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Abstract

We proposes an algorithm to learn automata infinite alphabets, or at least too large to
enumerate. We apply it to define a generic model intended for regression, with transitions
constrained by intervals over the alphabet. The algorithm is based on the Red & Blue
framework for learning from an input sample. We show two small case studies where the
alphabets are respectively the natural and real numbers, and show how nice properties of
automata models like interpretability and graphical representation transfer to regression
where typical models are hard to interpret.
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1. Introduction

Automata have been studied in depth, e.g. in Hopcroft et al. (2000), and successfully
applied in a wide range of fields, ranging from biology over linguistics to computer science
itself. Especially in the field of software specification and verification, these models are
appreciated for their balance between expressive power and decidability of model and lan-
guage class properties. In reverse, inferring an automaton from observations of software
interactions, is an important step when analyzing and reverse engineering software and
protocols, e.g. Heule and Verwer (2010), Cho et al. (2010). Here, the benefit of automata
are easy to interpret and graphically representable models. Because most work on learning
these models has been done under the assumption of small alphabet sizes, it is hard to
transfer the nice properties to situations where the alphabet is large, or even uncountable.
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In this work, our goal is to provide a general method to infer automaton models on infinite
totally ordered alphabets, meant for the task of regression. Many regression methods, like
ARIMA (Wei, 1994) and neural LSTM models (Gers, Schmidhuber, and Cummins, 2000),
don’t offer a good way of interpreting and understanding the learned model. We propose
a bottom-up approach to learn finite automata from infinite alphabets and apply to deter-
ministic finite automata intended for regression: each transition is constrained by intervals
over the infinite alphabet. For this reason we call then Deterministic Regression Automata
with Guards (RAGs).

Finite automata with potentially infinite alphabets have been studied in theory, e.g.
in Neven, Schwentick, and Vianu (2004), Segoufin (2006), and shown to be conservative
extensions. Often, automata are also extended with additional memory such as registers or
variables Howar et al. (2012), Grumberg, Kupferman, and Sheinvald (2010). Learning these
variants of automata from input samples has not been researched frequently. In the context
of alphabet refinement, Howar, Steffen, and Merten (2011a) permits infinite alphabets and
uses an active learning approach to learn automata. Maler and Mens (2014) proposes a
modified Angluin’s L* algorithm to learn from large alphabets. The method is top-down:
Initially, the largest possible label is taken for each transition. Upon queries to the oracle, a
label can be partitioned. Partitions of the infinite alphabet are used to label the transitions
in the final automaton. For state-merging learning approaches, Schmidt and Kramer (2014),
Schmidt, Ansorge, and Kramer (2012), propose a clustering-based algorithm to infer real-
time automata on multivariate timed events, where the events may contain real-valued
components. The data is used to cluster states globally in a merge step, without evaluating
the equivalence of future continuations of the states.

A very close related work is Lin et al. (2016), where regression automata without guards
are learned for predicting wind speed data, overcoming the limitless of the alphabet by
translating it in a bounded symbolic domain.

The rest of the paper is organized as follows. In Section 2 we provide basic notation and
definitions, furthermore we introduce Regression Automata with Guards. In Section 3 we
describe our algorithm for learning RAGs from a data sample, and we show how it works
in two case studies. In Section 4 we conclude by a discussion about the current and future
work.

2. Deterministic Regression Automata with Guards

This section uses basic notation from grammar inference theory, for an introduction we
refer to de la Higuera (2010). In several contexts, i.e. time series forecasting, data are
sequences of points made over a continuous time interval, out of consecutive and equally
spaced measurements. We model such data with sequences of symbols taken from a given
totally ordered alphabet 3, where the time is indirectly represented by the position within
the sequence. This is sufficient because in practice we always deal with a finite precision
of time intervals, e.g. milliseconds, minutes, hours. In this paper we introduce a new type
of finite state automaton exclusively meant for dealing with large or infinite alphabets. In
Regression Automata with Guards (RAGs), every transition is decorated with constraint
guards. We represent a constraint guard by a closed interval in X, and we say that [I,r] is
satisfied by a symbol s € ¥ if s € [I,r]. A RAG is defined as follows:
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Definition 1 (RAG) A Regression Automaton with Guards (RAG) is a 5-tuple (X, Q, qo,
A, P) where ¥ is the alphabet, Q is a finite set of states, qy € @Q is the start state, A is a
finite set of transitions, and P : QQ — X is a prediction function that assigns a prediction
value to every state in Q. A transition § € A is a triple {(q,q,[l,r]) where q,q' € Q are
respectively the source and target states, and [l,r], I, € ¥, is a guard.

