JMLR: Workshop and Conference Proceedings 57:149-153, 2016 The Sequence PredictIction ChallengE (SPiCe)

Evaluation of Machine Learning Methods on SPiCe

Ichinari Sato ICHINARI_SATO@SHINO.ECEI. TOHOKU.AC.JP
Graduate School of Information Sciences, Tohoku University
6-6-05, Aramakiaza Aoba, Aoba-ku, Sendai City, Miyagi, Japan

Kaizaburo Chubachi KAIZABURO_CHUBACHIQSHINO.ECEL. TOHOKU.AC.JP
School of Engineering, Tohoku University
6-6-05, Aramakiaza Aoba, Aoba-ku, Sendai Clity, Miyagi, Japan

Diptarama DIPTARAMA@SHINO.ECEL. TOHOKU.AC.JP
Graduate School of Information Sciences, Tohoku University
6-6-05, Aramakiaza Aoba, Aoba-ku, Sendai City, Miyagi, Japan

Abstract

In this paper, we introduce methods that we used to solve problems from the sequence
prediction competition called SPiCe. We train a model from sequences in train data on
each problem, and then predict a next symbol following each sequence in test data. We
implement several methods to solve these problems. The experiment results show that
XGBoost and neural network approaches have good performance overall.

Keywords: Language model, Neural Network, Ngram, XGBoost

1. Introduction

The Sequence PredIction ChallengE (SPiCe) is a competition where each contestant should
predict a next symbol that follows a given sequence. The competition has 15 problems, and
each problem consists of two sets of sequences generated from a model or obtained from real
data. First, a set of sequences is given as training data from which the contestants should
make a model. Then, the contestants submit the top five probable symbols following each
sequence in the test data. The prediction score is calculated based on the predicted symbols
and the answer symbols.

In order to tackle the competition, we evaluate the performance of several existing
grammar prediction methods. We then choose the best method and hyperparameter for
each problem based on the experiment results.

2. Prediction Methods

We will describe the methods used to build a language model, which predicts a symbol that
will come after a given sequence.
We implement following models.

1. n-gram based model
2. Combined n-gram with spectral learning model

3. Recurrent neural network language model

© 2016 I. Sato, K. Chubachi & K. Diptarama.

SATO CHUBACHI DIPTARAMA

4. XGBoost based model
5. Combined RNN with XGBoost model
6. Neural/n-gram hybrid model

The combined methods 2 and 5 output the five symbols with the highest probabilities
that we add probabilities output by a method to probabilities by another. Appendix Table
2-4 show parameters of each model.. We will explain the details of methods 1, 3, 4, and 6.

2.1. n-gram Based Model

The n-gram based model is a basic language model. This model predicts a next symbol
of a given sequence by using a histogram which is calculated from substrings of length n
in the training data, where n can be considered as a hyperparameter. In natural language
processing, bigram (n = 2) and trigram (n = 3) are used commonly. The higher value of n
will increase the number of n-grams that do not appear in the data. This problem is called
the zero frequency problem. In order to solve this problem, some smoothing techniques
have been proposed such as Laplace Smoothing and Kneser-Ney Smoothing. However, we
did not implement these smoothing methods in our implementation.

We used n-gram model based on the 3-gram sample program by SPiCe. We extended
the implementation into 3—20-gram model, and used a linear combination of distributions
of each n-gram to predict next symbol. We set the upper limit to 20, because the result of
prediction did not improve when the upper limit was too large.

2.2. XGBoost Based Model

XGBoost is a tree boosting system, which has been used in many machine learning and
data mining competitions and achieved many successful results (Chen and Guestrin, 2016).
Tree boosting is a gradient boosting method that uses a decision tree or a regression tree as
a base learner (Friedman, 2001). In tree boosting, we make an ensemble model and greedily
add a tree with the parameter that minimizes a loss function.

We consider the problem as the multiclass classification task that classifies input prefixes
into subsequent symbols. We trained XGBoost to fit such task, then we got probabilities of
all symbols and output top 5 of those in high probability order. The input features are the
last 10 symbols encoded as 1-hot-vectors, that have value 1 on the symbol and 0 otherwise.
To avoid overfitting, we used 3-fold cross validation and stopped training when the error
rate of the validation set became a minimum. In the test phase, we averaged outputs of the
classifiers trained on each fold.

2.3. Recurrent Neural Network Language Model

Bengio et al. (2003) proposed feed-forward neural network language model which is an
application of deep learning for language model. Mikolov et al. (2010) showed that recurrent
neural network (RNN) is more effective than a feed-forward neural network model for the
language model. Moreover, an improvement of RNN called Long Short Term Memory
network (LSTM) got a high score on a natural language corpus dataset called Penn Treebank
(Zaremba et al., 2014).

