar compression closely related to AFP.

We review the algorithm for ESP presented in Takabatake et al. (2016). This algorithm,
referred to as ESP-comp, computes an SLP from an input string S. The tasks of ESP-comp
are to (i) partition S into s1sg--- sy such that 2 < |s;| < 3 for each 1 <i < £, (ii) if |s;] = 2,
generate the production rule X — s; and replace s; by X (this subtree is referred to as a
2-tree), and if |s;| = 3, generate the production rule Y — AX and X — BC for s; = ABC,
and replace s; by Y (referred to as a 2-2-tree), (iii) iterate this process until S becomes a
symbol. Finally, the ESP-comp builds an SLP representing the string .S.

We focus on how to determine the partition S = s189---sy. A string of the form a” with
a € XUV and r > 2 is called a repetition. A repetition S[i, j] is called to be mazimal if
S[i] # S[i—1],S[j+1]. First, S is uniquely partitioned into the form wixwexs - - - WL KWK+ 1
by its maximal repetitions, where each x; is a maximal repetition of a symbol in X UV,
and each w; € (X U V)* contains no repetition. Then, each z; is called typel, each w; of
length at least 21g*|S| is type2, and any remaining w; is type3. If |w;| = 1, this symbol is
attached to xz;_1 or x; with preference z;_; when both cases are possible. Thus, if |S| > 2,
each z; and w; is longer than or equal to two.

Next, ESP-comp parses each substring v depending on the type. For typel and type3
substrings, the algorithm performs the left aligned parsing as follows. If |v| is even, the
algorithm builds 2-tree from v[2j — 1,2j] for each j € {1,2,...,|v|/2}; otherwise, the algo-
rithm builds a 2-tree from v[2j — 1,2j] for each j € {1,2,...,|(Jv] — 3)/2]} and builds a
2-2-tree from the last trigram v[|v| — 2, |v|]. If v is type2, the algorithm further partitions
it into short substrings of length two or three by the following alphabet reduction.

Alphabet reduction: Given a type2 string v, consider v[i] and v[i — 1] as binary
integers. Let p be the position of the least significant bit of v[i] ® v[i — 1] and let bit(p, v[i])
be the bit of v[i] at the p-th position. Then, L(v)[i] = 2p + bit(p, v[i]) is defined for any
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(i) POSLP. (ii) Parse tree of the POSLP. (i) POPPT of the parse tree. (iv) Succinct representation
of the POPPT and hash table
=={a,b] for the reverse dictionary.
V={X, X, X; X, X5 X} B=00011010010111
P={X,—ba, L=aba X bb.X,
X,—aX, H=[ba—X,
X,—bb, aX,—X,
X=X, X, X, X =X
X—>X, X, bb— X,
X=X X X, X\ —X;
Xs=Xe X, X5— X}

Figure 1: Example of post order SLP (POSLP), parse tree, post order partial parse tree
(POPPT), and succinct representation of POPPT.

i > 2. Because v is repetition-free (i.e., type2), the label string L(v)[2,|v]] is also type2.
Suppose that any symbol in v is an integer in {0,...,N}, L(v)[2,|v|] is a sequence of
integers in {0,...,2lg N + 1}'”"1. If we apply this procedure Ig* N times, then we get
L*(v)[lg* N + 1, |v|] a sequence of integers in {0, ...,5}"=18" N where L*(v)[1,1g* N] is not
defined *. When L*(v)[i — 1], L*(v)[i], L*(v)[i + 1] are defined, v[i] is called the landmark if
L*(v)[i] > max{L*(v)[i — 1], L*(v)[i + 1]}.

The iteration of alphabet reduction transforms v into L*(v) such that any substring of
L*(v)[lg* N+1, |v]] of length at least 12 contains at least one landmark because L*(v)[lg* N+
1,|v]] is also type2. Using this characteristic, the algorithm ESP-comp determines the
bigrams v[i, i + 1] to be replaced for any landmark v[i], where any two landmarks are not
adjacent, and then the replacement is deterministic. After replacing all landmarks, any
remaining maximal substring s is replaced by the left aligned parsing, where if |s| =1, it is
attached to its left or right block.

The following theorems are well-known for ESP. By Theorem 1, we can obtain the locally
consistent parsing for S: An iteration of ESP for S, for any substring P of S there exists
an interval [z, j] of length at least |P| — O(lg* |S|) such that the substring P[i, j] with each
occurrence of P is transformed into a same string. Iterating this, the resulting ESP tree
contains a common subtree for P regardless of its occurrence. Theorem 2 is clear by the
definition of ESP. Adopting such theorems, we derive our results in the following section.

Theorem 1 (Cormode and Muthukrishnan (2007)) For type2 substring v, whether vli] is
a landmark or not is determined by only v[i — O(1g*|S|),i + O(1)].

