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Abstract

This paper describes the SIGNET dataset generated for the Causality Challenge. Cellular signaling
pathways are most elusive types of networks to access experimentally due to the lack of methods
for determining the state of a signaling network in an intact living cell. Boolean network models
are currently being used for the modeling of signaling networks due to their compact formulation
and ability to adequately represent network dynamics without the need for chemical kinetics. The
problem posed in the SIGNET challenge is to determine the set of Boolean rules that describe the
interactions of nodes within a plant signaling network, given a set of 300 Boolean pseudodynamic
simulations of the true rules. The two solution methods that were presented revealed that the
problem can be solved to greater than 99% accuracy.
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1 Introduction

Development of accurate models to predict cellular response to stimulus must begin with a proper
characterization of the interaction between the various cellular processes. It is estimated that each
individual gene or protein, on average, interacts with four to eight other genes and is involved in
ten biological functions [M. I. Arnone et al., 1997; G. L. Miklos et al., 1996]. A seamless
interaction between all cellular processes is essential for a living cell to thrive.

Kinetic models have been successfully applied to the analysis of a wide variety of biological
systems, recent examples include neuronal signaling and the role of synaptic plasticity [S. M.
Ajay et al., 2006], phase sensitivity in circadian rhythms [R. Gunawan et al., 2007], and
prediction of IL-2 response from T-cell receptor activation [M. L. Kemp et al., 2007]. By
providing a global view of the underlying system, a kinetic model can be used to interpret new
experimental data in the proper biological context [G. von Dassow et al., 2000], provide
mechanistic explanations for counter-intuitive observations [E. M. Fallon et al., 2000], and
facilitate the formulation of experimentally testable hypotheses [W. N. Abouhamad et al., 1998;
D. Endy et al., 2000]. Unfortunately, accurate descriptions of underlying chemical Kkinetics are
difficult to determine in vivo, with reliable kinetic coefficient estimation being a non-trivial and
frequently impossible challenge due to a lack of identifiability [K. Yao et al., 2003].

Experimental observations of cellular function indicate that the input-output behavior of
signaling networks has a sigmoidal time dependence, and often can be adequately explained using
the Heaviside, or step function [R. Thomas, 1973]. This observation suggests that a two state
Boolean model could be employed to represent signaling network nodes, with nodal values being
determined using an associated logical rule, representing network edges. Recent research has
focused on applying rule-based Boolean models to the challenging problem of predicting
biological network dynamics [S. Li et al., 2006]. In a Boolean network model, the nodes of the
network represent biological entities and the edges represent the interactions between them. The
nodes can have a value of 0 or 1, representing an inactive or an active state, respectively. The
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network dynamics are determined by Boolean rules for each node, that determine the state of the
node at the next time-step based on the state of the upstream nodes, and the nodal update strategy.
Rule-based Boolean network models have been successfully used to aid in explaining
experimentally observed robustness of cellular networks [R. Albert et al., 2003; S. Kauffman et
al.,, 2003; R. Thomas, 1973], and to determine the effects of an alteration in the network
components and individual reaction rates [M. Chaves et al., 2005].

At CFDRC, we have developed an augmented Boolean pseudo-dynamics approach to
identify and quantitatively rank the importance of a node using a Boolean description of a cellular
interaction network. The approach, known as the Boolean Network Dynamics and Target
Identification (BNDTI), combines network topology and dynamic state information to determine
the relative importance of a particular node with respect to the overall response of the network
[A. S. Soni et al., 2008]. In order to perform a demonstration of the utility of the newly developed
approach, the guard cell signaling network in plant cells was selected [S. Li et al., 2006]. This
signaling network has been painstakingly translated into a Boolean network, and centers around
abscisic acid (ABA) signal transduction, which for many decades has been known to play a role
in ABA induced stomatal closure, regulating the plant water balance and imparting drought
resistance. Two major secondary messengers involved in the closure of the stomata via ABA
signal transduction are cytosolic calcium and the cytosolic pH. These two messengers are in turn
regulated by a variety of other enzymes, secondary messengers, small molecules, and membrane
channels. Figure 1 is a rendering of the interaction network, illustrating the complex regulatory
interactions between species.
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Figure 1: A Schematic of the Guard Cell Signaling
Network. Inhibition reactions are shown with red
edges and inverse arrowheads, whereas activation
interactions are shown as black edges.
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In the remainder of the paper, Section 2 provides a statement of the particular problem posed
in the SIGNET challenge, along with some comments on the importance of the problem and how
researchers addressed the problem. Section 3 includes a summary of the challenge results along
with relevant comments.

