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Abstract 
A complex modern manufacturing process is normally under consistent surveillance via the 
monitoring of signals/variables collected from sensors. However, not all of these signals are 
equally valuable in a specific monitoring system. The measured signals contain a combination 
of useful information, irrelevant information as well as noise. It is often the case that useful 
information is buried in the latter two. Engineers typically have a much larger number of 
signals than are actually required. If we consider each type of signal as a feature, then feature 
selection may be used to identify the most predictive signals. Once these signals have been 
identified causal relevance may then be investigated to try and identify the causal features. 
The Process Engineers may then use these signals to ensure a small scrap rate further 
downstream in the process, increase the throughput and reduce the per unit production costs. 
Working in partnership with industry we aim to address this complex problem as part of their 
process control engineering in the context of wafer fabrication production and enhance 
current business improvement techniques with the application of causal feature selection as an 
intelligent systems technique. 
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1. Introduction 
 
In high volume manufacturing close control and monitoring of production processes are 
required to ensure quality control and efficiency (Jeong and Cho 2006). Considering the 
number of process steps in wafer fabrication, typically over 500, and the amount of data 
recorded during the entire production process, this produces a vast amount of monitoring 
data. However not all of this data is equally relevant for process control monitoring. Within 
this environment industry standard business improvement techniques are the tools that are 
used to try and solve this complex problem. Currently within industry Six Sigma is one of the 
main business improvement strategies employed to improve the manufacturing process, 
although this is a well proven technique throughout industry there are a number of 
weaknesses inherent within its approach (Johnston 2007). The application of new 
computational intelligence techniques is now being introduced in manufacturing 
environments. The introduction of feature selection techniques is proposed as an intelligent 
systems approach to solving this issue. These techniques are prevalent in high volume data 
environments, in this application domain they may be deployed to identify the desired Key 
Process Input Variables (KPIVs) and assess their causal relevance. Once identified process 
engineers may then use these KPIVs to significantly reduce the time required to reach mature 
product target line yield figures for new product integration with an overall impact on bottom 
line production costs. The aims and objectives are to investigate and understand the nature of 
the complex process control issues faced on a daily basis by the semi conductor industry 
particularly in high volume manufacturing, with a view to research and develop a causal 
feature selection methodology that can be combined in a hybrid approach to business 
improvement in this domain. This solution will address the impact of KPIVs on production 
line yield figures failure rates and hence improve efficiency specifically in the area of new 
product development (NPD). 

 
Section 2 provides an introduction to how intelligent systems are being deployed within 
industry to enhance their current business improvement strategies. Section 3 gives an 
overview of feature selection and causal relevance. Section 4 describes the SECOM dataset 
that has been put forward for the challenge along with some baseline results and Section 5 
outlines conclusions and future work proposing how feature selection and causal relevance 
may be applied to process control engineering within the semi conductor industry. 
 
 
2. Business Improvement and Intelligent Systems 
 
Within an industrial context there has been a growing requirement for the introduction of 
intelligent system techniques over the past 10 years to assist process engineers with their 
decision-making (Johnston 2007, Peretto 1999). The advances in hardware automation and 
control systems have impacted the overall importance of utilizing these new techniques 
within manufacturing (Harrison and Petty 2002). One of the issues faced by engineers in a 
modern manufacturing environment is how experiential knowledge is utilized within the 
decision making process. The use of intelligent systems to aid in this decision-making 
process helps to overcome this problem, current techniques include Fuzzy Logic (FL), 
Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs). Cus and Balic (2003) 
propose the use of GAs for use in metal cutting processes to optimize parameters in machine 
operation and FL combined with ANNs are proposed for grinding processes by Chen and 
Kumara (1998) for automation of design. As each of these intelligent techniques have 
different advantages and disadvantages, see Table 1, hybrid combinations are often used to 
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address complex systems.  An example of a hybrid system is proposed by Guh et al (1999) 
for use in Statistical Process Control (SPC) combining neural networks and expert systems. 
 

