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Abstract

Recurrent neural networks such as Long-Short Term Memory (LSTM) are often used to
learn from various kinds of time-series data, especially those that involved long-distance de-
pendencies. We introduce a vector representation for the Strictly 2-Piecewise (SP-2) formal
languages, which encode certain kinds of long-distance dependencies using subsequences.
These vectors are added to the LSTM architecture as an additional input. Through exper-
iments with the problems in the SPiCe dataset (Balle Pigem et al., 2016), we demonstrate
that for certain problems, these vectors slightly—but significantly—improve the top-5 score
(normalized discounted cumulative gain) as well as the accuracy as compared to the LSTM
architecture without the SP-2 input vector. These results are also compared to an LSTM
architecture with an input vector based on bigrams.

1. Introduction

In recent years, so-called deep learning technology has developed dramatically and has
brought innovations to various areas related to machine learning such as image recognition
and natural language processing (LeCun et al., 2015). Recurrent neural networks (RNN)
are believed to be the most effective models which learn from time-series data. Among
the various types of RNNs, Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)
(LSTM) is one of the most popular. They are carefully constructed so that the model can
capture long-distance dependencies in sentences or among sequential elements.

Although it is known that sophisticated RNN models like LSTM and other variants
(Jozefowicz et al., 2015) are effective for processing time-series data, what happens inside of
the learned RNNs is still unclear. It is difficult to understand how they successfully capture
long-term dependencies and when they fail to do so.

This paper applied the LSTM architecture to the sequence prediction tasks in the SPiCe
competition (Balle Pigem et al., 2016). The object of the competition was to predict the
next element of a sequence. The competition scored algorithms on their performance on
both real and synthetic data.

This paper reports the results of three LSTMs applied to this data in this competition.
The basic model was a multilayered LSTM. The second and third models use the same
multilayered LSTM and also included input vectors corresponding to the states of particular
deterministic finite-state automata (DFA) which also processed the data. The second model
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uses a vector embedded with the current state of a Strictly 2-Piecewise DFA (Heinz and
Rogers, 2010). The third model uses a vector embedding the state of a Strictly 2-Local
DFA (bigram model) (McNaughton and Papert, 1971).

While all LSTMs performed well, the second model with the SP-2 vector performs
slightly but significantly better on some problems and not significantly worse on others. On
the other hand, while the third model with the bigram vector also performed significantly
better on some problems, it performed significantly worse on others.

2. Basic model: Two-layered LSTM

In this section, we describe the basic architecture common to all three models, including
some trivial data preprocessing. Additional details such as the vector length and the size
of each layer are described in Section 5.

The basic model we use is a two-layered LSTM network with another non-linear layer
on top. Figure 1 shows this structure. Those layers were placed on top of the input vector
which embedded each symbol a(t) in the sequence as it appeared at time ¢. The output
layer implements the softmax function, which outputs the network’s prediction of the next
element of the sequence, a(t + 1). Between the softmax layer and the LSTMS is a fully
connected layer with a Rectified Linear (ReL) activation function.

A ‘start’ symbol and an ‘end’ symbol were added to both sides of each training sentence.
Symbols are fed to the model from the start symbol.
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Figure 1: Basic structure: two-layered LSTM  Figure 2: SP-2 model: the LSTM model com-
for next-element prediction. bined with SP-2 embedding.

3. Strictly Piecewise model

SP-k formal languages describe certain types of long-term dependencies (Heinz and Rogers,
2010). Essentially, they describe long-distance dependencies obtained by forbidding subse-
quences whose length is bounded by k. For instance, if the ab subsequence is forbidden, then
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no b may occur after a no matter how much earlier in the word a occurs. SP-k languages
can also be characterized by a DFA whose states encode the subsequences of size k — 1
present in the prefixes leading to each state. They can also be more compactly represented
by a set of DFAs operating in parallel (Heinz and Rogers, 2013). These languages (and
DFA) are closely related to the well-studied Piecewise Testable languages (Simon, 1975).