Theorem 2 (Cormode and Muthukrishnan (2007)) The height of ESP tree of S is O(1g|S]).

2.5. Succinct Encoding

Rytter (2003) defined a partial parse tree as a binary tree built by traversing a parse tree in
a depth-first manner and pruning out all the descendants under every node of a nonterminal
symbol appearing before. Maruyama et al. (2012) introduced the post-order SLP (POSLP)
and post-order partial parse tree (POPPT) as follows.

1. The number of iteration of alphabet reduction should not be changed arbitrarily according to each v,
and so N is set in advance to be a sufficiently large integer, e.g. N = O(|S5]).
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Definition 3 (POSLP and POPPT) A post-order partial parse tree is a partial parse
tree whose internal nodes have post-order variables. A post-order SLP is an SLP whose
partial parse tree is a post-order partial parse tree.

For a POSLP of n variables, the number of nodes in the POPPT is 2n + 1 because the
numbers of internal nodes and leaves are n and n + 1, respectively. Figure 1-(i)(iii) shows
an example of POSLP and POPPT, respectively. The resulting POPPT (iii) has internal
nodes consisting of post-order variables.

Maruyama et al. (2013b) proposed FOLCA, the fully online algorithm for computing
succinct POSLP (B, L). B is the bit string obtained by traversing POPPT in post-order,
and putting ‘0’ if a node is a leaf and ‘1’ otherwise. The last bit ‘1’ in B represents the
super root. L is the sequence of leaves of the POPPT. The dynamic sequences B and L
are encoded using the succinct data structure by Navarro and Sadakane (2014). Then, the
following result was shown.

Theorem 4 (Maruyama et al. (2013b)) The POSLP of n variables and o alphabet sym-
bols supporting the phrase and reverse dictionaries can be constructed in O((le‘gl{gg?l) expected
time using (1+a)nlg(n+o)+n(3+1g(an)) bits memory where o € (0, 1) is the load factor

of a hash table.

3. Algorithm

In this section, we propose a modified FOLCA for AFP with saving-space. We show the
improved lower bound of the size of extracted core as well as time and space complexities.
We first summarize the proposed algorithm. Let S; (i = 0,1,...,[lg|S|]) be the resulting
string of the i-th iteration of ESP, where Sy = S. The algorithm simulates the parsing of
ESP using a queue ¢; for each level 7. The queue g; stores a substring S; of length at most
O(lg" |S]) in a FIFO manner. At the beginning, input symbols are enqueued to ¢o. If a
prefix of S is a repetition a™, it is parsed in a left-aligned manner, and a production rule
such as A — aa is generated. a™ is dequeued from ¢g, and the resulting sequence of As is
enqueued to ¢;. Otherwise, at most O(lg* |S|) symbols are enqueued to qo, and ¢o[0,7 — 1]
is parsed in a left-aligned manner, where ¢g[i] is the leftmost landmark. By Theorem 1,
there is at least one landmark in gy of length O(lg* |S|). Then, the symbols in ¢o[0,i — 1]
are dequeued from ¢y, and the generated symbols are enqueued to ¢;. These computations
are done in each level. When a prefix of S is enqueued, a sequence of production rules
is generated such that it is encoded by a POSLP T encoded by (B, L), where B is a bit
sequence that represents the skeleton of T, and L is the sequence of the leaves of 1. The
pseudo code is shown in Algorithm 1.

We next show that the ESP tree of S contains a sufficiently large core for any substring
P that guarantees the approximation ratio of our algorithm. This result is an improvement
of the lower bound shown by Nakahara et al. (2013).

Theorem 5 Let T be the ESP tree of a string S and P be a substring of S. There exists
a core of P that derives a string of length Q(%).
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Algorithm 1 to compute a core X of any frequent P in S. T: POSLP representing the
ESP tree of S, B: a succinct representation of skeleton of T', L: a sequence of leaves of
T, FB: a bit vector storing FB[i] = 1 iff freqp(X;) > 2, D~!: the reverse dictionary for
production rules, gx: a queue in k-th level, and let v € max{5,1g" |S|}.

