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Abstract
We recently proposed a new measure, termed Phase Slope Index (PSI), It estimates the

causal direction of interactions robustly with respect to instantaneous mixtures of independent
sources with arbitrary spectral content. We compared this method to Granger Causality for
linear systems containing spatially and temporarily mixed noise and found that, in contrast to
PSI, the latter was not able to properly distinguish truly interacting systems from mixed noise.
Here, we extent this analysis with respect to two aspects: a) we analyze Granger causality and
PSI also for non-mixed noise, and b) we analyze PSI for nonlinear interactions. We found a)
that Granger causality, in contrast to PSI, fails also for non-mixed noise if the memory-time of
the sender of information is long compared to the transmission time of the information, and b)
that PSI, being a linear method, eventually misses nonlinear interactions but is unlikely to give
false positive results.
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1. Introduction
To understand the direction of information flow in interacting systems, it is of fundamental
importance to distinguish the driver from the recipient. Granger Causality proposed by Granger
(1969) is probably the most prominent method to estimate the direction of causal influence in
time series analysis.

Apart from Granger Causality, many other methods have been proposed to estimate the di-
rection of information flow both for bivariate and multivariate data. Baccala and Sameshima
(1998) suggested to interpret autoregressive matrices in the frequency domain to estimate direc-
tionality for bivariate data, which was generalized to multivariate data by Baccala and Sameshima
(2001). The approach of Kaminski and Blinowska (1991) is equivalent to the preceding ones for
bivariate data, but differs for multivariate data most notably with regard to the question whether
estimated information flux is direct or indirect. An information theoretic approach was taken
by Schreiber (2000) by analyzing entropies of conditional probabilities (rather than the mean as
implicitly done with Granger Causality). A model based method valid for nonlinear and weakly
coupled oscillators was proposed by Rosenblum and Pikovsky (2001). With the notable excep-
tion of Rosenblum and Pikovsky (2001), all these methods are variations of the highly popular
Granger causality, and this will serve as a comparison to our proposed method.

Granger Causality is based on asymmetric prediction accuracies of one time series on the
future of another. The difficulty in realistic measurements is that asymmetries can also arise
due to other factors, specifically independent background activity having nontrivial spectral
properties and eventually being measured in unknown superposition in the channels. In this
case the interpretation of the asymmetry as a direction of information flow can lead to significant
albeit false results as demonstrated e.g. by Albo et al. (2004). To overcome this difficulty Nolte
et al. (2008) recently proposed a method based on a frequency-average of the slope of the phase
of coherence defined in such way that it is strictly robust with respect to instantaneous mixtures
of independent sources of otherwise arbitrary nature.

In this paper we address two new aspects in more detail. First, in many situations one could
argue that, while the measurements are noisy, this noise is not a mixture, and Granger Causality
might work for this case. Second, the beneficial properties of PSI might disappear if interactions
are nonlinear. We will first shortly recall both methods and then study both mentioned aspects
with simulations.

2. Methods
2.1 Granger Causality

The fundamental basis of estimates of causal relations using Granger Causality is the fact that
a cause precedes the effect. Probably the simplest way to exploit this idea is to use linear
prediction of future values of bivariate data xi(t) for i = 1,2 with AR-modeling:

x(t) =
P

∑
p=1

A(p)x(t− p)+ξξξ (t) (1)

where A(p) are the AR-matrices up to order P and ξ (t) is white Gaussian noise with estimated
covariance matrix Σ.

The diagonal elements of Σ (i.e Σii for i = 1,2) measure the remaining error when future
values of xi(t) are modeled with both time series’, simultaneously. Instead of one multivariate
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model one can also model the data by two separate univariate models:

xi(t) =
P

∑
p=1

Ai(p)xi(t− p)+ξi(t) (2)

for i = 1,2, and where ξi(t) has estimated variance Σi.
Note that Σi ≤ Σii because the univariate models do not use information contained in the

other time series. The additional information contained in x j about the future of xi for j ̸= i can
be quantified as

Γ j→i = log
(

Σi

Σii

)
(3)