In this paper, we introduce a new method which encodes the states of a SP-2 automata
into a zero-one vector, which then is fed as additional input to the network. The idea
is that explicit representation of the subsequence information can help capture long-term
dependencies that may be present in the data.

The vector encoding for SP-2 DFA is straightforward: for an alphabet X, the size of
the vector is |X| and each coordinate corresponds to one symbol in the alphabet. Figure 3
shows examples of the SP-2 input vector over some time. As Figure 3 shows, the states of

SP-2 input vector
t a(t) prefix(t)

[a b ¢ d e]
0 a a (1 0 0 0 0]
1 d ad (1 0 0 1 0]
2 a ada [1 0 0 1 0]
3 ¢ adac [1 0 1 1 0]
4 d adacd [1 0 1 1 0]

Figure 3: Examples of the SP-2 input vector over time for an example sequence with ¥ =
{a,b,c,d,e}.

SP-2 automata are identified from the prefix, and then encoded into a zero-one vector. For
SP-2, each coordinate of the zero-one vector represents whether the corresponding symbol
previously occurred. Generally, for SP-k, each coordinate of the vector represents the prior
occurrence of some subsequence of size k— 1 (and so the size of the vector would be |S[F~1).

While some sophisticated RNNs like LSTMs are carefully constructed to be able to
remember information that may have occurred arbitrarily far in the past, it is still not
well-understood what kind of long-distance dependencies RNNs can learn. One of our main
goals in this paper is to reveal the effects of explicit encoding of subsequence information
as part of the input. As discussed later, the positive impact of including the SP-2 input
vector suggests that when it comes to long-distance dependencies, there is room to improve
both the performance and our understanding of RNNs.

Figure 2 shows the network architecture when the SP-2 vector is added as input.

To embed the SP-2 zero-one vector into a real-valued multi-dimensional vector, it is
fed into a fully connected layer with a non-linear activation function such as ReL. Simul-
taneously, the input vector that represents a(t) is put into the two-layered LSTM as in
the basic model. Finally, we concatenate the output of these layers and the output of the
fully connected layer embedding the SP-2 one-zero vector and put them into another fully
connected layer layer which feeds finally into the softmax layer.
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4. Alternately-taken Bigram Model

In addition to the SP-2 model, we conducted experiments with another network architecture.
Generally, the above strategy can be used with different types of input vectors representing
different types of information about the characters or words in the prefix. The n-gram
model, for example, is a common one used in practical tasks in natural language processing
such as sentence generation (Jurafsky and Martin, 2008). It was felt that comparing the
SP-2 model with a vector based on bigrams would be interesting. Also, bigram models
are essentially stochastic versions of Strictly 2-Local formal languages, which are similar
to the Strictly 2-Piecewise languages in that substrings—as opposed to subsequences—are
forbidden (Rogers et al., 2013).

For SPiCe problems, since the number of alphabet is less than fifty for almost all prob-
lems, we use bigrams as input vectors in addition to unigrams so that bigram patterns
are more explicitly taken into the network. We divide a sentence (apajazas---) into two
sequences consist of the even bigrams (agiags--- ) and the odd bigrams (ajsass---). Al-
though these are fed into the LSTMs separately, the LSTMs themselves are required to have
common weights. In this way, the number of samples for learning the weights is doubled.
Figure 4 shows the structure of our bigram-based model.

5. The Experiments

We used a package for neural networks called Chainer (http://chainer.org) for the imple-
mentation. The source code is available at https://github.com/cshib/rnns_for_spice.

We let the size of element-embedding, SP-2-embedding, and bigram-embedding vectors
be 100 through all experiments. In addition, we take the same vector size for all intermediate
layers, such as layers of LSTMs, and the intermediate fully connected layers. The only
exception is the the layer before the output layer (softmax), which was half size of other
vectors. For each of the three models, we experimented with two vector sizes: 400 and 600
(so the penultimate layer had size 200 and 300, respectively).

Since there are three kinds of network structures and two kinds of vector sizes as de-
scribed above, there are six combinations of network structures in all.

We used the momentum stochastic gradient descent (SGD) with the momentum 0.9 for
the optimization. The stepsize decreased gradually from 0.1 to 0.001, where the number of
iterations is 45. We used dropout against the last two layers to prevent overfitting.