2 SIGNET Challenge Problem Description

The problem posed in the SIGNET challenge is to determine the set of Boolean rules that
describe the interactions of nodes within a plant signaling network, given a set of 300 Boolean
pseudodynamic simulations of the true rules. The relevance of this problem arises from the trend
in the biological sciences toward the increased availability of large datasets generated using high-
throughput, high-content experimental technologies (such as gene expression microarrays).
Experimental methods are currently able to probe the interactions of many thousands of cellular
components simultaneously. However, cellular signaling pathways are still one of the most
challenging and illusive types of networks to access experimentally due to the lack of methods for
determining the state of a signaling network in an intact living cell. The SIGNET problem
anticipates that experimental techniques for signaling network measurements will continue to
progress, and assumes the availability of a large set of high throughput data that will be used to
determine the set of Boolean rules describing the signaling network.

The expense and time in signaling measurements necessitate that the majority of signaling
network models in the published literature are manually constructed using the relatively sparse
literature data. The typical methodology includes a thorough assimilation of all relevant literature,
followed by the construction of a table that formalizes the nodes (components) and edges
(interactions) of the network. Using the table, a necessary and sufficient network capable of
predicting the relevant behavior is generated. Often times the network is manually generated,
introducing human bias and utilizing a significant amount of time and resources.

Automated methods for Boolean network inference have focused a significant amount of
attention to the problem of identifying gene networks. The REVEAL (REVerse Engineering
ALgorithm) was one of the first algorithms designed for this purpose [S. Liang et al., 1997],
which combines information-theory tools with an exhaustive search to generate a network that is
consistent with the data. An alternative algorithm is the BOOL-1 algorithm [T. Akutsu et al.,
1999], which consists of examining all possible k-tuples of inputs and testing all Boolean
function for each k-tuple until a consistent network is generated. The difficulty has motivated the
utilization of heuristic approaches. An example of a heuristic approach is ID3 [J. Quinlan, 1986],
which is a well known algorithm in Machine Learning. ID3 is based on the incremental
construction of the input set for each variable using a greedy search. The approach presented in
next section is based on the synergistic utilization of evolutionary algorithms and existing
heuristics such as ID3. More recent approaches include the p-ary transitive reduction (TR;) [R.
Albert et al., 2007], have been demonstrated that produce an optimal network given the
constraints of minimal false positive inferences. Unfortunately, due to the lack of the necessary
guantities of experimental data little effort has been expended for the automated identification of
cellular signaling networks. Therefore, the overall goal of the SIGNET challenge was, therefore,
to increase awareness of this problem area and stimulate interest in novel methods of solution.
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The SIGNET dataset was generated

using the procedure that follows. Nodes, hiidl

edges, and Boolean rules were obtained il ::2::;:;":;‘2;
from the work of Li, et. al. [S. Li et al., il
2006]. The network consists of a total of Eddy
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was selected at random at the start of i i i i o i
each simulation. 300 Boolean Time Point

pseudodynamic (BPD) simulations were Figure 2: Effect of the presence and absence
then generated using the asynchronous of abscisic acid on the percentage of closed
update strategy. The choice of BPD stomata in the plant guard cell signaling
update scheme depends on the model.