Table 1. Intelligent System Techniques Properties (Johnston 2007) 

 Properties 

Reasoning Generalisation Decision-
making 

Adaption Rule 
Visibility 

Neural Networks   
Fuzzy Logic   
Genetic Algorithms   
Expert Systems   
Case Based Reasoning   

 
Six Sigma is one of the main business improvement strategies employed in the manufacturing 
process. The determining factor within Six Sigma is its aim to identify causal KPIVs and 
therefore ensure that process outputs remain in control (Flott 2000, Card 2000, Rao et al. 
2000, Schmidt et al. 1998). One of the major issues in applying Six Sigma as an improvement 
strategy within a high volume production environment, where time to full production for 
integration products is such a critical milestone, is that due to the nature of Six Sigma projects 
they tend to be time consuming and project centric (Johnston 2007). Thus although it is an 
industry standard technique in certain circumstances it is not always a feasible solution. The 
Six Sigma process flow for project implementation is shown in Figure 1. Once a project has 
been defined the initial measure phase is typically conducted by a project team consisting of 
all parties that have the relevant expertise and a stake hold in the overall project definition. 
 
 
 

 30      DEFINE  project scope and objectives –

     MEASURE identify process inputs 

     ANALYSE the data and discover KPIVS 

     IMPROVE the process to remove causes of variation 

    CONTROL  the process to ensure defects do not reoccur 

40 

20-30 KPIVs

5 - 10 KPIVs

< 5 KPIVs

Controlled Process 

Defective Process 

 

 

Figure 1.  Six Sigma Process Flow (Johnston 2007) 

Therefore this phase and hence the overall success of the project is highly dependent on 
project team experiential knowledge, which unfortunately can be lost, forgotten or invalid for 
new projects. The advantage of considering intelligent systems such as causal feature 
selection methods to solve a similar problem is the fact that it does not rely on this 
experiential knowledge as much to narrow down the processes that are under consideration 
(Patterson et al., 2005). This allows all the data that is relevant to the overall scope of the 
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project definition to be considered when trying to discover the desired KPIVs. This also 
overcomes another issue known as the “anchoring effect” wherein project teams tend to focus 
on impact processes that have previously displayed concerns within similar project types. 
Hence this form of human conditioning can lead to previously undiscovered KPIVs being 
excluded from investigation. During the analysis phase of the project statistical tools are 
employed to analyze the data that has been identified from the measure phase. Once again 
this phase is dependent upon the engineer applying the appropriate statistical analysis 
techniques for the extraction and interpretation of the data such as hypothesis testing on 
individual process input variables. This entire phase is extremely time and labour intensive 
and therefore is not always appropriate for time critical projects (Johnston 2007). The 
improvement phase then requires the consideration of implementing the appropriate actions 
from these findings to be integrated into the current process flow. This may require 
optimisation with procedures such as design of experiment (DOE) and potentially failure 
modes and effects analysis (FMEA). Unfortunately this type of procedure is practically 
unfeasible in a high volume manufacturing environment because of the amount of data and 
time required to run trials which has an impact on production and scrap rates. It would be 
much more desirable to introduce an intelligent systems approach that was able to identify 
causal KPIVs and apply this methodology in tandem with overall business improvement 
strategies. 
 
 
3. Feature Selection 
 
In recent years the nature of feature selection has changed in terms of the complexity of the 
application.  For example in 1997 the applications explored in this field seldom contained 
more than 40 features (Chiang and Pell 2004, Kohavi and John 1997), whereas in recent years 
this has changed as feature selection methods are required for domains with in excess of tens 
of thousands of features such as in gene selection (Guyon et al., 2002), text categorisation 
(Liu et al., 2005) and other various engineering applications (Guyon and Elisseeff 2003). The 
selection of relevant features, and the elimination of irrelevant ones, is one of the central 
problems in machine learning (Blum and Langley 1997). There have been significant 
advances in feature selection development in recent years and there are a significant number 
of methods that can be utilised to try and achieve the optimum results. In pattern recognition, 
the goal of feature selection is to find a feature subset that has the most discriminative 
information from a given set of a candidate features (Abe and Kudo 2006).  