1: function COMPUTEAFP(S)

2 B :=0; L := (; FB := (; initialize queues g
3 fori:=1,2,...,|S| do

4: BUILDESPTREE{S[i], 0,0, 0,0}, g1

5: end for
6
7

: end function
: function BUILDESPTREE(X, gx) > X is a set {s,ib, {1, l2, lig~ |5} wWhere s is a symbol, b is 1 if s is an
internal node otherwise 0 and ¢;(i € {1,2,1g" |S|}) is a label applied i-th alphabet reduction for s.
8: gr-enqueue(X)

9: compute g [qr-length()].l;( € {1,2,1g™ |S|})
10: if gx.length() = u then

11: if IS2TREE(gx) then

12: Y := UPDATE(qx[u — 1], gk [u])

13: qr-dequeue(); g .dequeue()

14: BUILDESPTREE(Y, qk+1)

15: end if

16: else if gr.length() = v+ 1 then

17: Y := UPDATE(qx[u], gx[u + 1]); Z := UPDATE(gx[u — 1],Y)
18: qr.dequeue(); qr.dequeue(); gr.dequeue()
19: BUILDESPTREE(Z, qi+1)

20: end if

21: end function
22: function Is2TREE(qx)

23: if (grlu — 4].s = qru — 3].s)&(qr[u — 3].s # qr[u — 2].s) then

24: return 0

25: else if (qgi[u — 3].s # qr[u — 2].8)& (g [u — 2].s = qx[u — 1].s) then

26: return 0

27 else if (qr[u — 3].ligx |5 < qrlu — 2].bigx 5))&(qr[u — 2].Lig |5 > qr[u — 1] L1z~ |5)) then
28: return 0

29: else

30: return 1

31: end if

32: end function
33: function UPDATE(X,Y)
34: z:=D"'(X.s5Y.s)

35: if z is a new symbol then

36: UPDATELEAF(X ); UPDATELEAF(Y)
37 B.push_back(1); F B.push_back(0)
38: return {z,1,0,0,0}

39: else

40: GETAFPNODE(z)

41: return {z,0,0,0,0}

42: end if

43: end function

44: function UPDATELEAF(X)

45: if X.ib =0 then

46: L.push_back(X.s); B.push_back(0)
47: end if

48: end function

49: function GETAFPNODE(Xj;)

50: if FB[i] =0 then

51: FBJi:=1
52: Output X;
53: end if 99

54: end function
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Proof If a prefix of P is a repetition, let ; be the maximal one and Q] be the remaining
suffix of P. The parsing of Q] is not affected by the string preceeding @, and then the
parsing of @} inside P is identical regardless of any occurrence of P. Otherwise, by Theo-
rem 1, we can partition P = @Q1Q] such that |Q1] = O(lg*|S]), and @/ is also identically
parsed inside P. Let P; be the common substring in S; deriving ()}. Then, for each case,
Q1P is a sequence of cores of P. Iterating this process for P at most k(< [lg|P|]) times,
we can get a sequence Q1Q)s - - - Q of cores such that (); is either a repetition of the form
Q: =c! (¢; € XUV) or a string of length O(lg* |S]).

We show that for any 1 < i < k, there exists a core X; in Q); with |val(X;)| = (%)
If the length of @; is O(lg*|S|), the claim is immediate from the pigeonhole principle.
Otherwise Q; = c;r. Because any maximal repetition is parsed in a left-aligned manner,
a type2 sequence of bigrams 622 is created over Q; (except for the last one, which may be
a 2-2-tree deriving cf’) Iterating the parsing on the type2 sequence, we will get a large
complete balanced binary tree of ¢;. Assuming that the largest one covers 2" ¢;’s in Q;, we
can see that the number of ¢;’s in Q; is less than 5 - 2", namely, there is a node covering
at least one-fifth of the ¢;’s in @;. The maximum length of @; is achieved when Q); is
parsed into ABC},_; - -- Cy, where A contains 2" — 1 ¢;’s, B contains 2" ¢;’s, and for any
0 < k' < h, Cy contains 3-2" ¢;’s. A and its preceeding character ¢ # ¢; (that must be the
first character in the whole string) compose a node having 2" characters, B composes the
largest complete binary tree with 2" ¢;’s, and for any 0 < b/ < h, C}s composes a 2-2-tree
over three complete binary trees with 21" ¢’s. Note that adding even a single ¢; to the Q;
results in creating a complete binary tree with 2"*1 ¢;’s (which may appear in a 2-2-tree
over three complete binary trees with 2" ¢;’s), and thus, the maximum number of ¢;’s in
Q;is 2" —1+2"+ 227:103 .2 < 5. 2" Therefore, there exists a variable X; in Q; with

|val (X;)| = QL)

1g" |5
Because there is at least one @; such that |val(Q;)| > |P|/k > |P|/lg|P|, there exists
a core of P that derives a string of length ( lﬁ?%ﬁ') = Q(%). [ |