distribution of kinetic timescales within

the network. The two most popular update schemes are synchronous and asynchronous. The
synchronous method updates nodes in a fixed order at each time step, the order being determined
at the start of the simulation. Synchronous updating assumes that the physical interactions within
the network all occur at approximately the same time scale. Though synchronous updating is an
efficient simulation method, it is rarely used for realistic systems due to the limiting assumption
of similar time scales. In contrast, the asynchronous update method randomly determines the
update order at each time step, which is equivalent to the assumption that the kinetic time scales
within the network have a Gaussian distribution. Asynchronous updating is known to mimic
realistic events in complex networks, and has been shown to effectively capture rare events [M.
Chaves et al., 2005; S. Li et al., 2006]. Figure 2 is a plot of the response of the CLOSURE node
averaged over the 300 randomly selected initial conditions with ABA=1 and ABA=0.

The overall objective of the SIGNET challenge was to determine the set of Boolean rules that
describe the interactions of the nodes within this plant signaling network. The dataset includes
300 separate Boolean pseudodynamic simulations of the true rules, using an asynchronous update
scheme. The results for 300 separate simulations are included in the dataset. Each simulation
consists of a matrix of 0's and 1's, with 21 rows and 43 columns. The first row is the randomly
generated initial condition for the particular simulation, with the next 20 rows being the output
from the Boolean pseudodynamics simulation. Each of the 43 columns represents the transient
response of a particular node. The nodal names are identified at the top of the data file.

3 Summary of SIGNET Challenge Results

Solutions to the SIGNET challenge were submitted by Mehreen Saeed of the Department of
Computer Science at the National University of Computer and Emerging Sciences (Lahore
Campus, Pakistan) [M. Saeed, 2009], and Cheng Zheng of the School of Mathematical Sciences
at Peking University (Beijing, China) [C. Zheng et al., 2009].

3.1 Performance Assessment

Solution methodology performance was assessed using the original SIGNET case, and for a
second case generated by Prof. Isabelle Guyon. The organizers of the challenge provided a
Matlab code for the evaluation of the algorithm performance. The evaluation code consisted of
the generation of a truth table for each true rule and computing a prediction error by comparing
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output values of the extracted rule to the output from the true rule. The error is computed by
averaging over all rules. In addition to calculating the overall error rate of prediction, Prof. Saeed
also calculated the training set error of the inferred rules. This was done by applying each rule to
the individual Boolean vectors of the simulation data and predicting the output value. The output
value was compared with the actual value to obtain the overall training accuracy rate.

3.2 Bernoulli Mixture Model (BMM)

The paper submitted by Prof. Saeed develops a Bernoulli distribution-based probabilistic
model for the data, and combines this with the mixture densities to identify the Boolean rules
from the SIGNET dataset. Parameters for the underlying Bernoulli distribution are estimated
from the raw data using the expectation maximization (EM) algorithm. This methodology is
stated to be ideal for estimating the probability distribution of non uni-modal data. Prof. Saeed
has considerable experience applying this same methodology to the problem of dimensionality
reduction and feature selection.

Optimal values for the number of mixtures as well as the probability thresholding value are
given. The number of mixtures determines the underlying Bernoulli distribution, and the
complexity of parameter extraction for estimating priors. Probability thresholding values are used
to identify high data density areas on the corners of a hypercube. Each corner represents a
conjunct of Boolean variables and together the set, of all the corners, forms a disjunction of rules,
yielding a disjunctive normal form of a Boolean rule.

The results presented indicate that three mixtures produced the optimal training and
evaluation accuracy of 94.55% and 82.98%, respectively, for the original SIGNET set. The
dataset generated by Prof. Isabelle Guyon yielded a training accuracy of 95.88% and an
evaluation accuracy of 87.61% for the three mixture model. A thresholding value of 0.70
produced good results for the case of a single mixture, but poor results for 2 and 3 mixtures. A
thresholding value of 0.80 produced optimal results for 3 mixtures, and showed good accuracy for
1 and 2 mixtures. Thresholding values of 0.90 produced low accuracy results due to the number
of results being ignored.