We will also use functional notation for transitions, so for ¢ € Q and s € ¥, 6(q,s) = ¢’ €
Q iff 3(q,q,[l,r]) € As.t. s € [l,r]. We only focus on deterministic regression automata
because of the complexity of learning non-deterministic automata (de la Higuera, 2005).
A RAG is called deterministic if it does not contain two transitions with the same source
state and any overlap between the guards. In a RAG, a state transition is possible only if
its constraint guard is satisfied by a coming value. Hence a transition 6 = (q,q’,[l,r]) is
interpreted as follows: whenever the automaton is in state ¢, by reading an incoming value
v such that v € [[, ], then the automaton changes state moving to ¢'.

In order to define a computation of a RAG, we introduce the notion of closest transition:

Definition 2 (closest transition) The closest transition for a given state ¢ € Q of a
RAG A= (%,Q,q,A, P), and given a symbol s € 3, is the transition my(s) such that:

<qv qu [Sa S]> Zf E <q> qlv [l,T]>
(q,q,1]L,7]) if 3(q, ', [1, T]>€Ast selr]
mq(s) = (q,q,[L,r]) if Mg, q,[l,r]) € A st s<lors>r

argmin  {[s — 7epel, |5 — lrigne|}  otherwise.
6left75m'ghteA

The first branch defines a default transition to the start state when no transitions are
available in q. The second branch defines the closest transition as the only one, if exists,
that contains s. Since we are restricting to deterministic RAGs, at most one transition
which includes the value can be present in A. The third branch addresses the special case
when there exists only one transition in A, with initial state ¢, and it does not contain s.
The last branch occurs when the value is located in between two consecutive transitions
(Oteft = <q,q{eft, [lleft,rleft]> and Opignt = <q,q;ight, [Lright, Tright) )). In this case the one
with the closest edge is chosen.

The behavior of a RAG is defined by its computation:

Definition 3 (RAG computation) A finite computation of a RAG A = (¥2,Q, qo, A, P)
over a finite sequence of symbols s = s1,89,...,8, 1S a finite sequence

o > 41 73 g2y dnm1 7
such that for all 1 < i <n (gi—1,q,, [li,r:]) = mg,_,(si). It is also called close-computation.

Let S C 7 denote a sample of non-empty sequences with symbols in ¥. We call
SUFF(S) C X% the set of all non-empty suffixes of sequences in S. Hereby we introduce
the notion of future continuations set of a state g, as the set of all suffixes of a sample
inducing a computation in A that starts with ¢:
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Definition 4 (future continuations set) The future set for a state ¢ € Q of a RAG
A =(3,Q,q,A,P), given a sample S C 7T, is the set ¢pas(q) = {s = s1,82,...,8, €
SUFF(S) | Jq1,92,- - qn € Q+7q0 =q, and 5(Qi—173i) =g, 1 = 1,2,...,71}. ¢A(q) de-
notes the future continuations set of state q given the sample used for learning A.

We also introduce the notion of transition centroid given a sample as the mean of all
values of the sequences, included in the sample, that get caught by this transition:

Definition 5 (transition centroid) The centroid of a transition § = {(q,q,[l,r]) of a

Lif |s| =1,
, where I(s) =
2iscpng 1) (5) 0 otherwise.

ZS€¢A’S(Q)AI(S)=1 S

RAG A, given a sample S C X7, is ug(d) =

When clear from the context, we will omit the sample subscript from the transition centroid.

[0, 4]

Figure 1: An example of a RAG. The leftmost state is the start state. Every state transition
contains a guard. Missing transitions lead to the start state. Every state contains an
identification number (above) and a prediction value (below).

