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Abstract
This paper presents a game theoretic approach to causal discovery. The problem of causal
discovery is framed as a game of the Scientist against Nature, in which Nature attempts to
hide its secrets for as long as possible, and the Scientist makes her best effort at discovery
while minimizing cost. This approach provides a very general framework for the assessment
of different search procedures and a principled way of modeling the effect of choices between
different experiments.
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1. Introduction
In machine learning much of the literature on causal discovery has focused on discovery in
passive observational data. The analysis of experimental data has been left to the field of
experimental design, but there the focus has been on the optimal allocation of samples to a
pre-determined set of treatment variables, and the subsequent analysis of the data. Very little
work has been done on the selection of experiments. The specification of the best sequence
of experiments to discover particular causal relations has largely been left to the “good judg-
ment of the scientist.” Only recently have first steps been taken to automate this process: Tong
and Koller (2001); Murphy (2001); Yoo and Cooper (2003); Meganck et al. (2005) and He and
Geng (2008) have presented approaches to select the next best experiment based on informa-
tion theoretic measures or expected utility, and Eberhardt (2007) provided worst case bounds
for such search strategies under different assumptions. In this paper a game theoretic analysis of
sequences of experiments is proposed that identifies appropriate guidelines for the choice and
comparison of different experimental strategies.

Randomized controlled trials (RCTs) are perhaps the most widely accepted standard to de-
termine cause and effect. If, as intended by the randomization, the intervention makes the
intervened variable independent of its normal causes, then it breaks any confounding of the
causal effect of the intervened variable on the outcome variable by measured or unmeasured
common causes.1 Given a set of, say, three variables X ,Y and Z, a scientist has many choices of

1. With regard to causal discovery, weaker forms of interventions can also provide insights but we will leave that
issue aside here.
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which variable(s) to randomize. She could intervene on any one and measure the other two. She
could randomize any two, independently or not, and measure the third, etc. Whichever choice
she makes, one experiment will in general not guarantee – even in the large sample limit – the
discovery of the true causal structure among the 25 possible (directed acyclic) causal structures
over the three variables. Sequences of different experiments are often necessary to determine
all the causal relations between variables. But what is the best sequence, and in what sense of
“best”?

2. Worst Case Analysis
One way to compare different search strategies is to consider their worst case performance. In
Eberhardt et al. (2005) we gave worst case analyses of different search procedures for causal
discovery involving different types of interventions under a variety of different assumptions.
The quality of different search procedures was measured in terms of the number of experi-
ments sufficient and in the worst case necessary to discover the true causal structure among
N variables. The worst case was characterized by the causal structure that required the longest
sequence of experiments that could not be avoided (by more appropriate choices of experiments
given the available knowledge at the choice point). The following table summarizes the results
for sequences of experiments with single or multiple simultaneous RCT-type interventions per
experiment on a set of N causal variables, with and without latent variables:2

Interventions per Experiment Latent Variables Present Number of Experiments
Single No 2 if N = 2 & N−1 if N > 2
Single Yes impossible

Multiple No ⌊log2(N)+1⌋
Multiple Yes N

A worst case analysis provides an upper bound, but in practice the worst case may be very
rare whereas a “typical” search problem might be resolved much faster. Consequently, the
expected performance is often considered. The computation of an expectation depends on a
distribution over the possible hypotheses. In the case of three variables, it would require a dis-
tribution over the 25 possible (acyclic) causal structures. In many cases, the uniform distribution
is used, but without more specific knowledge of the domain under consideration, it is not clear
why the uniform distribution is more appropriate than any other. Often sparsity assumptions
play a crucial role in restricting the hypothesis space and it is not clear that a uniform distribu-
tion over hypotheses is “uninformative” when a sequence of experiments is used for discovery.
What, then, can be said about an expected case performance without commitment to a particular
distribution?

