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Abstract 
This paper describes the SIGNET dataset generated for the Causality Challenge. Cellular signaling 
pathways are most elusive types of networks to access experimentally due to the lack of methods 
for determining the state of a signaling network in an intact living cell. Boolean network models 
are currently being used for the modeling of signaling networks due to their compact formulation 
and ability to adequately represent network dynamics without the need for chemical kinetics. The 
problem posed in the SIGNET challenge is to determine the set of Boolean rules that describe the 
interactions of nodes within a plant signaling network, given a set of 300 Boolean pseudodynamic 
simulations of the true rules. The two solution methods that were presented revealed that the 
problem can be solved to greater than 99% accuracy. 
Keywords: Boolean pseudodynamics, plant signaling network,  

1 Introduction 
Development of accurate models to predict cellular response to stimulus must begin with a proper 
characterization of the interaction between the various cellular processes. It is estimated that each 
individual gene or protein, on average, interacts with four to eight other genes and is involved in 
ten biological functions [M. I. Arnone et al., 1997; G. L. Miklos et al., 1996]. A seamless 
interaction between all cellular processes is essential for a living cell to thrive. 

Kinetic models have been successfully applied to the analysis of a wide variety of biological 
systems, recent examples include neuronal signaling and the role of synaptic plasticity [S. M. 
Ajay et al., 2006], phase sensitivity in circadian rhythms [R. Gunawan et al., 2007], and 
prediction of IL-2 response from T-cell receptor activation [M. L. Kemp et al., 2007]. By 
providing a global view of the underlying system, a kinetic model can be used to interpret new 
experimental data in the proper biological context [G. von Dassow et al., 2000], provide 
mechanistic explanations for counter-intuitive observations [E. M. Fallon et al., 2000], and 
facilitate the formulation of experimentally testable hypotheses [W. N. Abouhamad et al., 1998; 
D. Endy et al., 2000]. Unfortunately, accurate descriptions of underlying chemical kinetics are 
difficult to determine in vivo, with reliable kinetic coefficient estimation being a non-trivial and 
frequently impossible challenge due to a lack of identifiability [K. Yao et al., 2003]. 

Experimental observations of cellular function indicate that the input-output behavior of 
signaling networks has a sigmoidal time dependence, and often can be adequately explained using 
the Heaviside, or step function [R. Thomas, 1973]. This observation suggests that a two state 
Boolean model could be employed to represent signaling network nodes, with nodal values being 
determined using an associated logical rule, representing network edges. Recent research has 
focused on applying rule-based Boolean models to the challenging problem of predicting 
biological network dynamics [S. Li et al., 2006]. In a Boolean network model, the nodes of the 
network represent biological entities and the edges represent the interactions between them. The 
nodes can have a value of 0 or 1, representing an inactive or an active state, respectively. The 
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network dynamics are determined by Boolean rules for each node, that determine the state of the 
node at the next time-step based on the state of the upstream nodes, and the nodal update strategy. 
Rule-based Boolean network models have been successfully used to aid in explaining 
experimentally observed robustness of cellular networks [R. Albert et al., 2003; S. Kauffman et 
al., 2003; R. Thomas, 1973], and to determine the effects of an alteration in the network 
components and individual reaction rates [M. Chaves et al., 2005]. 

At CFDRC, we have developed an augmented Boolean pseudo-dynamics approach to 
identify and quantitatively rank the importance of a node using a Boolean description of a cellular 
interaction network. The approach, known as the Boolean Network Dynamics and Target 
Identification (BNDTI), combines network topology and dynamic state information to determine 
the relative importance of a particular node with respect to the overall response of the network 
[A. S. Soni et al., 2008]. In order to perform a demonstration of the utility of the newly developed 
approach, the guard cell signaling network in plant cells was selected [S. Li et al., 2006]. This 
signaling network has been painstakingly translated into a Boolean network, and centers around 
abscisic acid (ABA) signal transduction, which for many decades has been known to play a role 
in ABA induced stomatal closure, regulating the plant water balance and imparting drought 
resistance. Two major secondary messengers involved in the closure of the stomata via ABA 
signal transduction are cytosolic calcium and the cytosolic pH. These two messengers are in turn 
regulated by a variety of other enzymes, secondary messengers, small molecules, and membrane 
channels. Figure 1 is a rendering of the interaction network, illustrating the complex regulatory 
interactions between species. 