Example 1 Figure 1 shows an example of RAG. This RAG computes sequences of real
values. For instance, given the sequence 0.88,15.07, it crosses the states 0,0,1. Given the
sequence 0.88,9.05 the RAG crosses the states 0,0, 1 because in state 0 the closest transition
to value 9.05 leads to state 1.

3. Learning Regression Automata with Guards

The problem of learning RAGs is a specialization of the more general problem of learning
deterministic finite state automata (DFAs), with the additional task of learning guards
over transitions. Unfortunately identifying transition guards is already an NP-Complete
problem, as demonstrated in Verwer, de Weerdt, and Witteveen (2012) for time guards in
real time automata. In addition, the more general problem of learning DFAs is again NP-
Complete, as proved in Gold (1978). Hence we will not be able to solve this task efficiently
unless P = NP. However, we can still design an efficient algorithm that learns both the
structure and the guards and converge to the correct underlying RAG when more and more
data are provided, in the limit. It has been done for deterministic finite state automata
with RPNI algorithm (Oncina and Garcia, 1992), and for real time automata with RTI
algorithm (Verwer, de Weerdt, and Witteveen, 2012). For real time automata there exists
a polynomial time algorithm, able to identify time guards over transitions and structure of
the automaton in the same way, such that it converges in the limit to the correct target.
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Algorithm 1 Regression Automata Identifier (RAI)
Require: a sample S of real value sequences, a threshold 7

A := BUILD-PT(S) > construct the prefix tree
RED =0 > core set of red states
BLUE :=10 > fringe of blue states

PROMOTE(PROMOTE(A, RED,BLUE, qo,7)) > make the root of the prefix tree red
while BLUE # () do

CHOOSE(q, € BLUE) > select the best red/blue merge
if 3¢9, € RED | COMPATIBLE(A, q,, g, 7) then > if g, and ¢, are compatible
MERGE(A, ¢, ¢) > perform the merge
else > if no compatible merges are available for g
PROMOTE(A, RED, BLUE, gy, T) > make qp red
end if
end while
return A4

Algorithm 2 BUILD-PT
Require: a sample S of real value sequences, a threshold 7
A = a RAG containing only one white start state qq

for all s = sp,51,...,8, € S do > for each sequence in the sample
q = 4o
fori=1,2,...,ndo > for each value within the sequence
if 36 = (q,¢,[l,7]) € A|si € [l,7] or |us(d) — si| > 7 then
Q:=QUuU{d}
A= AU{{q,dq,[si,si])} > make a transition from ¢ covering s;
else
36 = (q,q', [ls,rs]) | s € [ls, 7s]
d:={(q,q, [min{ls, s;}, max{rs, s; }]) > possibly update guards of §
end if
ba,5(q) =das(q)U{sli:n]} > add i-th suffix of s to the future sets of ¢
q:=d
end for
end for
return A

Regression Automata Identifier (RAI) has been inspired by RPNI algorithm for DFAs,
with which it shares the general structure. RAI (algorithm 1) starts by building a prefix
tree from a given sample of sequences of real numbers (algorithm 2), then it starts merging
couple of states iteratively. A merge (algorithm 3) is made only if the candidate states are
compatible for merging (algorithm 5). If no compatible merge is possible for a given state,
it is promoted (algorithm 7). The algorithm has as a starting point the prefix tree, that is
a regression automaton. In order to avoid non-determinism, every merge is followed by a
folding operation (algorithm 4). RAI implements the so called red&blue framework (de la
Higuera, 2010), thus the states of a RAG are partitioned in three sets RED, BLUFE, and
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Algorithm 3 MERGE
Require: a RAG A, states ¢ € RED and ¢’ € BLUE

for all § = (gs,¢, [ls,75]) € A do > redirect all incoming transitions in ¢
6 := (g5, ¢ [ls,75])

end for

da(q) :=da(q) Uda(d) > merge future sets

FOLD(A4,q,q¢) > fix potential non-determinism

Algorithm 4 FOLD
Require: a RAG A, states ¢,q' € Q, ¢’ being root of a tree

for all &, = (¢, q, [lp, 7)) € A do > scan all outgoing transitions of ¢’
O :={{q, 4, [los70]) € A | [lo, 0] N[y, 7] # 0} > set of transitions of ¢’ that overlap 0
if O = () then > there is no overlap, thus just redirect dy
if g ¢ RED then > guards will get built later
o = (4, qézv [lb7 7“b]>
else > q € RED, hence guards have already been built

closest := mq(11(0p))
JOIN-TRANSITIONS(clostest, o)
end if
else
for all 6, = (¢,q),[lo,70]) € O do
FOLD(A, 4., q;) > otherwise recursively fold all subtrees
end for
end if
end for