3. Expectation and Optimization
One approach supported by a game-theoretic interpretation of the discovery problem is the
worst case expected performance, i.e. the upper bound on the expected length of sequences
of experiments sufficient and in the worst case necessary to discover the causal structure, no
matter what the probability distribution over the set of directed acyclic graphs is. That is, for

2. The second row indicates that no sequence of experiments, in which only a single variable is subject to an RCT-
type intervention, is sufficient to discover the causal structure in the worst case if there are latent variables. Under
different assumptions, such as linearity, discovery is possible (see Eberhardt (2007)).
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each distribution P(𝒢) over the set 𝒢 of directed acyclic graphs, take the expectation EP(.) of
the number of experiments #ex(.) sufficient and in the worst case necessary to uniquely discover
the true causal graph G, whatever G is. Then take the upper bound – the supremum – of those
expectations. Or formally:

sup
E

EP(#ex(G)) over all P(𝒢). (1)

The key to determining this quantity is the specification of #ex(G) for some true underlying
causal structure G. To specify this quantity we need to specify how experiments are chosen.
But how and which experiments are chosen affects which causal structures are difficult to learn,
so the supremum is affected by both the underlying distribution over causal structures and the
sequence of experiments that is used to identify which one is true.3

Let 𝒮 be a strategy that specifies a sequence of experiments, in which the next experiment is
determined with probability 1 contingent on the evidence revealed in all previous experiments.
Given a set 𝒢′ ⊆ 𝒢 of possible causal structures (determined by non-zero probability in the
probability distribution P(.) over causal structures), let #ex𝒮(G) be the number of experiments
according to strategy 𝒮 that is necessary and sufficient to uniquely identify a particular causal
structure G ∈ 𝒢′. Since we are interested in an optimal number of experiments, we can now
define #ex(G) as the number of experiments necessary and sufficient to uniquely identify G∈𝒢′
using a strategy 𝒮+ where

∀𝒮 ≠ 𝒮+ EP(#ex𝒮(G))≥ EP(#ex𝒮+(G)). (2)

That is, for a given set of possible causal structures 𝒢′, #ex(G) specifies the expected number
of experiments necessary and sufficient to uniquely identify the causal structure G ∈ 𝒢′ using a
most efficient strategy 𝒮+. However, since we are interested in the supremum of the expecta-
tions, the distribution P(.) that specifies the set of possible graphs, must be such that it is implies
the largest expected number of experiments for a given strategy, i.e. given a strategy S, P+(.) is
chosen such that for any

P(.) ̸= P+(.) EP+(#ex𝒮(G))≥ EP(#ex𝒮(G)). (3)

Definitions (2) & (3) make the interdependence between a search strategy and the distribution
over hypotheses explicit: Given a hypothesis space one can specify the optimal search strategy.
Given a search strategy one can specify the hypothesis space that will make search most difficult.
We can thus rephrase the supremum in (1) above as the following optimization:

EP*(#ex𝒮*(G)) (4)

where it is simultaneously the case that for any

P(.) ̸= P*(.) EP*(#ex𝒮*(G))≥ EP(#ex𝒮*(G)) (5)

and given the set of possible causal structures implied by P*(.),

∀𝒮 ≠ 𝒮* EP*(#ex𝒮(G))≥ EP*(#ex𝒮*(G)). (6)

3. For example: If one always intervenes on X first, then causal structures in which X is an effect (but not a cause!) of
the other variables, are more difficult to discover because any incoming causal influence on X is destroyed by the
intervention, and so the structure cannot be distinguished from one in which X is causally independent of the other
variables. Consequently, a distribution that puts more weight on those graphs will be a candidate for the maximum
expectation. But such a distribution results in a much lower expectation if the first intervention always intervenes
on one of the causes of X (say Y ), since the Y → X edge is discovered immediately.
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For fixed sequences of experiments that specify a particular experiment for a given history
of evidence there is no solution to the above double optimization. That is, for any specific
strategy 𝒮 there is a probability distribution P(.) that maximizes the number of experiments
with respect to 𝒮 (in fact, the expectation can always be forced to the absolute worst case
bound). However, an alternative strategy 𝒮 ′ would do better on P(.), but then there is another
probability distribution P′(.) that would trouble strategy 𝒮 ′.