If Γ j→i > 0 one says that channel j ’Granger causes’ channel i.
For a unidirectional information flow one has Γ1→2 = 0 or Γ2→1 ̸= 0 or vice versa with

obvious direction of information flux. In practice, results are rarely that clear and one can
define the effective information flux from the first to the second channel as

G̃ = Γ1→2−Γ2→1 (4)

We here normalize G̃ by its standard deviation estimated by the Jackknife procedure. The
validity was confirmed in simulations where the same examples were repeated many times.
Finally, we define the Granger Causality as

G =
G̃

std(G̃)
(5)

With this normalization we consider any result with absolute value larger than 2 as statistically
significant corresponding to a ’pseudo-z-score’. It enables us to compare Granger Causality
with Phase Slope Index to defined in the next section.

2.2 Phase Slope Index

In an alternative approach we first divide the whole data set into K segments of duration T (in
physical units) and estimate the cross-spectral density as

Si j( f ) =
1
K ∑

k
zi( f ,k)z*j( f ,k) (6)

where zi( f ,k) is the Fourier transform of the Hanning-windowed, i.e. multiplied by a raised
cosine function, data in channel i and segment k. The ’Phase Slope Index’ (PSI) is now defined
as (Nolte et al. (2008))

Ψ̃i j = ℑ

(
∑
f∈F

C*i j( f )Ci j( f +δ f )

)
(7)

where

Ci j( f ) =
Si j( f )√

Sii( f )S j j( f )
(8)

is the complex coherency, δ f = 1/T is the frequency resolution, and ℑ(·) denotes taking the
imaginary part. F is the set of frequencies over which the slope is summed. Typically, F
contains all frequencies, but it can also be restricted to a specified band for rhythmic activities.
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To see that the definition of Ψ̃i j corresponds to a meaningful estimate of the average slope
it is convenient to rewrite it as

Ψ̃i j = ∑
f∈F

αi j( f )αi j( f +δ f )sin(Φ( f +δ f )−Φ( f )) (9)

with Ci j( f ) = αi j( f )exp(iΦ( f )) and αi j( f ) = |Ci j( f )| being frequency dependent weights.
For smooth phase spectra, sin(Φ( f + δ f )−Φ( f )) ≈ Φ( f + δ f )−Φ( f ) and hence Ψ̃ corres-
ponds to a weighted average of the slope.

Let us list the most important qualitative properties of Ψ̃:

(i). For an infinite amount of data and for arbitrary instantaneous mixtures of an arbitrary
number of independent sources, Ψ̃ is exactly zero, because mixtures of independent
sources do not induce an imaginary part of coherencies (Nolte et al. (2004)) which in
turn is necessary to generate a non-vanishing Ψ̃. For finite data, Ψ̃ will then fluctuate in
this case around zero within error bounds. A special case of this are phase jumps from 0
to ±π which can arise also for mixtures of independent sources.

(ii). Ψ̃ is expressed in terms of coherencies, only. The standard deviation of a coherency
is approximately constant and approximately only depends on the number of averages
which is equal for all frequencies. Thus, large but meaningless phase fluctuations in
frequency bands containing essentially independent signals are implicitly suppressed.

(iii). If the phase Φ( f ) is linear in f and provided that the frequency resolution is sufficient (i.e.
δ f is sufficiently small), the argument in the sum has the same sign across all frequencies
and then Ψ̃ will have the same sign as the slope of Φ( f ).

Finally, as for Granger Causality it is convenient to normalize Ψ̃ by an estimate of its stan-
dard deviation

Ψ =
Ψ̃

std(Ψ̃)
(10)

with std(Ψ̃) being estimated by the Jackknife method, which was validated in simulations. In
the examples below we consider absolute values of each larger than 2 as significant.

3. Simulations and Causality Challenge
3.1 Uncorrelated noise

Granger Causality is based on the assumption that a sender possesses information about the
future of the recipient which is not available at the recipient itself, because, roughly speaking,
this information has not yet arrived. In contrast, the recipient cannot access any information
about the sender other than that already contained in the present and past of the sender because
causal interactions are necessarily forward in time.