WHITE. One invariant of RAI is that RED is a core of states representing the already
identified part of the target automaton structure, surrounded by a fringe of blue states, and
remaining states are white. Only merges between red and blue states are allowed in RAI.
Blue states have only one predecessor, and they are root of a tree.

Algorithm 3 takes a red state g and a blue state ¢’. It first redirects all incoming
transitions of ¢’ to ¢. Then it merges the future set of ¢’ with the future set of q. After that,
the tree rooted in ¢’ is disconnected, thus it is folded in the rest of the RAG. Algorithm 4
is in charge of that.

Algorithm 5 scans every future continuation f, of the red state candidate for merging.
Then it pair f, with the closest future continuation of the blue candidate, according to the
average prefix euclidean distance (1). It does the same for every future continuation fj,
of the blue candidate. If the average distance among continuations is lower than a given
threshold, then it returns YES.

\/me{lfl W (g — o2
win {71171} W

The CHOOSE function in RAT just selects the red/blue couple that minimizes the score
computed by algorithm 6. Basically it is similar to COMPATIBLE, but here it just sums
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Algorithm 5 COMPATIBLE
Require: states ¢ € RED and ¢’ € BLUE, a threshold 7
sum =0
for all f, € ¢p4(q) do
f» := CLOSEST-FUTURE({, f;)
sum := sum + p(fr, fv) > p(+,-) is the average prefix euclidean distance
end for
for all f, € pa(¢) do
fr == CLOSEST-FUTURE(q, f»)
sum = sum + p(fp, fr) > p(-,-) is the average prefix euclidean distance
end for

return sum/ (|¢a(q)| x |¢a(d)]) <7

Algorithm 6 SCORE
Require: states ¢ € RED and ¢’ € BLUE
r:=0
for all f, € ¢p4(q) do
f» := CLOSEST-FUTURE({, f;)
r:=1r+p(fr, fp) > p(+,-) is the average prefix euclidean distance
end for
return r

out all the distances between red and blue futures. The idea behind such a criterion is to
choose couples of states that show closeness in all the sequences observed in the training
sample that originates form both.

Algorithm 7 reacts differently depending on the partition the input state ¢ belongs to. If
q € RED no further promotion is possible, thus the algorithm does nothing. If ¢ € BLUFE
then it is moved to the red partition and all its successors, white by definition, get promoted
to BLUE. If g € WHITUF it is moved to BLU E, and then the time guards for the outgoing
transitions are identified.

Algorithm 8 identifies guards by grouping transitions which are close each other. It
scans all outgoing transitions of a given state ¢ in ascending order of the unique value each
of them represents. We are certain that all such transitions represent only one value because
q is root of a subtree of the prefix tree built at first step of RAIL Then it decides whether
to join a given transition to the previous one or not. The decision is made according to the
average prefix euclidean distance among all possible pairs of sequences in the future sets
passing through both transitions.

Figure 2 shows how RAI works on the sample S = {(1,2,1), (1,13),(2,2,2,14), (2,13),
(17)} in order to identify the model of Figure 1. It firstly builds the prefix tree (a) by calling
Algorithm 2, then it chooses states 0 and 1 for merging. Notice that 0, the root of the tree,
has been previously promoted to RED thus 1 must have been promoted to BLUFE as well.
After the merge (b) Algorithm 4 is called on the same couple of states, thus transition to 2
is added to the cluster represented by the self loop in 0, and also transitions to 6 and 4 get
clustered together (c). Algorithm 4 calls itself recursively on states 0 and 2, thus transition
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Algorithm 7 PROMOTE
Require: a RAG A, sets RED, BLUE C (Q, a state g € Q, a threshold 7

if g€ RED then > ¢ is red
return ¢ > a red state cannot be promoted any further

end if

if g€ BLUFE then > ¢ is blue

BLUE := BLUE \ {q}
RED := RED U {q}

for all (¢,¢,[l,r]) € A do > for all outgoing transition of ¢
if ¢ ¢ BLUE and ¢ ¢ RED then > if ¢’ is white
PROMOTE(A, RED, BLUE, ¢')
end if
end for
BUILD-GUARDS(4, ¢, 7)
return q
end if
BLUE := BLUE U {q} > q is white
return q