150

EVALUATION OF MACHINE LEARNING METHODS ON SPICE

LSTM receives one vector expressing a character or word as input and output one vector
as a predictive distribution of next symbol. Past inputs remain for a long and short term
as states in LSTM. While a language model using neural network has good performance,
the model needs a huge amount of resources to compute. Moreover, there are lots of
hyperparameters that need to be set in this model. First, we encoded a symbol in an input
sequence as a 1-hot-vector. Then, we input the sequence of 1-hot-vectors into the language
model. We used 3 layers that consist of 256 nodes, that are 2 layers of LSTM and 1 layer of
full-linked layer. We used Back-Propagation Through Time (BPTT) as a learning method.
See Table 4 in the appendix for hyperparameter.

2.4. Neural/n-gram Hybrid Model

Neubig and Dyer (2016) proposed a new model that combines neural language model and
n-gram language model. They show that their model has good performance as a language
model and got a higher score than existing algorithms on Penn Treebank. Moreover, this
model can be implemented easily.

The language model for neural/n-gram hybrid model is represented by the following
expression, where J is the number of symbols and N is the maximum n-gram length.

P1 dl,l e dl,N 1 0 ... 0)\1
P2 _ d271 . dQ,N 01 ... 0)\2
pJ dji ... dyn 0 0 ... 1] |[AjgnN

The vector p is a probabilistic distribution used to predict a next symbol for the prefix.
We calculate by p = DA. p; is a probability of the i-th symbol as a next symbol, and |p| = 1.
The J x (N 4 J) matrix D consist of a J x N n-gram matrix and a J x J identity matrix.
djn expresses a probability of the j-th symbol to appear after the previous (n — 1)-gram.
The vector A is a coefficient learned to make DA close to p by RNN.

This model has a process called block dropout in the training step. Since an n-gram
matrix is already a sufficient approximation in an early step of the training process, RNN
learns a part of A which only uses the n-gram matrix. In this case a language model cannot
get good performance. The hybrid model therefore uses block dropout, which drops subsets
of nodes in the network while standard dropout drops single nodes or links. In this models,
we replaced randomly the n-gram matrix by a zero matrix during the training step. At
the beginning of the learning process, the block dropout reduces the effect of the n-gram
matrix and encourages a part of A using identity matrix to learn.

The hybrid model needs hyperparameters of both n-gram based model (§2.1) and
RNNLM (§2.3). We used n € {3,5,22} in the n-gram part and use the same parame-
ters as RNNLM (Table 4 in appendix) in the RNN part. Although Neubig and Dyer (2016)
used modified Kneser-Ney smoothing as the best performance model in their paper, we used
a simple n-gram model without smoothing in SPiCe.

151

SATO CHUBACHI DIPTARAMA

3. Experiment

We evaluate the performance of above methods on solving the problems of SPiCe. The
experiment results are shown in Table 5. The scores in the table are calculated by using
public test score on the SPiCe system. The rand column shows average scores of the random
baseline that randomly chooses 5 symbols from the given alphabet. We describe max score
truncated beyond the third decimal point except random baseline in the table.

Since XGBoost uses much memory resource, our machine’s memory overflowed on Prob-
lem 11. The same issue occured in the hybrid model because Problem 11 has large alphabet
size. We adjusted a hyperparameter, BPTT length, from 35 to 15 on only Problem 11.
XGBoost has good performances on solving Problems 5, 7, and 10. In Problems 4 and
15, the score differences between XGBoost and other methods are little although XGBoost
has the highest scores. The RNN or the hybrid models have the highest scores on other
problems.

Since combined n-gram and spectral learning method (Comb1) has a better total score,
we combined XGBoost and RNN (Comb2) expected to get better score similarly. However,
the total score of Comb2 is lower than XGBoost. The hybrid models of N € {3,5} have
the total score over 10. The reasons of the score are that the hybrid model is good at
Problems 6, 12 and 13, and it keeps the score of the problems which RNN is good at.

4. Conclusion

We used many approaches in SPiCe. XGBoost and neural /n-gram hybrid models got higher
public test scores than the other models. Although the hybrid model outperformed XGBoost
model about the total of public test score, there are problems in which XGBoost model
outperformed hybrid model. At last, we submitted prediction results from XGBoost model
and neural/n-gram hybrid model depending on the public test score.

References

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural proba-
bilistic language model. Journal of Machine Learning Research, pages 1137-1155, 2003.

Tiangi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 785-794, 2016.

Jerome H Friedman. Greedy function approximation: A gradient boosting machine. Annals
of statistics, pages 11891232, 2001.

Tomas Mikolov, Martin Karafidt, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur.
Recurrent neural network based language model. In Interspeech, volume 2, page 3, 2010.