Tables 1 and 2 show the top-5 scores for each problem in the SPiCe challenge. While the
results of the bigram model are mostly worse than the other models, the differences between
the SP-2 model and the basic model are slight. To determine whether the differences
were significant, we executed the models about ten times. Among instances obtained from
multiple executions, the worst 30% of them in the sense of training error (not test error)
were abandoned.

Standard errors are shown in parentheses in Table 1 and 2. The bold numbers show
the best scores with the significance level of 5%. The Bigram model clearly decreases the
scores in many problems except for Problems 4 and 7, while it improves the scores for those
two problems significantly. For the SP-2 model, we can see that the improvements are
significant for Problems 1, 6 and 12, while the differences are not significant for the others.
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6. Conclusion

For the SPiCe competition, we ran three different network structures with two sizes of
vectors, and chose the best one for the test data. Overall, the experiments here show that
the SP-2 model was the best one. For some types of data, the explicit representation of
subsequence information in the SP-2 network architecture significantly improves prediction
accuracy, while for other types of data, it makes no significant differences. On the other
hand, while the bigram model improves the accuracy for some problems, it significantly
worsens the result in many others.

We believe the narrow advantage of the SP-2 model is due to its explicit representation
of long-term dependencies in terms of subsequences. Obviously, careful inspection of the
underlying mechanisms which generated the data in the relevant problems is required to
evaluate this hypothesis. More generally, we believe different types of formal languages can
shed light on the different kinds of long-term dependencies that different types of RNNs
can and cannot learn.
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Figure 4: Bigram model: the combination of LSTMs with the unigrams, the odd bigrams
and the even.
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Table 1: comparison of scores with the dim. 400
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Table 2: comparison of scores with the dim. 600

simple(400) sp2(400) bigram(400) simple(600) sp2(600) bigram(600)
1 | 0.906(0.002) 0.915(0.000) _ 0.836(0.009) 1 | 0.909(0.002) 0.915(0.000) _ 0.769(0.003)
2 | 0.920(0.000)  0.919(0.000)  0.878(0.003) 2 | 0.920(0.000)  0.920(0.000)  0.838(0.004)
3 | 0.884(0.001)  0.884(0.001)  0.848(0.001) 3 | 0.888(0.001)  0.886(0.001)  0.831(0.001)
4 | 0.615(0.001) 0.614(0.002)  0.633(0.002) 4 | 0.619(0.002) 0.616(0.002)  0.634(0.001)
6 | 0.848(0.001) 0.855(0.001)  0.836(0.001) 6 | 0.863(0.001) 0.867(0.001)  0.828(0.002)
7 | 0.717(0.001)  0.718(0.000)  0.730(0.001) 7 | 0.736(0.000)  0.736(0.001)  0.747(0.001)
8 | 0.646(0.001)  0.646(0.001)  0.630(0.001) 8 | 0.645(0.001)  0.644(0.001)  0.614(0.001)
9 | 0.959(0.001)  0.960(0.000)  0.958(0.000) 9 | 0.962(0.000)  0.962(0.000)  0.959(0.000)
10| 0.575(0.001)  0.577(0.001)  0.569(0.001) 10| 0.574(0.001)  0.573(0.001)  0.570(0.002)
11 | 0.529(0.001)  0.527(0.001) 11 | 0.520(0.001)  0.519(0.001)
12 | 0.782(0.002) 0.796(0.000)  0.727(0.003) 12 | 0.799(0.002) 0.807(0.001)  0.713(0.001)
13 | 0.588(0.001)  0.588(0.001) 0.578(0.001) 13 | 0.592(0.001)  0.590(0.001) 0.581(0.000)
14 | 0.344(0.001)  0.346(0.001)  0.332(0.001) 14 | 0.350(0.002) 0.351(0.002)  0.333(0.002)
15 | 0.264(0.001)  0.265(0.001)  0.261(0.000) 15 | 0.263(0.001)  0.263(0.001)  0.258(0.001)
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