 

Figure 1: A Schematic of the Guard Cell Signaling 
Network. Inhibition reactions are shown with red 
edges and inverse arrowheads, whereas activation 
interactions are shown as black edges. 
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In the remainder of the paper, Section 2 provides a statement of the particular problem posed 
in the SIGNET challenge, along with some comments on the importance of the problem and how 
researchers addressed the problem. Section 3 includes a summary of the challenge results along 
with relevant comments. 

2 SIGNET Challenge Problem Description 
The problem posed in the SIGNET challenge is to determine the set of Boolean rules that 
describe the interactions of nodes within a plant signaling network, given a set of 300 Boolean 
pseudodynamic simulations of the true rules. The relevance of this problem arises from the trend 
in the biological sciences toward the increased availability of large datasets generated using high-
throughput, high-content experimental technologies (such as gene expression microarrays). 
Experimental methods are currently able to probe the interactions of many thousands of cellular 
components simultaneously. However, cellular signaling pathways are still one of the most 
challenging and illusive types of networks to access experimentally due to the lack of methods for 
determining the state of a signaling network in an intact living cell. The SIGNET problem 
anticipates that experimental techniques for signaling network measurements will continue to 
progress, and assumes the availability of a large set of high throughput data that will be used to 
determine the set of Boolean rules describing the signaling network. 

The expense and time in signaling measurements necessitate that the majority of signaling 
network models in the published literature are manually constructed using the relatively sparse 
literature data. The typical methodology includes a thorough assimilation of all relevant literature, 
followed by the construction of a table that formalizes the nodes (components) and edges 
(interactions) of the network. Using the table, a necessary and sufficient network capable of 
predicting the relevant behavior is generated. Often times the network is manually generated, 
introducing human bias and utilizing a significant amount of time and resources. 

Automated methods for Boolean network inference have focused a significant amount of 
attention to the problem of identifying gene networks.  The REVEAL (REVerse Engineering 
ALgorithm) was one of the first algorithms designed for this purpose [S. Liang et al., 1997], 
which combines information-theory tools with an exhaustive search to generate a network that is 
consistent with the data.  An alternative algorithm is the BOOL-1 algorithm [T. Akutsu et al., 
1999], which consists of examining all possible k-tuples of inputs and testing all Boolean 
function for each k-tuple until a consistent network is generated.  The difficulty has motivated the 
utilization of heuristic approaches. An example of a heuristic approach is ID3 [J. Quinlan, 1986], 
which is a well known algorithm in Machine Learning. ID3 is based on the incremental 
construction of the input set for each variable using a greedy search. The approach presented in 
next section is based on the synergistic utilization of evolutionary algorithms and existing 
heuristics such as ID3.  More recent approaches include the p-ary transitive reduction (TRp) [R. 
Albert et al., 2007], have been demonstrated that produce an optimal network given the 
constraints of minimal false positive inferences. Unfortunately, due to the lack of the necessary 
quantities of experimental data little effort has been expended for the automated identification of 
cellular signaling networks.  Therefore, the overall goal of the SIGNET challenge was, therefore, 
to increase awareness of this problem area and stimulate interest in novel methods of solution. 
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The SIGNET dataset was generated 
using the procedure that follows. Nodes, 
edges, and Boolean rules were obtained 
from the work of Li, et. al. [S. Li et al., 
2006]. The network consists of a total of 
43 nodes. Five nodes are input nodes 
(nodes that have only out-degree), and 
are the initiators of network action. The 
state of the input nodes ABA, GCR, 
ABH1, ERA1 was fixed at a value of ‘1’ 
throughout the simulation. The state (‘0’ 
or ‘1’) of the remaining 38 variable nodes 
was selected at random at the start of 
each simulation. 300 Boolean 
pseudodynamic (BPD) simulations were 
then generated using the asynchronous 
update strategy. The choice of BPD 
update scheme depends on the 
distribution of kinetic timescales within 
the network. The two most popular update schemes are synchronous and asynchronous. The 
synchronous method updates nodes in a fixed order at each time step, the order being determined 
at the start of the simulation. Synchronous updating assumes that the physical interactions within 
the network all occur at approximately the same time scale. Though synchronous updating is an 
efficient simulation method, it is rarely used for realistic systems due to the limiting assumption 
of similar time scales. In contrast, the asynchronous update method randomly determines the 
update order at each time step, which is equivalent to the assumption that the kinetic time scales 
within the network have a Gaussian distribution. Asynchronous updating is known to mimic 
realistic events in complex networks, and has been shown to effectively capture rare events [M. 
Chaves et al., 2005; S. Li et al., 2006]. Figure 2 is a plot of the response of the CLOSURE node 
averaged over the 300 randomly selected initial conditions with ABA=1 and ABA=0. 