Data representations tend to be very domain specific (Guyon and Elisseeff 2003). 
Once data is available for machine learning it is often required to manipulate this “raw” data 
into a format that is conducive to the methodology that is to be applied. This is known as 
feature construction and may involve simple data manipulation or the application of data 
transformations. This is often achieved through what is known as pre-processing steps some 
simple examples of which are (Guyon et al., 2006): 
Standardisation e.g. measurements that have different scales 
Normalisation e.g. pixel intensity values in image processing  
Signal enhancement e.g. smoothing or sharpening 
Principal component analysis and multidimensional scaling projecting data into a lower 
dimensional space whilst retaining the information. 
 
Feature selection then is primarily performed to select the most informative features but other 
motivations include (Guyon et al., 2006): 
General data reduction for storage requirements and processing speed 
Feature set reduction to save resources 
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Performance improvement to gain predictive accuracy 
Data understanding to gain knowledge of the process that generated the data or visualisation 
 
3.1 Causal Considerations 
 
Although feature selection on its own is mainly concerned with making accurate predictions 
with as few variables as possible it does not follow that these variables are necessarily causal 
within a specific domain. The issue faced by semi conductor manufacturing is not a typical 
predictive or classification one, it has a large causal element to the problem. For high volume 
manufacturing the key requirement is to determine which of the variables selected prove 
causal in terms of affecting failure rates on the factory line yield. So the optimum results 
would involve identifying these KPIVs giving process engineers insight into the hidden 
causal relationships within individual manufacturing process steps and overall line yield 
pass/fail rates. Obviously in real life terms validation of results is not always feasible because 
of the financial impact of experimental alterations on production processes and the associated 
unknowns on yield excursions. For this reason it is proposed that any intelligent systems 
approach to process control be sanitised by inclusion in existing business improvement 
techniques such as Six Sigma. 
 
 
4. SECOM: SEmiCOnductor Manufacturing dataset 
 
This challenge aims to investigate a range of feature selection techniques and how 
appropriate they are to identifying the causal effects faced by process control engineering in 
semi conductor manufacturing. “In the manufacturing process of semiconductor products one 
deals with a great number of production steps that involve many different machines. 
Malfunctions can usually not be ruled out or identified in each processing step” (Pfingsten et 
al., 2007). Operating conditions can change frequently in a process control environment both 
intentionally and unintentionally identification of the KPIVs allows rapid recovery, 
optimisation and control (Chiang and Pell 2004). The goal of this case study is to develop a 
causal feature selection approach that applies to this domain, helps to solve process control 
issues and enhance overall business improvement strategies. 

Consider in more detail at the nature of the wafer fabrication production process. In 
the case of integration products it takes time to tweak the processes to achieve target yield 
figures. Feature selection techniques may be applied to the production process to provide the 
process control engineers with the necessary intelligence to decrease this integration time and 
achieve target yield figures earlier in the product life cycle and hence proceed into full 
production quicker. As highlighted earlier current strategies depend heavily on experiential 
knowledge which limits the data under investigation and is time consuming. Figure 2 shows 
“time to yield” baseline trends for integration products i.e. the time required to get new 
products up to target yield figures hence improving time to market. Good line yields mean: 

• Low cost per product 
• Predictable schedule adherence and starts planning 
• Can run the factory leaner (fewer starts) 
• Better throughput at critical tools 
• Better quality downstream 
• Better product predictability 
• No ‘firefighting’ – more resource for project work 
• Less waste – less use of consumables  
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Figure 2: Line Yield Trends 
 

By enabling process engineers to identify KPIVs earlier in the production process it should 
enable them to affect yield figures more accurately and increase productivity using a more 
efficient strategy and hence achieving target yield figures for integration products. 
 
4.1 Data Structure 
 
The SECOM dataset presented in this paper, (for a summary see Appendix A), represents a 
selection of process related data taken from a production line. The dataset is presented with 
features in columns each representing a recorded measurement and product examples in rows. 
Within the production cycle there are several major check points for in house line testing to 
ensure product functionality as demonstrated in Figure 3. The labels file then represents a 
simple pass/fail classification corresponding to each row in the dataset, where –1 corresponds 
to a pass and 1 corresponds to a fail. A date-time stamp for each pass/fail is also provided in 
the labels file corresponding to a selected functionality test. 

