
JMLR: Workshop and Conference Proceedings 57:30–41, 2016

Inferring Non-resettable Mealy Machines with n States

Roland Groz roland.groz@imag.fr

Catherine Oriat catherine.oriat@imag.fr

Nicolas Brémond nbremond@enseirb-matmeca.fr

LIG

Université Grenoble Alpes

F-38000 Grenoble, France

Abstract

Automata inference algorithms are used to extract behavioural models of software compo-
nents. However, when the software system cannot be reset, inference must be done from
a single trace. This paper proposes an active learning algorithm that can infer a Mealy
model under the assumption that the number of the states of the machine is known and
that a characterization set for it is provided. This algorithm improves on a previous paper
that used a looser assumption on the number of states. The complexity is polynomial in
the number of states of the Mealy machine.

Keywords: Query learning, FSM testing, Software Engineering

1. Introduction

Query learning has received growing interest for software engineering. It is used to re-
trieve finite state models of software systems or components. In this context, it makes
sense to use active learning inference algorithms, because in most cases we can query the
software system, by sending inputs to observe its outputs. The corresponding automata
models are input-output machines, that is Mealy machines, often called FSM (Finite State
Machines). Typical queries are usually not membership queries (checking whether a given
input sequence is accepted), but output queries: sending sequences of inputs and observ-
ing the corresponding sequence of outputs. So the inference algorithm will exploit traces:
sequences of input/output pairs.

Most algorithms used so far have considered that the system that is inferred can be
reliably reset, so that it is possible to root the observed traces to a fixed known initial
state. However, this is questionable. In many black box contexts, typically when a system
is queried over a network, the system under inference (SUI) cannot be reset. It may also be
the case that a system could be reset, but that it could take a very long time to restart. As
a typical example, interacting over a local network for querying a web system on a virtual
machine takes around a millisecond for a single input/output observation, whereas resetting
a virtual machine takes typically almost over a minute, so the reset typically costs 105 more
time than an I/O observation.

Rivest and Schapire (1993) had addressed this problem using a variant of the L∗ algo-
rithm with the assumption that a homing sequence was given, that is a fixed input sequence

c© 2016 R. Groz, C. Oriat & N. Brémond.



Inferring Non-resettable Mealy Machines with n States

such that the output observed completely determines the state reached at the end of the
sequence. We have proposed a new approach in Groz et al. (2015). Instead of relying on
a homing sequence, we use two classical assumptions from FSM testing. First, we assume
a bound on the number of states of the SUI. And instead of a homing sequence, we start
from a given characterization set, a.k.a. W -set, in reference to Vasilievskii (1973). A W -set
is a set of input sequences that, when applied from a given state, make it possible to know
what is this state. The advantage as compared to Rivest’s approach is that this algorithm
no longer requires an oracle. Implementing an oracle that can answer equivalence queries
cannot be done for an unknown software system, so it is usually approximated. However
there is a difficulty: since the W -set could contain several sequences, it implies that for a
system which cannot be reset, the algorithm must be sure to return to a state where a pre-
vious sequence was applied, from the same state. This is achieved by a recursive procedure
called a localizer.

Of course, the absence of an oracle is compensated by the fact that we assume we know
a bound on the number of states as well as a characterization set (although the latter
is a weaker compensation for a homing sequence). Such knowledge could be derived for
instance from previous versions of the component to be inferred. Indeed, a frequent case
is to use inference to get uptodate models of evolving components. In Groz et al. (2015)
we discuss possible workaround to address inaccurate bounds or incorrect characterization
sets. One possibility, as in Rivest and Schapire (1993) is to go for probabilistic algorithms,
i.e. extending the characterization set (just as the homing sequence can be extended). An
inadequate bound on the number of states could be spotted in the localizer procedure, and
increased accordingly.

In this paper, we show how the algorithm from Groz et al. (2015) can be improved and
can converge with a shorter observation trace when the assumption is that we have a strict
bound, i.e. we are given the number of states of the machine to be inferred. It is based
on the notion of compatibility, that has been used for a long time in passive inference, for
instance for the use of automata minimization as done by Kella (1971). It is also possible
to reduce the length of the sequence in the localizer procedure.