 

Figure 2: Effect of the presence and absence 
of abscisic acid on the percentage of closed 
stomata in the plant guard cell signaling 
model. 

The overall objective of the SIGNET challenge was to determine the set of Boolean rules that 
describe the interactions of the nodes within this plant signaling network. The dataset includes 
300 separate Boolean pseudodynamic simulations of the true rules, using an asynchronous update 
scheme. The results for 300 separate simulations are included in the dataset. Each simulation 
consists of a matrix of 0's and 1's, with 21 rows and 43 columns. The first row is the randomly 
generated initial condition for the particular simulation, with the next 20 rows being the output 
from the Boolean pseudodynamics simulation. Each of the 43 columns represents the transient 
response of a particular node. The nodal names are identified at the top of the data file. 

3 Summary of SIGNET Challenge Results 
Solutions to the SIGNET challenge were submitted by Mehreen Saeed of the Department of 

Computer Science at the National University of Computer and Emerging Sciences (Lahore 
Campus, Pakistan) [M. Saeed, 2009], and Cheng Zheng of the School of Mathematical Sciences 
at Peking University (Beijing, China) [C. Zheng et al., 2009]. 

3.1 Performance Assessment 
Solution methodology performance was assessed using the original SIGNET case, and for a 

second case generated by Prof. Isabelle Guyon. The organizers of the challenge provided a 
Matlab code for the evaluation of the algorithm performance.  The evaluation code consisted of 
the generation of a truth table for each true rule and computing a prediction error by comparing 
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output values of the extracted rule to the output from the true rule.  The error is computed by 
averaging over all rules.  In addition to calculating the overall error rate of prediction, Prof. Saeed 
also calculated the training set error of the inferred rules. This was done by applying each rule to 
the individual Boolean vectors of the simulation data and predicting the output value. The output 
value was compared with the actual value to obtain the overall training accuracy rate. 

3.2 Bernoulli Mixture Model (BMM) 
The paper submitted by Prof. Saeed develops a Bernoulli distribution-based probabilistic 

model for the data, and combines this with the mixture densities to identify the Boolean rules 
from the SIGNET dataset. Parameters for the underlying Bernoulli distribution are estimated 
from the raw data using the expectation maximization (EM) algorithm. This methodology is 
stated to be ideal for estimating the probability distribution of non uni-modal data. Prof. Saeed 
has considerable experience applying this same methodology to the problem of dimensionality 
reduction and feature selection. 

Optimal values for the number of mixtures as well as the probability thresholding value are 
given. The number of mixtures determines the underlying Bernoulli distribution, and the 
complexity of parameter extraction for estimating priors. Probability thresholding values are used 
to identify high data density areas on the corners of a hypercube. Each corner represents a 
conjunct of Boolean variables and together the set, of all the corners, forms a disjunction of rules, 
yielding a disjunctive normal form of a Boolean rule. 

The results presented indicate that three mixtures produced the optimal training and 
evaluation accuracy of 94.55% and 82.98%, respectively, for the original SIGNET set. The 
dataset generated by Prof. Isabelle Guyon yielded a training accuracy of 95.88% and an 
evaluation accuracy of 87.61% for the three mixture model. A thresholding value of 0.70 
produced good results for the case of a single mixture, but poor results for 2 and 3 mixtures. A 
thresholding value of 0.80 produced optimal results for 3 mixtures, and showed good accuracy for 
1 and 2 mixtures. Thresholding values of 0.90 produced low accuracy results due to the number 
of results being ignored. 

3.3 Minimum Explanatory Set and Maximum Likelihood (MESML) 
The paper submitted by C. Zheng uses a method for finding the minimum explanatory set for 

a particular node [T. Ideker et al., 2000], and then determines a Boolean function that generates 
maximal log likelihood for a particular node. The methodology is specifically modified for the 
reconstruction of asynchronous Boolean networks, where the nodal update order is selected at 
random. 