Theorem 6 Algorithm 1 approzimates the problem of AFP with the ratio Q(m) m
O(ﬁ'gllg‘gzl) time and O(n +1g|S|) space.
Proof The algorithm simulates the ESP of S using queues ¢; (i = 0,1,...,|S|); ¢; stores

a substring of S; to determine whether S;[j] is a landmark or not. By Theorem 1, the
space for each ¢; is O(1g*|S]). We can reduce this space to O(1) using a table of size at
most 1g* | S| lglglg | S| bits as follows. Applying two iterations of alphabet reduction, each
symbol A is transformed into a label L4 of size at most lglglg|S| bits. Whether the A is
a landmark or not depends on its consecutive O(lg* |S|) neighbours. Thus, the size of a
table storing a 1-bit answer is at most lg* |S|lglglg|S| bits. It follows that the space for
parsing S is O(lg|S]). On the other hand, by Theorem 4, the POSLP T of S is computable

in O(ﬁg{iﬁ) time. By Theorem 5, for each frequent P, T contains at least one core X

of P satistying |val(X)| = Q(%). Thus, finding all variables X appearing at least
twice in T approximates this problem with the lower bound. Whether freq;(X;) > 2 can
be stored in n bits for all i because an internal node ¢ of T denotes the position of the first
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Table 1: Statistical information of benchmark string S

einstein cere kernel english dna sources

|S| (MB) 446 446 246 200 200 200
|2 139 5 160 239 16 230
occurrence of X;. Therefore, we obtain the complexities and approximation ratio. |

4. Experimental Results

We evaluate the performance of the proposed approximation algorithm on one core of a
quad-core Intel Xeon Processor E5540 (2.53GHz) machine with 144GB memory. We adopt
a lightweight version of the fully-online ESP, called FOLCA Maruyama et al. (2013b), as a
subroutine for the grammar compression.

We use several standard benchmarks from a text collection?, which is detailed in Table 1.
We choose texts with a high and small amount of repetitions. For these texts, we examine
the practical approximation ratio of the algorithm as follows. For each text S, we obtained
the set of frequent substrings by the compressed suffix array (SA) by Sadakane (2000), and
we selected the top-100 longest patterns so that any two P and @ are not inclusive of each
other, where P is inclusive of @) if any occurrence of () is included in an occurrence of P.
We removed such @ from the candidates. For each frequent substring P and a variable X
reported by the algorithm, we estimate the cover ratio ‘U'ﬁl](;‘x)‘ and show the average for all
P. However, as shown in the result below (Figure 2), the suffix array cannot be executed for
a larger S due to memory consumption. Additionally, we examined the time and memory
consumption of the offline algorithm by Nakahara et al. (2013).

Table 2 shows the length of optimum frequent patterns extracted by suffix array and the
length of the corresponding cores extracted by our algorithm as well as the approximation
ratio to the optimal one, where min./max. denote the shortest/longest pattern in the
candidates, respectively. Our algorithm extracted sufficiently long cores for each benchmark.

Figure 2 shows the memory consumption for repetitive strings (Figure 2a-2c) and normal
strings (Figure 2d-2f). The working space was significantly saved by our online strategy,
where offline and SA were executed for each static size of data noted in the figures.

Figure 3 shows the computation time for each benchmark. Due to the time-space tradeoff
of a succinct data structure, our algorithm was a few times slower than the offline and SA.
The increase in computation time is acceptable for each case.

5. Conclusion

For the problem of finding frequent patterns, we proposed an online approximation algo-
rithm with a compressed space. We improved the theoretical lower bound of the approxima-
tion ratio and presented experimental results exhibiting the efficiency for highly repetitive

2. http://pizzachili.dcc.uchile.cl/repcorpus.html
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Table 2: Length of optimal P extracted by suffix array (SA) and approximate X by proposed
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algorithm (PA) with approximation ratio % (%) for top-100 patterns.
einstein cere kernel english dna sources
SA 198,606 4,562 442,124 43,985 3,271 4,776
min. PA 18,625 4,096 37,205 3,382 268 ATT
% 7.6 2.3 6.9 7.3 7.1 7.3
SA 935,920 303,204 2,755,550 98,7770 97,979 307,871
max. PA 342,136 58,906 662,630 16,1320 24,834 57,508
% 50.0 62.1 52.8 50.8 63.9 51.7
SA 259,451 111,284 727,443 116,920 @ 8,241 14,498
mean PA 56, 584 12,723 152,903 24,703 1,926 3,279
% 21.6 11.0 20.0 23.0 229 22.0
:ggi&zﬁlmsz
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texts. There is still a large gap of approximation ratio between theory and practical result.

10 150 200 250
input text size(MB)

(¢) kernel

~ AFP(offline)
4 AFP(online)
SA

) 50 16 150 200

00
input text size(MB)

(e) dna

1000

onsumption(MB)

2 100
&

0
input text size(MB)

(d) english

~ AFP(offline)
= )

AFP(online
SA
) 50 10 150 200

00
input text size(MB)

(f) sources

Figure 2: Memory consumption (MB)

An improvement of the lower bound is an important future work.
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Figure 3: Computation time (sec)
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