Graham Neubig and Chris Dyer. Generalizing and hybridizing count-based and neural
language models. CoRR, 2016. URL http://arxiv.org/abs/1606.00499.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network negular-
ization. CoRR, abs/1409.2329, 2014. URL http://arxiv.org/abs/1409.2329.

152

http://arxiv.org/abs/1606.00499
http://arxiv.org/abs/1409.2329

EVALUATION OF MACHINE LEARNING METHODS ON SPICE

Appendix
problem | Nygin Neest |2 |Ztrain] avglength line_variety
0 20000 1000 4 4 7.219 0.522
1 20000 5000 20 20 41.229 0.449
2 20000 5000 10 10 41.727 0.311
3 20000 5000 10 10 41.793 0.313
4 5987 748 33 33 7.466 0.863
5 33654 5000 49 49 119.336 0.239
6 5000 5000 60 24 24.911 0.592
7 65438 5000 20 20 59.120 0.281
8 13903 5000 48 48 30.916 0.474
9 5000 5000 11 11 25.543 0.398
10 54932 4847 20 20 35.807 0.452
11 32384 4049 6093 6093 25.543 0.914
12 200000 3000 21 21 28.739 0.632
13 26544 3318 665 665 7.659 0.894
14 10000 5000 27 27 40.846 0.417
15 50000 5000 32 32 49.648 0.537

Table 1: The properties of each dataset. Nyrqin and Nees denote the number of sequences
on the train and public test dataset respectively. |X| denotes the alphabet size and
|2¢rain| denotes the number of symbols that appear in the train data. avg_length
denotes the average length of the sequences and line_variety is the average ratio of
the number of symbols that appear in a sequence with the length of the sequence.

parameter value
rank 17
Tow 20
column 20
version classic

Table 2: Spectral Learning

parameters

parameter value
step size shrinkage 0.1
subsample 0.5
colsample bytree 0.6
max depth 10
maximum delta step 10

Table 3: XGBoost parameters

153

parameter value
epoch 20
unit 256
batchsize 20
BPTT length 35
grad clip)
optimizer Adam

Table 4: RNN parameters

SATO CHUBACHI DIPTARAMA

rand | Ngrams Combl XGB RNN Comb2 | Hybrid Hybrid Hybrid
(N=3) (N=5) (N=22)

0 0.771 | 0.977 0.962 0.985 0920 0.914 | 0.990 0.986 0.952
1 0.380 | 0.836 0.836 0.879 0.914 0.901 | 0911 0.910 0.875
2 0.501 | 0.822 0.821 0.888 0.913 0911 | 0.910 0.909 0.860
3 0.500 | 0.780 0.779 0.848 0.881 0.881 | 0.885 0.884 0.866
4 0.082 | 0.554 0.551 0.590 0.589 0492 | 0.564 0.575 0.118
5 0.057 | 0.651 0.745 0.787 0.750 0.775 | 0.767 0.769 0.767
6 0.068 | 0.744 0.729 0.698 0.729 0.786 | 0.852 0.867 0.871
7 0.139 | 0.668 0.669 0.783 0.577 0.755 | 0.630 0.644 0.631
8 0.060 | 0.593 0.603 0.609 0.637 0.579 | 0.642 0.641 0.643
9 0.308 | 0.895 0.875 0.890 0.922 0917 | 0.956 0.928 0.899
10 | 0.140 | 0.465 0.466 0.595 0.559 0.577 | 0.542 0.528 0.536
11 | 0.000 | 0.335 0.354 - 0.509 - 0.489 0.503 0.506
12 | 0.404 | 0.728 0.645 0.623 0.677 0.663 | 0.770 0.775 0.759
13 | 0.004 | 0.429 0.479 0.400 0.455 0.406 | 0.496 0.481 0.001
14 1 0.129 | 0.331 0.343 0.376 0371 0.402 | 0.370 0.365 0.368
15 | 0.138 | 0.259 0.259 0.263 0.155 0.227 | 0.260 0.261 0.251
total | 2.910 | 9.090 9.1565 9.299 9.670 9.272 | 10.045 10.042 8.951

Table 5: Evaluation of learning methods on solving the public test datasets. rand is the

average (20 times) of scores when we answer the problem with random symbols.
Ngrams is a combination from 3-gram to 20-gram model. Comb1 is a combination
of n-gram based model and Spectral Learning model. Comb2 is a combination of
XGBoost model and RNN model. We add each symbol probability and take the
5 probable symbols in Comb! and Comb2.

154

	Introduction
	Prediction Methods
	n-gram Based Model
	XGBoost Based Model
	Recurrent Neural Network Language Model
	Neural/n-gram Hybrid Model

	Experiment
	Conclusion