The data consists of 2 files, the dataset file SECOM consisting of 1567 examples 
each with 591 features, a 1567 x 591 matrix, and a labels file containing the classifications 
and date time stamp for each example. As with any real life data situations this data contains 
null values varying in intensity depending on the individual features corresponding to data-
points with no recorded measurement in the original data. This may be taken into 
consideration when investigating the data either through pre-processing or within the 
technique applied.  Using feature selection techniques it is desired to obtain a sub-set of the 
most predictive features and then consider the causal relationships within these features and 
how they impact on the overall pass/fail rates for the product. It is suggested that cross 
validation be used for generalization performance. Some baseline results are given below. 
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Figure 3. Production Cycle 

 
 

Baseline Results: Preprocessing objects were applied to the dataset simply to standardize the 
data and remove the constant features. Then a number of simple statistical feature-ranking 
techniques were applied with a simple Naïve-Bayes classifier to achieve some initial baseline 
results. 40 features were selected in each case. 10 fold cross validation was used and the 
balanced error rate (BER) generated as an initial performance metric to help investigate this 
dataset. The results are shown in Table 2 below. The desired goals at this stage are to improve 
upon these error rates for models selecting no more than 40 features and investigate the 
causal relationships with the target values. 
 

Table 2. SECOM  Dataset: 1567 examples 591 features, 104 fails 
 

FSmethod  (40 features) BER % True + % True - % 
No feature selection 36.9  ±2.4 43.8  ±4.7 82.4  ±1.5 
S2N (signal to noise) 34.5  ±2.6 57.8  ±5.3 73.1  ±2.1 
Ttest 33.7  ±2.1 59.6  ±4.7 73.0  ±1.8 
Relief 40.1  ±2.8 48.3  ±5.9 71.6  ±3.2 
Pearson 34.1  ±2.0 57.4  ±4.3 74.4  ±4.9 
Ftest 33.5  ±2.2 59.1  ±4.8 73.8  ±1.8 
Gram Schmidt 35.6  ±2.4 51.2  ±11.8 77.5  ±2.3 
    

 
Initial findings and baseline results suggest it may be desirable to increase the size of the 
dataset significantly to improve performances and allow for separate final tests sets. 
 
5. Conclusion and Future Work 
 
Introducing intelligent system techniques such as causal feature selection within a high 
volume manufacturing environment would overcome many of the difficulties that have been 
outlined. Research by Pfingsten et al suggests the use of feature selection to consider the 
complete assembly line and detect key processes that affecting yield (Pfingsten et al., 2007).  
Previously undiscovered KPIVs could then potentially be identified earlier in the product 
integration life cycle where time is of critical consideration. Although intelligent techniques 
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have seen significant advances in deployment, feature selection has not been seen wide 
spread use within the semi conductor industry. By investigating how causal feature selection 
can be deployed within a process control environment, it is proposed that a hybrid approach 
employing the appropriate feature selection techniques and existing business improvement 
techniques be designed. This enhanced business improvement strategy may then be deployed 
to achieve more effective monitoring and process control. This should allow engineers to 
consider all of the possible KPIVs across the complete production process and overcome 
some of the disadvantages associated with current methods.  
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Appendix A. Pot-luck challenge: FACT SHEET . 
 

Repository URL: http://www.causality.inf.ethz.ch/data/SECOM.zip 
 
Title: SEmi COnductor Manufacturing 
Authors: Michael McCann, Yuhua Li, Liam Maguire, Adrian Johnston 
Contact name, email and website: Michael McCann, mccann-m15@email.ulster.ac.uk, 
www.isrc.ulster.ac.uk 
 
Key facts: The data consists of 2 files the dataset file SECOM consisting of 1567 examples 
each with 591 features a 1567 x 591 matrix and a labels file containing the classifications and 
date time stamp for each example. The dataset is presented with features in columns each 
representing a recorded measurement and product examples in rows. The labels file then 
represents a simple pass/fail classification corresponding to each row in the dataset where –1 
corresponds to a pass and 1 corresponds to a fail. A date-time stamp for each pass/fail is also 
provided in the labels file corresponding to a selected functionality test. The data contains 
null values varying in intensity depending on the individuals features corresponding to data-
points with no recorded measurement in the original metrology data. 
 
Keywords: Causal discovery, feature selection, semi-conductor manufacturing, industry, 
business improvement techniques 
 
 