The rest of this paper is organized as follows. In section 2, we give the formal notations
and definitions used in the paper to describe the algorithms. In section 3, we recall what
is the base algorithm for the general case defined in Groz et al. (2015). Section 4 describes
the improvements that can be done when the number of states if known. In section 5
we show how the algorithm works on an example, on which it reduces the length of the
sequence necessary to infer from 71 steps (base algorithm) down to only 41 steps with the
new algorithm. The following section provides preliminary statistical results on various
kinds of machines. Finally, section 7 concludes.

2. Definitions

In this section, we recall a few classical definitions for the type of automata we are consid-
ering here, namely Mealy machines, which we shall call indifferently Finite State Machines,
FSM for short. A Finite State Machine is a complete deterministic Mealy machine. For-
mally, it is a 6-tuple M = (Q, q0, I, O, δ, λ) where

• Q is a finite set of states with the initial state q0,

31



Groz Oriat Brémond

• I is a finite set of inputs (the input alphabet), and O a finite set of outputs,

• δ : Q× I → Q is the transition mapping, and λ : Q× I → O is the output mapping.

Notations δ and λ are lifted to sequences: δ(q, ε) = q, λ(q, ε) = ε and for q ∈ Q, for
αx ∈ I∗, δ(q, αx) = δ(δ(q, α), x) and λ(q, αx) = λ(q, α)λ(δ(q, α), x).

For inference without reset, we will assume that the FSM to be inferred is strongly
connected, i.e. for all pairs of states (q, q′) there exists an input sequence α ∈ I∗ such that
δ(q, α) = q′.

Two states q, q′ ∈ Q are distinguishable by γ ∈ I∗ if λ(q, γ) 6= λ(q′, γ). Two states are
distinguishable by a set H ⊂ I∗ if there exists γ ∈ H that distinguishes them. An FSM is
minimal if all states are pairwise distinguishable. A set W of sequences of inputs (therefore
conventionally called a W -set, following Vasilievskii (1973)) is a characterization set for an
FSM M if each pair of states is distinguishable by W .

A sequence of input/output pairs α ∈ (IO)∗ is called a trace. Given a trace composed
of a prefix and suffix ω = αβ, we will write α = ω \ β and α ≤ ω. ω ↓ I will denote the
projection of the trace on its input set, that is the sequence obtained by deleting all outputs
from the trace. Given a machine M = (Q, q0, I, O, δ, λ) and its current state q defined by the
context, tr(α) will denote the trace from q such that tr(α) ↓ I = α and tr(α) ↓ O = λ(q, α).
For a set of input sequences H, Tr(H) = {tr(h) | h ∈ H}. Finally, we overload the notation
by defining Tr(q) as the set of all traces of M from state q, i.e. Tr(q) = {tr(α)}α∈I∗ . And
Tr(M) = Tr(q0). Two machines are equivalent: M ≈M ′ iff Tr(M) = Tr(M ′).

Given a characterization set W , rather than naming or numbering states, we may refer to
a state by its state characterization Tr(W ). A state characterization φ is actually a mapping
from W to (IO)∗, such that φ(w) = tr(w). The set of all mappings Φ = {φ1, ..., φm}
corresponds to the set of states Q of the machine. Namely, for φ ∈ Φ and q ∈ Q, we
write φ ↔ q if ∀w ∈ W,φ(w) ↓ O = λ(q, w). So while inferring an unknown FSM with
characterization set W , we will consider the set of mappings Φ as its set of states.

Given an FSM M and a set of possible implementations (aka fault domain) F , a trace
T is a checking sequence for M in F iff ∀M ′ ∈ F , T ∈ Tr(M ′) ⇔ M ′ ≈ M . A typical
fault domain could be the set of all FSM with a number of states bounded by some N . A
checking sequence is a perfect test that identifies a correct machine and detects all faulty
implementations.

