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Abstract

This paper describes estimating performance of sequence prediction algorithms and hyper-
parameters by compressing the training dataset itself with the probablities predicted by
the trained model. With such estimation we can automate the selection and tuning process
of learning algorithms. Spectral learning algorithm are experimented with.
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1. Introduction

Using Kolmogorov complexity, minimum description length or the output of pragmatic com-
pression algorithms to evaluate quality of predictions made by machine learning algorithms
is a recurring theme (Cilibrasi and Vitnyi, 2005a) (Cilibrasi and Vitnyi, 2005b) (Mahoney,
1999) in ML/Al-related studies to the extent equating compression with general intelli-
gence (Chaitin, 2002) (Chaitin, 2006) (Hutter, 2001).In general, we believe that the better
a model predicts the probability distribution of future inputs, the better compression of
historical inputs can be achieved using such predicted probabilities, and vice versa. In this
short paper we apply such ideas on deciding the hyperparameters of prediction algorithms.

2. Compression by Prediction

We can compute a probability for any given sequence with a trained spectral learning (or any
other prediction algorithm) model. In principle, a model that predicts the most accurately
should also compress a non-biased (uniformly sampled) dataset to the smallest size. Note
that the trained model itself should be included in the compressed data, but this is currently
ignored for ease of implementation.

Noticing that only the length of the compressed data is needed, we choose to compute the
theoretically optimal entropy-coded length for every sequence without actually computing
the compressed form of the sequence. Let estimated probability of the sequence to be
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compressed be p. The optimal entropy-coded length of the sequence is simply

Ccompressed = _l092p .

The real size of a compressed sequence will always be larger than this theoretical minimum
if we actually implement the compression, and converge to the minimum as the encoding
scheme gets optimized.

The spectral learning model generates an unignorable amount of invalid estimates less
than 0 or greater than 1, which means only some of the sequences can be compressed. The
number of invalid estimates also vary significantly with the hyperparameters, so we cannot
simply remove the sequences with invalid estimates. We are not sure about the cause of
the negative/greater-than-one estimates, whether it is inherent to the model, specific to the
implementation, or due to the runtime environment.

Anyway, any lossless compression algorithm can make some ’compressed’ sequence longer
than the original, and it is a trade-off whether to leave the sequence as is when the ’com-
pressed’ sequence is longer, which in turn requires an extra bit for every sequence. Because
of the invalid estimates, the only viable option is to use the extra bit, and to compress the
sequence only when the estimate is valid and the size of the compressed form is actually
smaller.

For the uncompressed sequences, the code length is estimated as

1
Cuncompressed = -1 10g2 E = llOgQ m

where [ is the length of the sequence to be compressed and m is the size of the alphabet. At
first glance, it may look attractive to utilize the frequency of the individual symbols when
encoding the uncompressed sequences, but it is a compression scheme by itself with its own
merits and pitfalls, and leads to some kind of ensemble method (Now that we are using
unigram probabilites, why not n-gram or something more advanced?). So to keep things
tractable we just stick to the completely uncompressed form.

The total compressed size is

Ncompressed Nuncompressed
= E (_ IOgQ pi) + E lz 10g2 m + Necompressed + Nyncompressed -
=1 =1

Note that (ncompressed +Muncompressed) Tepresenting the space occupied by the 1-bit marks
is just the total number of sequences and is constant for a given dataset.

Other than the total compressed size ¢, the number of sequences compressed ncompressed
and the average compression rate r of the sequences that are compressed are also considered,

with " .
compresse .
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3. Experiment

The algorithm has been applied to the 16 problems of the SPiCe contest. For each problem,
we arbitrarily select a number of triples of hyperparameters, train the model with them,
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run the compress test with the trained models, and finally run some of the models against
the public test set. The models were manually picked to be run against the public test set
if they show any signs of ’features’, mostly local extrema of any of the three indicators,
although the final submissions to the private test were still chosen among the public-tested
models based on their public test score. Finally for each (problem, hyperparmeters) pair we
obtain a score s and three compression-related indicators ncompressed, t and 7.
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Figure 1: experiment results

As only whether better compression means better prediction is relevant, we rank the
score s and all indicators (Ncompressed,t,”) Within each problem, and investigate the relation-
ships among the rankings instead.
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The final result can be exhibited as Fig. 1 showing the relationship between the ranking
of public test score s and the rankings of the three indicators. As the figure shows, at
least one of the rankings of the three indicators (the total compressed size s, the number
of sequences compressed Ncompressed; and the average compression rate r) have obvious
correlation with the score ranking, except for problem 8, 9 and 14. In problem 0, 4, 6, 10,
12, 13, 15, Ncompressed Tanking has a strong positive relationship with the score s ranking.
In problem 0, 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, total compressed size ¢ ranking has a strong
negative relationship with the score s ranking. In problem 1, 2, 3, the average compression
rate r ranking has a strong positive relationship with the score ranking, and in problem 4,
5, 7,10, 11, 12, 13, an obvious negative relationship exists between the average compression
rate r ranking and the score s ranking. Note that ncompressed always positively correlate
with the score s if the correlation is visible, and t always negatively correlates with the
score s if the correlation is visible, while r can correlate both ways, which requires further
investigation.

So, to sum all circumstances up, it can be generally said that the ranking of indicators
can be used to predict the ranking of public test scores, which in turn proves the effectiveness
of the compression test.

4. Conclusion

From the experiments it can be concluded that compressing the training data can be used
to assess prediction performance of a model, even without correctly including the predict-
ing model in the compressed representation. Further work can be done on testing with
more hyperparameters and datasets, compressing the predicting model or ensembling more
learning algorithms.
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