However, the situation changes when the measurements, especially of the sender, are noisy.
In that case the signal of the recipient contains delayed but cleaner information about the sender
which is masked/hidden to the sender itself due to the noise. Thus, the slightly outdated in-
formation of the receiver may help to predict the future of the sender and yet lead to wrong
results in a Granger test. In other words, the disadvantage of the recipient of receiving only old
information might have been compensated or even overcompensated by the advantage of being
measured in a much cleaner way.
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Figure 1: Granger Causality and PSI as a function of noise level for systems with different
memory. The memory time in bins is roughly given by 1/(1−α). Values outside the
narrow horizontal strip are statistically significant.

Apparently, the impact of this trade-off depends on the memory time of the sender: If
the sender has a long memory and the transmission time is short then the time delay of the
interaction is largely irrelevant.

To show this explicitly we simulated clean data of the sources using an AR(1) model with
coefficient matrix

A(1) =
(

α 0
1 .5

)
(11)

This system models a unidirectional information flow from channel 1 to channel 2. The memory
of the first channel, the sender, is controlled by α: any input decays after n time points as
αn = exp(−n log(1/α)) and has hence a decay rate of −1/ log(α).

Let us denote the output of this clean system for the i.th source (i.e. true signal of interest)
as xi(t). Then we assume the measurements yi(t) to be y1(t) = x1(t) + βη(t) and y2(t) =
x2(t) with η(t) being white Gaussian noise and β a free parameter which controls the relative
strength of true signal and noise. Results for these systems are shown in Fig.1 for various
values of α . We observe that Granger Causality results in significant wrong direction estimates
for long memory times of the sender. In contrast, the Phase Slope Index always results in the
correct directionality. We note, that with α also the magnitude of the sender changes which
also has an impact on the results. However, normalizing the sender leads to essentially identical
results provided that influence of the sender on the recipient is at least as large as the innovation
process of the recipient, i.e. of ξ2(t). This leads to the somewhat paradoxical situation that for
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Figure 2: Top panels: Power and autocorrelation of a single channel for a real EEG experiment.
Bottom: Granger Causality and PSI as a function of noise level using the real EEG
data as driver and adding noise to the sender. The noise level is measured as the power
ratio at the peak frequency. The vertical bars correspond to two estimated standard
deviations and indicate significance if they do not cross the zero line.

noisy measurements the larger the causal drive from A to B the more likely Granger Causality
estimates a drive from B to A.

In a second example, we simulated the situation based on real EEG data. Results for power
and autocorrelation function are shown in Fig.2. The memory time of the system is about 0.5
seconds which is large compared to typical transmission times along neuronal fibers. Neuronal
signals in axons in white brain matter, which are relevant for long distance information transfer,
travel with a speed of about 1cm/msec and need only a few milliseconds to cross the whole
brain. The simulation was identical to the previous one with the exception that the real data
x(t), normalized to unit standard deviation, were taken as sender and the recipient was assumed
to be y(t) = 2x(t−3)− .5y(t−1)+η(t) with η(t) being white Gaussian noise with unit stan-
dard deviation. Since the sampling rate was 256 Hz, the delay corresponds to a transmission
time of about 12ms. Results again showed that already a fairly small amount of noise put on
the measurement of the sender is sufficient to result in significant false direction estimates of
Granger Causality while PSI always predicted the correct direction.

3.2 Nonlinear interactions

To test Granger Causality and PSI for bivariate nonlinear systems we included a nonlinearity
of specific order into the interaction term and generated 500 examples as randomly as possible.
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The data z(t) were generated as

z(t) = (1− γ)
x(t)
||X || + γ

By(t)
||BY || (12)

where x is a unidirectional and in general nonlinear system and y are two independent noise
sources which are mixed into channels by a random matrix B. The parameter γ was set randomly
between 0 and 1, || · || denotes Frobenius matrix norm, and X and Y denote the full data as a
matrix, e.g. X = (x(1),x(2), ...,x(N)) for N data points. The noise y(t) was generated with an
AR(10)-model with diagonal but otherwise random parameters. The signal x(t) was generated
in the following way. If, e.g., the first channel was the sender then x1(t) was generated with a
random AR-model of order 10, and x2(t) was generated as