3.3 Minimum Explanatory Set and Maximum Likelihood (MESML)

The paper submitted by C. Zheng uses a method for finding the minimum explanatory set for
a particular node [T. Ideker et al., 2000], and then determines a Boolean function that generates
maximal log likelihood for a particular node. The methodology is specifically modified for the
reconstruction of asynchronous Boolean networks, where the nodal update order is selected at
random.

Accuracy of the method was assessed in the same manner as with Prof. Saeed’s solution. The
accuracy of the proposed method was evaluated on the original SIGNET dataset and two other
datasets generated by C. Zheng. Accuracy rates as a function of the number of assumed parent
nodes are given for evaluation of the method. Interestingly, C. Zheng finds that as the number of
parent nodes increases, the accuracy rate also decreases. This result is in agreement with the
expectation that the average nodal accuracy should exhibit a maximum around the most probable
in-degree, which for this network is 1 (58% of nodes). The averaged accuracy rate for a single
parent node is 95%, which is excellent.

3.4 Discussion

The primary strength of the BMM methodology is the straight forward, novel approach of
converting a probabilistic model into a rule based model in an intuitive manner. Information
concerning the total runtime to expect in practice was not provided in the final manuscript, which
would have aided the reader in making an implementation decision. However, the only bottleneck
to performance would be the expectation maximization and | would not anticipate that it scales
poorly with the number of mixtures.
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The MESML method demonstrated by C. Zheng is the most accurate, with an average
accuracy of 95%. The major drawback of the methodology is that the computational time scaling
is roughly proportional to 10" (see Table 2 of [C. Zheng et al., 2009]), where n is the number of
parent nodes. This is likely to cause a potential problem for networks that contain a large number
of hub nodes, where the most probable in-degree is larger than one.

As experimental techniques become more sophisticated, computational methods will be
called upon to provide biologically relevant insight into cellular behavior and interactions.
Boolean networks will continue to play an ever increasing role in signaling network modeling due
to their simplicity and predictive capability. Based upon the accuracy of the predictions, the
results of the SIGNET challenge should provide significant confidence to researchers seeking to
unravel the secrets of signaling networks.
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Appendix A: Pot-luck causality challenge: FACT SHEET (donated dataset)
Repository URL: http://www.causality.inf.ethz.ch/repository.php?id=5
Dataset name: SIGNET
Title: Boolean Rule Determination for Abscisic Acid Signaling
Author: Jerry W. Jenkins

Contact name, address, email and website: Jerry W. Jenkins
601 Genome Way, Suite 2301

Huntsville, AL 35806

http://www.cfdrc.com

Key facts:

Data dimensions (number of variables, number of entries), variable types, missing data, etc. See
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/DOC-REQUIREMENTS for inspiration.
Simulated data with a Boolean network modeling a biological signaling network.

Time series of 21 time steps. Initial step randomly drawn.

Number of variables: 43.

Number of entries: 300 separate dynamic simulations.

Variable types: binary.

Missing data: No.

During simulation, 38 of the 43 nodes are allowed to vary, with 5 nodes held constant throughout
the simulation.

Abstract:

The objective is to determine the set of Boolean rules that describe the interactions of the nodes
within this plant signaling network. The dataset includes 300 separate Boolean pseudodynamic
simulations of the true rules, using an asynchronous update scheme. Each of the 300 simulations
begin with a randomly generated initial condition, in order to ensure sampling of all of the steady
states of the system. There are a total of 43 nodes in this dataset, with 5 nodes being constants.