3. Base algorithm

We assume we are provided with a Black-Box FSM B = (P, p0, I, O, δ, λ), and a character-
ization set for it W ⊂ I∗. We are also provided with a bound n on the number of states of
B, so card(P ) ≤ n. ω will be the currently observed trace.

Since we do not know B, we cannot compute a checking sequence for it using e.g.
Vasilievskii’s W -method (Vasilievskii, 1973). However, we can learn the structure of a
minimal FSM equivalent to B using the algorithm described in Groz et al. (2015). This
algorithm will in effect compute a checking sequence that will identify B in the fault domain
of all machines with up to n states.

32



Inferring Non-resettable Mealy Machines with n States

A complete definition and proof of the algorithm can be found in the original paper (Groz
et al., 2015). In this section, we just provide the main description and results, on which the
new algorithm, that will be presented in the next section, is based.

3.1. Data records used by the algorithm

The algorithm will record deduced information in the following sets:

• Q ⊂ 2W 7→(IO)∗ will denote states, defined by their characterization. Each state is
named by its traces recording its responses to the input sequences from W .

• C : (IO)∗ 7→ Q ∪ {⊥}, actually defined on a subset of prefixes of ω will be used to
label prefixes of the observed trace. For α ≤ ω, we have C(α) = q ∈ Q when we have
established that the machine B was in state q after observing α. C(α) = ⊥ when we
do not know what is the state reached by B after α. C stands for “Characterized
positions”.

• V ⊂ Q × (IO)∗ × Q will record verified subtraces of ω, that is a subtrace is in V
if its start and end “states” are labelled by C. Formally, V ′ = {(q, α, q′) | ∃σα ≤
ω,C(σ) = q, C(σα) = q′}. Actually, since the relation between states associated with
V ′ would be transitively closed, the algorithm will maintain its transitive reduction
V . V stands for “Verified sequences”.

• R will record input verified transitions, those for which the start state is known but
not necessarily the end state. R = {(q, x) ∈ Q× I | ∃o ∈ O,∃q′ ∈ Q, (q, xo, q′) ∈ V }.

• K ⊂ Q × (IO)+ × (IO)∗ keeps track of the applications of elements from W in a
given state, followed by either a single transition or a trace of a sequence from W .
(q, α, γ) ∈ K if ∃β s.t. βαγ ≤ ω, C(β) = q, α ↓ I ∈ I ∪W and γ ↓ I ∈ W . K stands
for “Known applications of characterizing sequences”.

3.2. Localizer procedure

The key element for the base algorithm is the localizer procedure, which makes it possible
to make sure that we can bring the machine to a state that can be identified because we
can be sure of its responses to all sequences in W . The localizer procedure is formulated
for fixed input and output alphabets I and O, and an assumed bound n on the number of
states in the black box. It takes as input the current observed trace ω and W . ω will be
extended and updated as output when exiting the procedure.

The structure of the sequence produced by a localizer is out of scope of this paper, and
we refer the reader to Groz et al. (2015) for a presentation of a general localizer.

The key property of a localizer is that, regardless of the state in which the black-box
machine B is, the localizer will ensure that just before applying the last wk input sequence,
B was in a state that can be characterized by the traces returned as second argument. This
is captured by the following theorem from Groz et al. (2015).

Theorem 1 From any starting trace ω, the localizer L(ω,W ) will return (ω′, X, β) such
that C(ω′ \ β) = X and X ↓ I = W .

33



Groz Oriat Brémond

In the example of section 5, we just need the simple case where the set W is reduced
to a single element W = {w}, in which case we can apply w just once to know what is
the state reached at the end of a trace (just before we apply w). However, designing a
localizer when W has more than one element is much more complex. For instance, for a
set W = {w1, w2, w3} and a bound N on the number of states, a localizer could apply the
following sequence: (w2N−1

1 w2)2N−1w2N−1
1 w3.