Accuracy of the method was assessed in the same manner as with Prof. Saeed’s solution.  The 
accuracy of the proposed method was evaluated on the original SIGNET dataset and two other 
datasets generated by C. Zheng. Accuracy rates as a function of the number of assumed parent 
nodes are given for evaluation of the method. Interestingly, C. Zheng finds that as the number of 
parent nodes increases, the accuracy rate also decreases. This result is in agreement with the 
expectation that the average nodal accuracy should exhibit a maximum around the most probable 
in-degree, which for this network is 1 (58% of nodes). The averaged accuracy rate for a single 
parent node is 95%, which is excellent. 

3.4 Discussion 
The primary strength of the BMM methodology is the straight forward, novel approach of 

converting a probabilistic model into a rule based model in an intuitive manner. Information 
concerning the total runtime to expect in practice was not provided in the final manuscript, which 
would have aided the reader in making an implementation decision. However, the only bottleneck 
to performance would be the expectation maximization and I would not anticipate that it scales 
poorly with the number of mixtures. 
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The MESML method demonstrated by C. Zheng is the most accurate, with an average 
accuracy of 95%. The major drawback of the methodology is that the computational time scaling 
is roughly proportional to 10n (see Table 2 of [C. Zheng et al., 2009]), where n is the number of 
parent nodes. This is likely to cause a potential problem for networks that contain a large number 
of hub nodes, where the most probable in-degree is larger than one. 

As experimental techniques become more sophisticated, computational methods will be 
called upon to provide biologically relevant insight into cellular behavior and interactions.  
Boolean networks will continue to play an ever increasing role in signaling network modeling due 
to their simplicity and predictive capability.  Based upon the accuracy of the predictions, the 
results of the SIGNET challenge should provide significant confidence to researchers seeking to 
unravel the secrets of signaling networks. 

Acknowledgements 
I would like to thank Constantin Aliferis (NYU Medical Center) for encouraging our 

submission of the SIGNET dataset. I thank Prof. Saeed and C. Zheng for submitting their 
solutions. Guidance and encouragement provided by Isabelle Guyon and the organizers of the 
challenge is also acknowledged. Funding was provided by the U.S. Army MRMC (Program 
Manager: COL Alan Magill, WRAIR). 

References 
(1) W.N. Abouhamad, D. Bray, M. Schuster, K.C. Boesch, R.E. Silversmith, and R.B. 

Bourret, Computer-aided resolution of an experimental paradox in bacterial chemotaxis. J 
Bacteriol 180 (1998) 3757-64. 

(2) S.M. Ajay, and U.S. Bhalla, Synaptic plasticity in vitro and in silico: insights into an 
intracellular signaling maze. Physiology (Bethesda) 21 (2006) 289-96. 

(3) T. Akutsu, S. Miyano, and S. Kuhara, Identification of genetic networks from a small 
number of gene expression patterns under the boolean network model. Pacific 
Symposium on Biocomputing 4 (1999) 29. 

(4) R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E. Sontag, A. Zelikovsky, and K. 
Westbrooks, A novel method for signal transduction network inference from indirect 
experimental evidence. J Comput Biol 14 (2007) 927-49. 

(5) R. Albert, and H. Othmer, The topology of the regulatory interactions predicts the 
expression pattern of the Drosophila segment polarity genes. J. Theor. Biol. 223 (2003) 
1-18. 

(6) M.I. Arnone, and E.H. Davidson, The hardwiring of development: organization and 
function of genomic regulatory systems. Development 124 (1997) 1851-64. 

(7) M. Chaves, R. Albert, and E.D. Sontag, Robustness and fragility of Boolean models for 
genetic regulatory networks. J Theor Biol 235 (2005) 431-49. 

(8) D. Endy, L. You, J. Yin, and I.J. Molineux, Computation, prediction, and experimental 
tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc Natl Acad Sci 
U S A 97 (2000) 5375-80. 

(9) E.M. Fallon, and D.A. Lauffenburger, Computational model for effects of ligand/receptor 
binding properties on interleukin-2 trafficking dynamics and T cell proliferation 
response. Biotechnol Prog 16 (2000) 905-16. 