The main problem is that knowledge of the proposed sequence of experiments permits a
choice of distribution over hypotheses that is specifically geared towards making discovery
hard for that sequence of experiments. A natural solution to this problem is to consider search
strategies that do not commit to a particular experiment in light of a particular history of evi-
dence, but rather to a distribution over possible experiments, i.e. a mixture of search strategies.
This suggests a game-theoretic analysis.

4. Discovery as a Game
We can recast the above analysis of search strategies as a two person zero-sum game between
Nature and the Scientist. The Scientist attempts to discover the true causal structure as effi-
ciently as possible and Nature tries to make discovery as difficult as possible – in our case (for
now) in terms of the number of experiments.

Nature initially gets to decide what the truth is – the underlying causal structure – but then
has to stick with it, while the Scientist performs her experiments. Nature’s pure strategies
are all the directed acyclic causal structures over N variables. After each experiment by the
Scientist the independence relations true in the underlying causal structure (manipulated by the
intervention) are returned, i.e. the equivalence class of directed acyclic graphs that contains the
true graph and is consistent with the sequence of experiments so far, is revealed. We refer to
this – as is standard in game theory – as an information set. The pure strategies for the Scientist
are all possible sequences of experiments. The Scientist may end the game after any sequence
of experiments by declaring one of the graphs remaining in her information set as true. If
the Scientist is correct, the payoff is the negative number of experiments that were performed
(negative, since the Scientist wants to perform as few experiments as possible). If the Scientist
is incorrect, the payoff is −∞. Payoffs of −∞ ensure that in order to avoid infinite loss the
Scientist must be able to prove that her response is uniquely correct given the evidence.4

In game theory a strategy that specifies for each choice point a determinate choice (of exper-
iment) corresponds to a pure strategy. A mixed strategy permits non-trivial distributions over
the choices of experiments. Sometimes a mixed strategy can outperform any pure strategy. In
our context the case for mixed strategies for Nature (i.e. distributions over graphs) is obvious –
it would not be an interesting search problem if Nature were restricted to selecting one particular
causal structure with probability 1. In the case of the Scientist we consider mixed strategies for
two reasons. First, we already indicated at the end of Section 3 that there is no solution to the
optimization problem when the Scientist is restricted to pure strategies. Second, and perhaps
more intuitively, there are many circumstances in which a restriction to a specific experiment
in light of the available evidence is artificial. For example, suppose there are two variables X
and Y and it is known that either X → Y or Y → X , each with probability 0.5. In that case a
commitment to always intervene on X is artificial. Flipping a fair coin to either intervene in X
or Y seems more appropriate.

For simplicity of exposition (and computation), we assume that every variable can be ma-
nipulated, that there are no latent variables and we only consider sequences of experiments in

4. Of course, one could integrate into the payoff structure some account of how wrong a Scientist is, but we leave this
for future consideration.

90



CAUSAL DISCOVERY AS A GAME

which one (or no) variable is subject to an intervention per experiment.5 Given that the worst
case bound on the number of experiments under these circumstances is N− 1 for N > 2 vari-
ables, we do not need to consider search strategies for the Scientist that are longer than N− 1
experiments, i.e. the table of results in Section 2 gives upper bounds on the worst case loss for
the Scientist. Consider a simple example.

4.1 Example: Two Variables

Suppose there are just two variables. There are three possible causal structures among two
variables X and Y , call them

Sa := X Y, Sb := X → Y and Sc := X ← Y.