3.3. Main procedure

The inference procedure assumes it is given a black-box machine B whose number of states is
less or equal to n, and for which it is known that a set which we will order as W = (w1, ...wp)
is a characterization set. It can query B through the procedure Apply by submitting an
input sequence and getting the corresponding output sequence from B, in the state it was
left in following previous queries. The rules for Update can be found in Groz et al. (2015).

procedure InferNoReset(B,W, n)
Initialize K = R = V = ∅ (ω, q0, tr(wp)← L(ε,W ) // Home into a known state

C(ω \ tr(wp)← q0 QC ← {q0} while ∃q′ ∈ QC and x′ ∈ I such that (q′, x′) /∈ R do
if C(ω) = q 6= ⊥ then

// If current state known, move to unverified transition

Find a shortest α = α1, α2, ...αk s.t. for all i, (qi, αi, qi+1) ∈ V , q1 = q and
x ∈ I s.t. (qk+1, x) /∈ R Apply α ↓ I, observe α ω ← ωα ; χ ← ω Apply x,

observe xo // Observe transition

σ ← xo ; ω ← ωxo
else

// Use the latest known previous state

Find the shortest γ s.t. C(ω \ γ) 6= ⊥ // Could be shorter than wp
χ← ω \ γ ; σ ← γ

end
q ← C(χ) // Here ω is unknown

Choose w ∈ W such that there is no tr(w) s.t. (q, σ, tr(w)) ∈ K Apply w observe

tr(w) // Improve characterization of (q, σ)
ω ← ωtr(w) ; K ← K ∪ {(q, σ, tr(w))} if {w ∈W | (q, σ, tr(w)) ∈ K} = W then

// Full characterization reached

C(χσ)← {tr(w) | w ∈W and (q, σ, tr(w)) ∈ K} QC ← QC ∪ {C(χσ)} Update
V,R,K,C

end
if C(ω) = ⊥ then

// Move to a characterized state

(ω, q′, tr(wp)) ← L(ω,W ) C(ω \ tr(wp)) ← q′ ; QC ← QC ∪ {q′} Update
V,R,K,C

end

end
Build the conjecture from QC and V ∩ (Q× (IO)×Q)

end

34



Inferring Non-resettable Mealy Machines with n States

We have kept the traditional terminology of “conjecture”, even though in the case of
this algorithm under our assumptions, we only get a single final machine.

3.4. Convergence and Complexity

The initial paper Groz et al. (2015) proved the following theorem and analyzed the com-
plexity of the base algorithm.

Theorem 2 When W is a characterization set for B and the number of states of B is
less than or equal to n, the inference procedure terminates and yields a conjecture that is
isomorphic to the minimal FSM modelling B.

The complexity of active learning algorithms based on queries is usually assessed in terms
of the number and the length of queries. This makes sense in particular in the context
of learning black-box software components, especially when queried over a network or a
bus, because remote interaction with the system takes much more time than the internal
bookkeeping activities of the algorithm. In the case of algorithms that do not use reset and
simply send inputs and observe outputs, the measure is quite simple: the total length of
the trace until we can build the conjecture.

With p = card(W ), n the number of states and f the number of input symbols, a very
coarse bound for the length of the trace is O(p(f + p)2pnp+2). Experiments showed that
the average complexity for p = 2 (the most common case even for random machines with
2 inputs and 2 outputs) is O((f + 2)n1.9). The interesting point worth mentioning is that
the algorithm remains polynomial in n, although the degree of the polynomial depends on
the number of sequences in W . Experiments with random and semi-random machines also
showed that this algorithm outperforms Rivest and Schapire by an order of magnitude for
p = 2.

4. Algorithm for known number of states

The base algorithm was designed with the view that n was an upper bound on the number
of states. If n is actually the number of states, card(P ) = n, the length of the inference
sequence can be reduced, once we have found the characterization of all states. Note
that state discovery can occur either through applications of the localizer, or through the
deductions made from the set K of known applications of characterizing sequences.