(10) R. Gunawan, and F.J. Doyle, 3rd, Phase sensitivity analysis of circadian rhythm 
entrainment. J Biol Rhythms 22 (2007) 180-94. 

(11) T. Ideker, V. Thorsson, and R. Karp, Discovery of Regulatory Interactions Through 
Perturbation: Inference and Experimental Design. Pacific Symposium on Biocomputing 5 
(2000) 302-313. 

220 
 



SIGNET: BOOLEAN RULE DETERMINATION 

(12) S. Kauffman, C. Peterson, B. Samuelson, and C. Troein, Random Boolean network 
models and the yeast transcription network. Proc Natl Acad Sci USA 100 (2003) 14796-
14799. 

(13) M.L. Kemp, L. Wille, C.L. Lewis, L.B. Nicholson, and D.A. Lauffenburger, Quantitative 
network signal combinations downstream of TCR activation can predict IL-2 production 
response. J Immunol 178 (2007) 4984-92. 

(14) S. Li, S. Assmann, and R. Albert, Predicting essential components of signal transduction 
networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4 (2006) 
e312. 

(15) S. Liang, S. Fuhrman, and R. Somogyi, REVEAL, a general reverse engineering 
algorithm for inference of genetic network architectures. Pacific Symposium on 
Biocomputing 3 (1997) 29. 

(16) G.L. Miklos, and G.M. Rubin, The role of the genome project in determining gene 
function: insights from model organisms. Cell 86 (1996) 521-9. 

(17) J. Quinlan, Induction of decision trees. Machine Learning 1 (1986) 106. 
(18) M. Saeed, The Use of Bernoulli Mixture Models for Identifying Corners of a Hypercube 

and Extracting Boolean Rules From Data. JMLR: Workshop and Conference 
Proceedings, this issue (2009). 

(19) A.S. Soni, J.W. Jenkins, and S.S. Sundaram, Determination of critical network 
interactions: an augmented Boolean pseudo-dynamics approach. IET Syst Biol 2 (2008) 
55-63. 

(20) R. Thomas, Boolean formalization of genetic control circuits. J Theor Biol 42 (1973) 
563-85. 

(21) G. von Dassow, E. Meir, E.M. Munro, and G.M. Odell, The segment polarity network is 
a robust developmental module. Nature 406 (2000) 188-92. 

(22) K. Yao, B. Shaw, B. Kou, K. McAuley, and D. Bacon, Modeling ethylene/butene 
copolymerization with multi-site catalysts: Parameter estimability and experimental 
design. Polym. React. Eng. 11 (2003) 563–588. 

(23) C. Zheng, and Z. Geng, Reverse Engineering of Asynchronous Boolean Networks via 
Minimum Explanatory Set and Maximum Likelihood. JMLR: Workshop and Conference 
Proceedings, this issue (2009). 

 
 

221 
 



JENKINS 

Appendix A:   Pot-luck causality challenge: FACT SHEET (donated dataset) 
Repository URL:  http://www.causality.inf.ethz.ch/repository.php?id=5  

Dataset name: SIGNET 

Title: Boolean Rule Determination for Abscisic Acid Signaling 

Author:  Jerry W. Jenkins 

Contact name, address, email and website:  Jerry W. Jenkins 
601 Genome Way, Suite 2301 
Huntsville, AL 35806 
http://www.cfdrc.com 
 
Key facts: 
Data dimensions (number of variables, number of entries), variable types, missing data, etc. See 
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/DOC-REQUIREMENTS for inspiration. 
Simulated data with a Boolean network modeling a biological signaling network. 
Time series of 21 time steps. Initial step randomly drawn. 
Number of variables: 43. 
Number of entries: 300 separate dynamic simulations. 
Variable types: binary. 
Missing data: No. 
During simulation, 38 of the 43 nodes are allowed to vary, with 5 nodes held constant throughout 
the simulation.  
 