Two experiments involving single interventions are sufficient and in the worst case necessary
to discover the causal structure uniquely. The full game of Nature against Scientist is given in
Figure 1. Nature can select among the three structures (grey boxes) Sa,Sb and Sc. The Scientist
does not know which structure is selected, so Sa,Sb and Sc form an information set. The
Scientist makes the next move and can end the game by guessing one of the structures without
collecting any data (represented by the three arrows leaving each grey box upwards with Sa,
Sb or Sc and the respective payoffs to Nature of 0 when the choice was correct and ∞ when
incorrect). Alternatively, the Scientist can perform a passive observation (N), an intervention
on the first variable (X), or an intervention on the second variable (Y). Depending on the choice
and the true underlying graph, the game is either resolved because the graph can be uniquely
identified (payoffs are indicated), or one of three new information sets – represented in the figure
as a box containing the two causal structures that cannot be distinguished given the experiments
so far – is returned. Again, the Scientist can end the game at this point with a guess, or can

Figure 1: Discovery of Causal Structure as a game of Nature against the Scientist, here for two
causally sufficient variables.

continue with a further experiment. Guesses and experiments that do not make sense in light

5. See Section 6 and Eberhardt (2007) for more on multiple simultaneous interventions.
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of the evidence obtained so far, are not included in the game, since the Scientist is assumed to
be rational. Given the worst case bound of two, there is no need to consider strategies of more
than two experiments.

The game now permits an analysis of the optimal (mixed) search strategy against the most
difficult probability distribution over causal structures. Since the game was constructed as a
zero-sum game, the Nash equilibrium of the game corresponds to the mini-max solution, i.e.
the Nash equilibrium specifies the desired upper bound on the expectation of the number of
experiments sufficient and in the worst case necessary to discover the causal structure. The
strategies implied by the Nash equilibrium for Nature and the Scientist, respectively, charac-
terize a state, in which a unilateral change in strategy by Nature or by the Scientist does not
improve their individual score.

An analysis of the game shows that the Nash equilibrium is given by a mixed strategy that
is uniform over the three possible structures Sa,Sb and Sc for Nature, and a mixed strategy for
the Scientist that is uniform over passive observation, an intervention on X and an intervention
on Y for the first experiment, and indifferent between possible (relevant) experiments for the
second experiment, if a second experiment is necessary. That is, if Nature “selects” the true
causal structure among the two variables uniformly, then Nature is making the discovery task
maximally difficult for the Scientist. On the other side, by choosing uniformly whether to
intervene on X , intervene on Y or just passively observe in the first experiment, the Scientist is
doing the best she can to discover Nature’s secrets efficiently, given that Nature is an adversarial
player. Any other strategy, even mixed, will do no better and may well be worse (or will allow
Nature to adapt accordingly to make things worse).

One could take this result to be a justification for the consideration of the uniform distribu-
tion over the hypothesis space in the assessment of an expected case performance for algorithms,
but we will show below that this argument does not extend beyond the case of two variables.

The value of the Nash equilibrium represents the expected payoff to Nature (and loss to the
Scientist) when playing the mixed strategy that is Nash. For this two variable game it is 5/3
experiments, so the worst case expected performance is slightly better than the absolute worst
case bound of 2 experiments. The Scientist’s strategy is in this case not an equalizer, since some
graphs are resolved in one experiment and others in two. The Nash equilibrium is, if we ignore
the indifference for the second experiment, unique. As already indicated in the discussion of
the optimization in the previous section, there is no Nash-equilibrium over pure strategies for
either side, i.e. there is no Nash equilibrium if Nature selects one particular causal structure
with probability 1, and there is no Nash equilibrium if the Scientist picks a experiments with
probability 1. In both cases the opponent can adjust to do better. Further, returning with a
guess of the true causal structure at any point is (obviously, given the infinities in the payoff
structure) not Nash, so the solution that the Scientist returns is guaranteed to be justifiable given
the evidence. Guessing (ending the game early) only becomes a viable option, when Nature is
restricted to playing a subset of the possible structures.