From the outgoing sequences from a given state recorded in V we can check whether
a given tail state (as yet unidentified) of a transition is compatible with any of the other
states. If it is compatible with just one, and all the states are known, then we can identify
that tail state. We detail this now.1

1. Actually, there could also be a reduction in the localizer procedure. Once we know all answers of all
states to W , we could use an adaptive localizer that applies the most discriminating sequences from W
first, and further ones only if needed. However, we do not address localizers in this paper, and in fact,
the gain in our experiments was null or very small, because the deductions based on compatibility are
strong enough to reduce drastically the need to call the localizer once all states are discovered.

35



Groz Oriat Brémond

4.1. Compatibility relation

For each sequence (q, α, q′) ∈ V , and each prefix σ ∈ Pref (α) of α, we define a node denoted
by (q, σ). This node is associated with the state reached in B when σ is applied (or observed)
from state q. Each node may correspond to several prefixes of ω, because the same verified
subtrace α starting from a prefix labelled with q can occur several times in ω, but also
because two verified sequences from V can share a common prefix, for instance if we have
(q, αβ, q′) ∈ V and (q, αγ, q′′) ∈ V . Apart from nodes that appear in V , we also consider
nodes in the tail of the observed trace, that are successors of the last labelled subtrace of
the observed trace ω. The set of nodes is:

S = {(q, σ) | q ∈ Q & ∃α ∈ (IO)∗ s.t. ασ ≤ ω, C(α) = q & ∀τ, ε < τ < σ ⇒ C(ατ) = ⊥}

Actually, when (q, α, q′) ∈ V , we consider in S that (q′, ε) and (q, α) are two notations for
the same node. So S is in fact the quotient for this equivalence relation. Nodes of S that are
of the form (q, ε) will be called state nodes, and we may denote them just q. We organize
V as a labelled input output transition system, viz. a directed graph with edges labelled
by a couple of input and output. Γ = (S, I,O,→). The transition relation is defined as

(q, σ)
x/o→ (q, σxo)

Nodes in Γ correspond to states of B, and edges represent the existence of a transition that
has been traversed while observing ω.

We can now define the incompatibility relation � as the smallest fixpoint for the follow-
ing relation.

(q, ε) � (q′, ε) iff q 6= q′ (1)

(q, σ) � (q′, σ′) if ∃x ∈ I, (q, σ)
x/o→ (q, σxo), (q′, σ′)

x/o′→ (q′, σ′xo′) & o 6= o′ (2)

(q, σ) � (q′, σ′) if ∃x ∈ I, (q, σ)
x/o→ (q, σxo), (q′, σ′)

x/o→ (q′, σ′xo) & (q, σxo) � (q′, σ′xo)(3)

The interpretation of this incompatibility w.r.t the states of B that correspond to the
nodes of Γ is straightforward. Nodes (q, σ) and (q′, σ′) are incompatible when there is a
sequence that distinguishes them, so they must be associated with different states of B.
This is the stepping stone for refining the state identification. With the base algorithm, in
order to identify the tail state of a transition, we need to come back to that transition as
many times as there are sequences in W , and apply in turn each input sequence from W to
identify the state. Whereas with the incompatibility relation, we may realize that we have
enough information in the observed trace to identify the tail state without having to apply
all elements of W to it.

4.2. Learning algorithm with compatibility analysis

Compatibility analysis can be weaved into the base algorithm as follows.

• A new data structure G based on Γ, which is the labelled transition system defined
in Section 4.1 , enriches the set V . It supersedes V since it contains all the sequences
from V plus additional nodes (those that occur after the last characterized trace)

36



Inferring Non-resettable Mealy Machines with n States

and additional information. G tags each node with the set of state nodes that are
incompatible with it. Formally G = (Γ, D) = ((S, I,O,→), D) where D ⊂ (2Q)S

expresses the incompatibility relation with Q (D stands for difference).

• Whenever the observation trace ω is extended, G can be updated using the rules
described above in 4.1. This occurs either when the localizer is used, because it
consists of repeated applications of elements of W or whenever the algorithm applies
an input x or a sequence α of w.

• G being based on V is also updated whenever a new state is discovered, either through
the localizer or through further deductions either from K, or from the incompatibility
relation.