Abstract: 
The objective is to determine the set of Boolean rules that describe the interactions of the nodes 
within this plant signaling network. The dataset includes 300 separate Boolean pseudodynamic 
simulations of the true rules, using an asynchronous update scheme. Each of the 300 simulations 
begin with a randomly generated initial condition, in order to ensure sampling of all of the steady 
states of the system. There are a total of 43 nodes in this dataset, with 5 nodes being constants. 
The results for 300 separate simulations are included in the dataset. Each simulation consists of a 
matrix of 0's and 1's, with 21 rows and 43 columns. The first row is the randomly generated initial 
condition for the particular simulation, with the next 20 rows being the output from the Boolean 
pseudodynamics simulation. Each of the 43 columns represent the transient response of a 
particular node. The nodal names are identified at the top of the data file. A line of asterisks is 
used to separate the simulations from one another. An example set of data is included below: 
*************************** 
1011101110101101101101001010001011000011001 
1100001110111101101101111111011001011101011 
1100011110111110101101100011010001110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
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1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
1100001110111110101101100011000011110101010 
 
 
Suggested task: Uncover the 43 Boolean rules x_i = f(x_1, x_2, ... x_43) of the Boolean Network. 
 
We suggest to report results in disjunctive normal form (DNF), see, e.g., 
http://en.wikipedia.org/wiki/Disjunctive_normal_form, denoting the Boolean operators as "or", 
"and", and "not" and using regular parentheses.  
 
Example: 
ABI = (pH and not PA and not ROS) or (ABA and Ca) 
One way to obtain these DNF formulae is to generate truth tables, then use a program like 
Minilog http://en.wikipedia.org/wiki/Minilog to generate the formula. 
 
We now provide the truth values of the Boolean rules for self evaluation: 
 
NO = NIA12 and NOS 
PLC = ABA and Ca 
CAIM = ( ROS or not ERA1 or not ABH1 ) and not DEPOLAR 
GPA = ( S1P or not GCR ) and AGB 
ATRBOH = PH and OST and ROP2 and not ABI 
HATPase = not ROS and not PH and not Ca 
MALATE = PEPC and not ABA and not AnionEM 
RAC = not ABA and not ABI 
Actin = Ca or not RAC 
ROS = ABA and PA and PH 
ABI = PH and not PA and not ROS 
KAP = ( not PH and not Ca ) and DEPOLAR 
Ca = ( CAIM or CIS ) and not CaATPase 
CIS = ( cGMP and cADPR ) or ( IP3 and IP6 ) 
AnionEM = ( ( Ca or PH ) and not ABI ) or ( Ca and PH ) 
KOUT = ( PH or not ROS or not NO ) and DEPOLAR 
DEPOLAR = KEV or AnionEM or not HATPase or not KOUT or Ca 
CLOSURE = ( KOUT or KAP ) and AnionEM and Actin and not MALATE 
ABA = 1 
ABH1 = 1 
AGB = 1 
ERA1 = 1 
GCR = 1 
ADPRc = NO 
CaATPase = Ca 
cADPR = ADPRc 
cGMP = GC 
GC = NO 
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224 
 

InsPK = ABA 
IP3 = PLC 
IP6 = InsPK 
KEV = Ca 
NIA12 = RCN 
NOS = Ca 
OST = ABA 
PA = PLD 
PEPC = not ABA 
PH = ABA 
PLD = GPA 
RCN = ABA 
ROP2 = PA 
S1P = SPHK 
SPHK = ABA 
 
For evaluation, we suggest that, for each true generative rule, you generate the truth table, and 
compute the prediction error rate by comparing the predictions made by the rule of the proposed 
model to the target values. Then average the error rates over all rules. This measure does not 
respect the "natural" distribution of states, but this may be a feature rather than a bug because, for 
causal models, one wants to be robust against changes in distribution. 
 
We provide some Matlab code to score the results and eventually generate new data (see 
http://www.causality.inf.ethz.ch/data/@signet.zip): 
 
==> Usage for scoring: 
 
s=read_rules(signet, 'your_submission_file.txt'); 
err=compare_rules(s); 
 
Here is how it works: 
- for each rule "zozo = some_boolean_expr(some_variables)" 
* pool together the variables in the true rule for zozo and the propose rule 
* create input vectors for all possible assignments of values to these variables 
* apply the true rule to each input vector to get the target variables T 
* apply the proposed rule to get the predicted Y 
* Compute the error rate (fraction of disagreements between Y and T) 
- average the error rates over all rules. 
 
==> Usage for generating data: 
 
dat=gene(signet, num, v_ini); 
 
v_ini = initial state (43 binary values) 
num = number of time steps 
Returns a data matrix. 
 
Keywords: 
Boolean network, signaling network, time series 
 