The mixed strategy for the Scientist that is Nash is a Bayes solution, since it is a best
response to the uniform distribution over structures. No two-experiment strategy (using single
interventions) is a best response to any pure or mixed strategy by Nature. Interestingly, this last
point does not apply in the case of three variable graphs. In the case of three variables, the game
is substantially more complicated. There are 25 pure strategies for Nature (all DAGs over three
variables) and 67 pure strategies for the Scientist (including all the early stops by guessing).
We computed a Nash equilibrium, which determined 2 as the solution for the game: The worst
case expected number of experiments sufficient and in the worst case necessary to determine
the causal graph over three variables is two. That is, in the case of three variables, Nature can
force the Scientist to the absolute worst case bound (N− 1 = 2) even in expectation. To do
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so, Nature must select the true causal structure using a uniform distribution over the following
set of 10 different graphs over three variables: the empty graph, three graphs consisting of a
common effect only and the six possible complete graphs. Due to the edge-breaking nature of
RCT-type interventions, at least two graphs of the 10 remain indistinguishable after any single
intervention experiment or passive observation; hence a second experiment is necessary.

We know from the table in Section 2 that two experiments are sufficient for three variables.
Consequently, the uniform distribution over the 10 graphs implies that any sequence of two
different experiments is a best response, and obviously an equalizer (same payoff of two exper-
iments, no matter which graph is true). No pure or mixed strategy will fare any better against
the above distribution, which is not to say that there are no mixed strategies that do equally
well.6

5. General Results
For single interventions per experiment, the three variable game is unique: For no other number
of variables can Nature force the Scientist to the worst case bound in expectation. The general
result for mixed strategies using single interventions per experiment is given by the following
theorem.
Theorem Given a set of N > 3 causally sufficient variables, the supremum of the expected
number of experiments sufficient and in the worst case necessary to discover the causal structure
is 2

3 N− 1
3 experiments if only one (or no) variable can be subject to a RCT-type intervention

per experiment.
This bound is the value of a Nash equilibrium of the game: Nature plays a mixed strategy

that is uniform over the complete(!) graphs over N variables only. For any N there are N! such
structures. From Nature’s perspective, there is no advantage in considering incomplete causal
structures, since for N > 3 variables, two single interventions have to be performed anyway,
and in those two experiments any missing edge would be detected. This implies that a uniform
distribution over all possible hypotheses (graphs) is not Nash for Nature, and an analysis based
on such a distribution would underestimate the worst case expectation. For the Scientist the
following strategy is Nash:
Strategy Given N causally sufficient variables X1, . . . ,Xn, let each experiment ℰi in the sequence
intervene on Ii = {X j}, where X j is selected uniformly from the variables that have not yet been
subject to an intervention so far in the sequence.

Since the game is symmetric with regard to the ordering of the variables (any variable can
occur in any position in the graph), there are no order constraints on the Scientist’s strategy. Of
course, there may exist for some circumstances a particular order of experiments that minimizes
the length of the sequence; but the Scientist cannot tell in advance.

For multiple simultaneous interventions per experiment the case is far more complicated. A
discussion can be found in Eberhardt (2007); simulations suggest that the absolute worst case
bound for multiple simultaneous interventions (⌊log2(N)⌋+1 experiments) is fairly close to the
worst case expectation, which would imply that the computationally simple pure strategies for
the absolute worst case are fairly efficient even compared to the optimal mixed strategy, which
is very hard to compute.

6. For example, if the passive observation is included as a possible first experiment, then if Nature chooses uniformly,
it is a best response, but not an equalizer: 2/5 of the time it finds the graph in one experiment and 3/5 of the time
it requires 8/3 experiments (i.e. two experiments on average overall).
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6. Conclusion
We framed the search for causal structure as a game in which Nature gets the first move to de-
termine the graph after which the Scientist has free reign. This follows the approach developed
for statistical hypothesis testing by Wald (1950), and generalizes it to sequences of experiments.
Needless to say, this is only a first step presented with a very simple example. But the possi-
bilities for generalization should now be obvious: (i) The effect of additional assumptions on
the search procedure can be represented in terms of additional or reduced underdetermination
in the information sets at any decision point. (ii) Cost other than the number of experiments
can be considered. One may consider cost functions in terms of sample size, number of vari-
ables subject to intervention, or actual cost of experimentation – ethical or monetary. These cost
functions need not be uniform across variables. (iii) Constraints or background knowledge on
possible causal structures can be represented by limiting the possible pure strategies for Nature,
while constraints on the set of experiments – e.g. it might not be possible to subject all variables
to an experiment – limit the pure strategies for the Scientist. (iv) The robustness of search strate-
gies can be analyzed in terms of changes in the optimal strategy with regard to off-equilibrium
play by Nature – after all, Nature need not be adversarial; and the sensitivity of the optimal
search strategy can be investigated by considering off-equilibrium play by the Scientist.