Deduction: Whenever we update the incompatibility relation, one of the nodes in S may become
incompatible wih all but one state from Q. When this occurs, C is updated as well
as the depending structures: G,R,K,C.

With respect to the text of the base algorithm, this means that the only changes will
occur in the Apply and Update procedures: both will update G with the extra rules from
4.1, and will check whether a deduction is possible. As soon as transitions are completely
defined, for all states in Q and inputs in I, the algorithm can exit from the while loop and
build the conjecture.

5. Example

We consider the following automaton, which is a product of a counter modulo 2 and a
counter modulo 3 (fig. 1). I = {i, j} and O = {0, 1}. We choose as W -set the singleton
W = {jji}, which is a distinguishing sequence.

1 2 3

4 5 6

j/0 j/0

j/0 j/0

j/1

i/0 i/0 i/0 i/1i/1i/1

j/1

Figure 1: Two-counters automaton

5.1. Inferring until we “learn” all states

We start the algorithm by applying the localizer, which consists in just applying the sequence
jji. We obtain the output sequence 000, and thus identify a new state at position 0 of the
trace: S0 = {jji 7→ j0j0i0} which we shall simply write {j0j0i0}. Positions are shown as

37



Groz Oriat Brémond

indices of the states reached by the automaton. Of course, the inference algorithm only
observes the positions and I/O pairs of transitions, it does not have access to the internal
state: those are depicted for the reader to make it easier to follow the trace. The states
that can be inferred are shown below the positions. They are called Si with a numbering i
that starts from 0.

10

j/0
−→ 21

j/0
−→ 32

i/0
−→ 63

j/1
−→ 44

j/0
−→ 55

i/1
−→ 26

j/0
−→ 37

j/1
−→ 18

i/0
−→ 49

S0 S1 S2

We enter the main while loop. We do not know the current state, so we enter the else
part of the first if statement and get σ = j0j0i0. We choose w = jji, apply w and observe
101. So we get K = {(S0, j0j0i0, j1j0i1)} and discover a new state S1 = {j1j0i1} and get
V = {(S0, j0j0i0, S1)}. Note that states are not discovered in the order of their “names” in
the automaton. We first found state 1 which we called S0, then we discover state 6 which
we call S1, and V = {(S0, j0j0i0, S1). We have the following incompatibilities: S0 � S1,
1 � S1, 4 � S1. Now, as the last position is unknown, we enter the last if statement and
apply the localizer procedure.

We get K = {(S1, j1j0i1, j0j1i0)}. A new state S2 = {j0j1i0} is discovered, V =
{(S0, j0j0i0, S1), (S1, j1j0i1, S2)} and we label position 6 of the trace with S2. We can
deduce that 6 � S0, 6 � S1 and 7 � S0, as well as a few other incompatibilities.

We restart the while loop and obtain the trace

49

j/0
−→ 510

j/0
−→ 611

i/1
−→ 312

j/1
−→ 113

j/0
−→ 214

i/0
−→ 515

j/0
−→ 616

j/1
−→ 417

i/1
−→ 118

S3 S4 S5

At this point, we have identified the states S3 = {j0j0i1}, S4 = {j1j0i0} and S5 = {j0j1i1}.
V = {(S0, j0j0i0, S1), (S1, j1j0i1, S2), (S2, j0j1i0, S3), (S3, j0j0i1, S4), (S4, j1j0i0, S5)}.

We can note that in this particular example, we have first identified all states and then
we will identify all transitions, which is not the case in general. Although we were able to
get partial incompatibility results, we are not yet able to use them for labelling positions,
at this point, this will come later.

5.2. Learning transitions

We still do not know where we are, so we again apply the localizer.

118

j/0
−→ 219

j/0
−→ 320

i/0
−→ 621

i/1
−→ 322

j/1
−→ 123

j/0
−→ 224

i/0
−→ 525

S0 S1 S4 S5

We can now label positions 18 with S0 (as returned by the localizer) and 21 with S1

(because (S0, j0j0i0, S1) ∈ V ). We can notice that for the first time, we know where we are
(state S1) at the end of the trace. We thus enter the then part of the first if statement in
order to move to an unverified transition. We choose α = ε and x = i, apply x and observe
1. At step 22, we choose w = jji, apply w and observe 100. We can now label step 22 with
S4. We have thus identified the transition (S1, i1, S4). And we know from V that position
25 is S5.