Algorithm 8 BUILD-GUARDS
Require: a RAG A, a state g being root of a tree, a threshold 7
sort singleton transitions of ¢ in ascending order of their unique value

last == ¢ > last is the last encountered transition
for all 6 = (¢,¢,[l,r]) € A do > for all outgoing sorted transitions of ¢
if last = € or |u(last) — p(6)] > 7 then > § cannot be joined to the last transition
last := 0
else > join J to the last encountered transition
JOIN-TRANSITIONS(4, last)
end if
end for

from 0 to 3 in model (c) get added to the self loop in 0 (d). After an additional recursive
call the folding process ends in model (e), whose structure is the same of the target.

Figure 3 shows how RAI works on a sample of 10000 observations generated according
to a sinus wave, thus a potentially infinite alphabet R. The threshold 7, used for the
compatibility check, has been set to 0.3. RAI minimizes a prefix tree of 17848 states, into a
RA of just three. It is possible to interpret such states, by looking at the outgoing transitions
from each of them. State 0, for instance, explains the first 180° of the sinus period.

4. Discussion

We have defined a generic algorithm for learning regression automata, targeting languages
with large or infinite alphabets that can be recognized by models with limited number of
states and transitions. There exist some works which address the same issue, mainly in the
active learning domain where models are learned by querying informed oracles (Maler and
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Algorithm 9 JOIN-TRANSITIONS

Require: a RAG A, a transition 6. = (qc, ., [lc,rc]) to join to transition 0; =
<q]7 q;7 [lja TJ]>

d; = <qj, q}, [min{l,, [;}, max{r,, rj}]> > possibly update guards of §;

A=A\ {6} > drop d. transition from A

¢a(q;) = dalq;) Udalqe) > update future continuations of ¢;

for all 6, = (¢c, ¢, [lo,70]) € A do > update outgoing transitions of ¢.

Sov = (Qovs o lovs Tov]) € A | Loy < (o) < Top > o, if exists, overlaps 4,

if ., = € then
o := {qj, o [los o))
else
JOIN-TRANSITIONS (80y, 95)
end if
end for

Mens 2014, Veanes et al. 2012). However they assume a radically different approach because
they aim to partition the alphabet in a top-down strategy. Also Verwer, de Weerdt, and
Witteveen (2012), in RTI, uses the same approach to split guarded transitions before merg-
ing couples of states. Our algorithm follows a bottom-up approach, identifying transitions
by merging consecutive transitions instead of splitting them.

The genericity of the algorithm comes from the adoption of the Red and Blue framework
for learning automata from samples (de la Higuera, 2010), with the addition of a grouping
procedure for identifying non-overlapping subsets of the alphabet in each state. Of course
each problem requires its own specific merging criterion between states, as well as its own
grouping strategy. In this work we have presented an instantiation of this algorithm for
both alphabets ¥ = (R, <) and ¥ = (N, <). When dealing with numbers, the grouping
into a finite number of intervals is very natural and may be used in many application
domains for regression and prediction. In the next future we are planning to compare the
predictive power of regression automata with other approaches for numerical time series, and
to compare our algorithm with other inference techniques meant for sequences of numbers.
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[1-2]
[
(=)
(e)
Figure 2: RAI algorithm in action to learn the model in Figure 1 from the sample
S ={(1,2,1),(1,13),(2,2,2,14),(2,13) , (17)} and threshold 7 = 5. (a): prefix tree con-
struction. (b): after merging states 0 and 1. (c): after folding subtree rooted in 1 in subtree

rooted in 0. (d): after folding subtree rooted in 2 in subtree rooted in 0. (d): after folding
subtree rooted in 3 in subtree rooted in 0.
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