The game-theoretic approach to the discovery problem provides a general framework in
which search strategies can be analyzed for their efficiency using a well-defined terminology
and highly developed machinery. General guidelines for search procedures can be discovered
and assessed on the basis of the explicit trade-off between discovery and its cost. Address-
ing these issues in the appropriate generality will require the integration of some of the most
sophisticated game-theoretic techniques.
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Appendix: Proofs7

Lemma 1 For N ≥ 4 the supremum of the expected number of experiments sufficient and in the
worst case necessary to uniquely determine the causal graph is greater than 2 if only single
interventions are permitted per experiment.
Lemma 2 The uniform distribution over complete graphs of N variables maximizes the expected
number of experiments sufficient and in the worst case necessary to discover the true graph
uniquely when only single intervention experiments are permitted.
Theorem Given a set of N > 3 causally sufficient variables, the supremum of the expected
number of experiments sufficient and in the worst case necessary to discover the causal structure
is 2

3 N− 1
3 experiments if only one (or no) variable can be subject to a RCT-type intervention

per experiment.
Proof By Lemma 2, the uniform distribution over complete graphs is a worst case distribution.
Suppose without loss of generality that the true complete graph over the variables X1, . . . ,XN
is such that for all i < j, Xi → X j. Under these circumstances an intervention on Xi is (1)

7. For more detailed proofs see Eberhardt (2007).
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uninformative with respect to edge-orientation about all pairs of variables X j,Xk with j,k < i;
(2) uninformative with respect to edge-orientation about all pairs of variables X j,Xk with j,k > i;
and (3) informative for the remaining edges: It resolves (i) edges between variables X j,Xk with
j > i> k, (ii) outgoing edges from Xi and, (iii) since it is known that the graph is complete, edges
broken by the intervention can be identified, and so all edges incident on Xi are resolved. In
other words, an intervention on Xi splits the discovery problem into two subproblems, one with
N− i variables and the other with i−1 variables. About these subproblems, the intervention on
Xi is uninformative.

Given the uniform distribution over complete graphs, the problem is entirely symmetric in
the sense that each node is equally likely to be at any of the possible positions in a complete
graph. Similarly, a uniform distribution selecting among the unintervened variables, implies
that each variable is equally likely to be subject to an intervention in the first experiment. Con-
sequently, we can give the expected number of experiments for this worst case distribution in
terms of the numbers required for the subproblems the intervention creates:

E(#ℰ(N)) =
1
N

N

∑
i=1

(E(#ℰ(i−1))+E(#ℰ(N− i))+1) = 1+
2
N

N

∑
i=1

E(#ℰ(i−1))

where E(#ℰ(N)) is the expected number of experiments required to discover the true graph if
the graph is sampled from a Uniform over complete graphs of N variables. So the expected
number of experiments for N variables is one plus the average of the sum of the number of
experiments that it takes to resolve the two subproblems of size N− i and i− 1, respectively.
For complete graphs with two and three variables, one can check by hand that E(#ℰ(2)) = 1
and E(#ℰ(3)) = 5/3. So finally we prove by induction that

E(#ℰ(N)) =
2
3

N− 1
3

for N ≥ 2.

It is true for N = 2. Suppose it is true for all integers up to some N−1. Then

E(#ℰ(N)) = 1+
2
N

N

∑
i=1

E(#ℰ(i−1)) = 1+
2
N

N

∑
i=1

(
2
3
(i−1)− 1

3
) =−1

3
+

2
3

N
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