38



Inferring Non-resettable Mealy Machines with n States

525

i/1
−→ 226

j/0
−→ 327

j/1
−→ 128

i/0
−→ 429

i/1
−→ 130

j/0
−→ 231

j/0
−→ 332

i/0
−→ 633

S5 S2 S3 S0 S1

So we now learn a new transition from S5; choosing α = ε and x = i, we get (S5, i1, S2) ∈
V , and similarly after another 4 inputs we learn transition (S3, i0, S0). At this point, V =
{(S0, j0j0i0, S1), (S1, j1j0i1, S2), (S1, i1, S4), (S2, j0j1i0, S3), (S3, j0j0i1, S4), (S3, i1, S0),
(S4, j1j0i0, S5), (S5, j0j1i1, S0), (S5, i1, S2)}, and we cannot make any deduction from in-
compatibility. We are in state S1 (position 33), and we already know the i transition, so
we choose α = ε and x = j, and we apply jji. So we learn transition (S1, j1, S3).

633

j/1
−→ 434

j/0
−→ 535

j/0
−→ 636

i/1
−→ 337

S1 S3 S4

5.3. Deductions come in

We have now come to the point where the new algorithm from section 4 will make a
difference, because we can make a deduction from G. Since we learnt a transition on input
j, we are now able to split in V the verified sequences that comes from the localizing sequence
(S1, j1j0i1, S2) into two subsequences (S1, j1, S3) and (S3, j0i1, S2). And from this, we find
that in Γ the node (S2, j0), that admits trace j1i0 (see position 7), is incompatible with
states S0, S2, S3, S5 and now S1 (S1 admits trace j1i1). Therefore, we are able to deduce
a new transition (S2, j0, S4). In turn, this make it possible to split in V the sequence that
went from S2 to S3, so that now we have (S4, j1i0, S3) ∈ V . From this, we now deduce that
(S5, j0) � {S0, S2, S3, S4, S5}, hence we deduce transition (S5, j0, S1).

No further deduction can be made, so we continue the main loop from S4 (position 37).

337

i/0
−→ 638

j/1
−→ 439

j/0
−→ 540

i/1
−→ 241

S4 S1 S3 S2

We move to an unverified transition, with α = ε, x = i and get σ = i0. We take w = jji, ap-
ply jji, observe 101 and reach position 41, so we just learnt transition (S4, i0, S1). We have
now enough information to conclude. (S4, j1) is incompatible with all states except S0, so
we learn transition (S4, j1, S0), which enables to split the previous sequence (S4, j1j0i0, S5),
so that with incompatibility we deduce transitions (S3, j0, S5), (S0, j0, S2) and (S0, i0, S3).
At this point, V = {(S0, i0, S3), (S0, j0, S2), (S1, i1, S4), (S1, j1, S3), (S2, j0, S4), (S3, i1, S0),
(S3, j0i1, S2), (S3, j0j0i1, S4)(S4, i0, S1), (S4, j1, S0), (S5, i1, S2), (S5, j0, S1)}. We only need
to learn transition by i from S2 and the tail state for (S3, j0). The second one is easily
obtained by incompatibility: (S3, j0, S5). And for the first one, it comes from the fact that
we knew (S4, j1j0i0, S5), which has been split in Γ as (S4, j1, S0) and (S0, j0, S2), hence
(S2, j0, S5). We have now learnt all transitions, and the algorithm stops on a conjecture
that is equivalent to the black box machine.

Therefore, our algorithm is able to infer the automaton with a trace of length 41, whereas
the base algorithm required 71 steps.