The results for 300 separate simulations are included in the dataset. Each simulation consists of a
matrix of 0's and 1's, with 21 rows and 43 columns. The first row is the randomly generated initial
condition for the particular simulation, with the next 20 rows being the output from the Boolean
pseudodynamics simulation. Each of the 43 columns represent the transient response of a
particular node. The nodal names are identified at the top of the data file. A line of asterisks is
used to separate the simulations from one another. An example set of data is included below:
*hkkkkkkkkkkikkkikhkkikkkikkikkikkhkhkkikk

1011101110101101101101001010001011000011001
1100001110111101101101111111011001011101011
1100011110111110101101100011010001110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
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1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010
1100001110111110101101100011000011110101010

Suggested task: Uncover the 43 Boolean rules x_i = f(x_1, x_2, ... X_43) of the Boolean Network.

We suggest to report results in disjunctive normal form (DNF), see, e.g.,
http://en.wikipedia.org/wiki/Disjunctive_normal_form, denoting the Boolean operators as "or",
"and", and "not" and using regular parentheses.

Example:

ABI = (pH and not PA and not ROS) or (ABA and Ca)

One way to obtain these DNF formulae is to generate truth tables, then use a program like
Minilog http://en.wikipedia.org/wiki/Minilog to generate the formula.

We now provide the truth values of the Boolean rules for self evaluation:

NO = NIA12 and NOS

PLC = ABA and Ca

CAIM = (ROS or not ERA1 or not ABH1 ) and not DEPOLAR
GPA = (S1P or not GCR ) and AGB

ATRBOH = PH and OST and ROP2 and not ABI

HATPase = not ROS and not PH and not Ca

MALATE = PEPC and not ABA and not AnionEM

RAC = not ABA and not ABI

Actin = Ca or not RAC

ROS = ABA and PA and PH

ABI = PH and not PA and not ROS

KAP = ('not PH and not Ca ) and DEPOLAR

Ca=(CAIM or CIS) and not CaATPase

CIS = (cGMP and cADPR ) or ( IP3 and IP6)

AnionEM = ((Caor PH) and not ABI ) or (Ca and PH )
KOUT = ( PH or not ROS or not NO ) and DEPOLAR
DEPOLAR = KEV or AnionEM or not HATPase or not KOUT or Ca
CLOSURE = ( KOUT or KAP ) and AnionEM and Actin and not MALATE
ABA=1

ABH1=1

AGB =1

ERA1=1

GCR=1

ADPRc = NO

CaATPase = Ca

cADPR = ADPRc

cGMP =GC

GC=NO
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InsPK = ABA
IP3=PLC
IP6 = InsPK
KEV = Ca
NIA12 = RCN
NOS =Ca
OST = ABA
PA=PLD
PEPC = not ABA
PH = ABA
PLD = GPA
RCN = ABA
ROP2 = PA
S1P = SPHK
SPHK = ABA

For evaluation, we suggest that, for each true generative rule, you generate the truth table, and
compute the prediction error rate by comparing the predictions made by the rule of the proposed
model to the target values. Then average the error rates over all rules. This measure does not
respect the "natural” distribution of states, but this may be a feature rather than a bug because, for
causal models, one wants to be robust against changes in distribution.

We provide some Matlab code to score the results and eventually generate new data (see
http://www.causality.inf.ethz.ch/data/@signet.zip):

==> Usage for scoring:

s=read_rules(signet, ‘your_submission_file.txt);
err=compare_rules(s);

Here is how it works:

- for each rule "zozo = some_boolean_expr(some_variables)"

* pool together the variables in the true rule for zozo and the propose rule

* create input vectors for all possible assignments of values to these variables
* apply the true rule to each input vector to get the target variables T

* apply the proposed rule to get the predicted Y

* Compute the error rate (fraction of disagreements between Y and T)

- average the error rates over all rules.

==> Usage for generating data:
dat=gene(signet, num, v_ini);

v_ini = initial state (43 binary values)
num = number of time steps

Returns a data matrix.

Keywords:

Boolean network, signaling network, time series
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