Would it be possible to infer the automaton earlier? It can be shown that in this case,
the prefix of length 39 is a checking sequence, whereas for a prefix of length 38, there would

39



Groz Oriat Brémond

not be a single solution. Actually, we applied jji from position 38, but the first j would
have been enough; however the argument to conclude two steps earlier than we did uses
more than incompatibility: it requires a specific reasoning on the number of outgoing and
ingoing i−transitions.

6. Preliminary results

Figure 2 shows the median of the trace length outside localizers2 as a function of the number
of states for both algorithms. We used small input and output sets (2 or 3 letters) as this
is the toughest case (lower distinguishability).

Figure 2

We conducted an experiment with 300
random FSM, with 2 to 25 states and
card(W ) = 2 (the most common case for
random machines with small input and out-
put sets, here 2 or 3 letters).
The new algorithm improves on the base al-
gorithm on average by 20% (N.B. including
general localizers from Groz et al. (2015),
the overall gain is 8.1%). The gain seems
stable over various state sizes. Another ex-
periment with machines which are a product
of a 3 state counter (as in the example) and
a random FSM showed better results (gain
around 30%).

The most striking result however is that the trace found with the new algorithm often
corresponds or is close to the smallest prefix of the trace found with the base algorithm
that would be a checking sequence. In over 50% of experiments, the new algorithm actually
finds exactly the smallest prefix. Any shorter prefix would not identify a unique machine.

7. Conclusion

This paper shows that by better exploiting the information available from a trace built by
the active learner for a non-resettable machine with a characterization set, we can reduce
the length of the sequence needed for complete inference of an FSM provided the number
of its states is known. Furthermore, the incompatibility relation defined is almost optimal
in the sense that it often yields the shortest prefix that identifies a single solution machine.

Incompatibility information could also be used when the number of states is not known,
to distinguish states, and get a minimal number of states, even though they might not be
fully characterized. We are also working on other directions for better applicability of the
algorithms presented in this paper. As noted in Groz et al. (2015), there are relatively easy

2. We excluded localizing sequences from this count, because the compatibility relations do not change
the localizer, and there could be other types of localizers. Our implementation works with the general
localizer from Groz et al. (2015), but more efficient localizers have been considered. Since the length of
localizing sequences is the major contributor to the length of the trace, taking a non optimized localizer
into account reduces the significance of the results.

40



Inferring Non-resettable Mealy Machines with n States

approaches to deal with an incorrect bound on the number of states of a system. Most
interesting would be the possibility to alleviate the other key assumption: the hypothesis
that we know a characterization set of a black box FSM. We are considering heuristics to
derive characterization sets for unknown machines.

The assumptions that we know n and W for a black box machine are strong. Under
those assumptions, we propose algorithms that directly end up with a correct identification
of the machine. Just as other grammatical inference methods, they could form the basis
for deriving methods that converge in the limit, by establishing converging conjectures that
can be refined with e.g. counterexamples that can then provide new values for n or W .

Acknowledgments

The authors are grateful to Adenilso Simao for providing the tool Chico based on Simao
and Petrenko (2010) that checks whether a sequence is a checking sequence for a given
machine.

References

R. Groz, A. Simao, A. Petrenko, and C. Oriat. Inferring finite state machines without reset
using state identification sequences. In Proceedings of the International Conference on
Testing Software and Systems, ICTSS 2015, Dubai, nov 2015.

J. Kella. Sequential machine identification. IEEE Trans. Comput., 20(3), 1971.

R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. In
Machine Learning: From Theory to Applications, pages 51–73, 1993.

A. Simao and A. Petrenko. Checking completeness of tests for finite state machines. IEEE
Trans. on Computers, 59(8):1023–1032, 2010.

M. P. Vasilievskii. Failure diagnosis of automata. Cybernetics, 9:653–665, 1973.

41


	Introduction
	Definitions
	Base algorithm
	Data records used by the algorithm
	Localizer procedure
	Main procedure
	Convergence and Complexity

	Algorithm for known number of states
	Compatibility relation
	Learning algorithm with compatibility analysis

	Example
	Inferring until we ``learn'' all states
	Learning transitions
	Deductions come in

	Preliminary results
	Conclusion