x2(t) = ∑
p

A22(p)x2(t− p)+ f (x1(t−1), ...,x1(t−P)) (13)

where P was set to 10 and f is a in general nonlinear function of specific order chosen in the
most general way. E.g., for order 4 the function f was given by

f (x1(t−1), ...,x1(t−P)) = ∑
i jkl

ai jklx1(t− i)x1(t− j)x1(t− k)x1(t− l) (14)

with random parameters ai jkl . The construction for other orders is analogous.
Results for PSI and Granger Causality are shown in Fig.3 and Fig.4, respectively. We ob-

serve that PSI, in contrast to Granger Causality, hardly ever results in false significant direction
estimates. We also observe that for even order of nonlinearity PSI is also not able to detect any
interaction at all. However, this can be explained by the sign symmetry of the interaction and is
due to the linear nature of PSI.

3.3 Causality Challenge

We submitted a dataset to the Causality Challenge1 which consists of 1000 examples identical
to the ones in the previous section for the order = 1 case except for two minor details: for the
challenge we chose uniformly distributed innovation processes (i.e. ξξξ (t) in Eq.(1)) instead of
Gaussian distributed input, and we chose three noise sources instead of two.

The task is to estimate the causal direction for as many examples as possible. The counting
is as follows: +1 point for each correct result, -10 points for each wrong results, and 0 points for
each missed example. For the top left panel of Fig.3 this means that one gets +1 point for each
dot in the lower left or upper right box, -10 points for each point in the lower right or upper left
box, and 0 points for each point in the narrow horizontal stripe.

For the challenge data, Granger causality leads to 736 correct and 100 wrong results scoring
a total of -264 points. Note, that 164 insignificant results are not counted. In comparison, PSI2

leads to 638 correct and 6 wrong results scoring a total of +578 points.
This counting was introduced to address the importance of evidence for scientific claims.

A finding which was just guessed right has little value. In many cases conclusions cannot be
drawn with the given data measured in a specific situation. Researchers must be able to also
recognize these cases and should then not draw conclusions at all.

In a second set of data sets we provided real EEG data for 10 subjects measured at rest in
eyes closed condition. A specific feature of this measurement is a strong 10Hz rhythm predom-
inantly in the back part of the brain. Using our methods we found information flow from front
to back, i.e. from channels with low signal to ratio to channels with high signal to ratio.

1. "NOISE", http://www.causality.inf.ethz.ch/repository.php?id=17
2. The Matlab code can be downloaded at http://ml.cs.tu-berlin.de/causality/
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Figure 3: Results for PSI for 500 random systems as a function of noise level times the sign of
true direction for different orders of nonlinearity (order=1 is linear). All results in the
narrow horizontal strip are insignificant, and the others are as indicated in the lower
right panel. For each panel, left and right borders, i.e. 1− γ = 1, correspond to zero
noise and the center, i.e. γ = 1, corresponds to only noise.

The real data used in section 3.1 were taken from one of these subjects. We showed in
that section that Granger Causality has a bias to estimate direction from clean to noisy signals,
and a finding using Granger Causality stating that information is flowing from back to front is
possibly caused by the different signal to noise ratios rather than by true information flow.

For the challenge we can only put this to discussion since the ground truth is not known.
We therefore just presented our own results and provided excellent data sets to let people apply
their own methods to this case.

4. Conclusion
The paper presents novel insights on causality measures and carefully evaluates their domain of
applicability. In particular, we present simulations that contrast Granger Causality and our new
Phase Slope Index.

Interestingly, under noise the classical Granger Causality can fail, even to an extent that a
wrong causal direction is inferred with a high significance level and even if noise is uncorrelated.

We could show that the PSI approach does not suffer from such a shortcoming including
in simulations modeling random and highly nonlinear interactions. Clearly real-world data are
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Figure 4: Same as Fig.3 for Granger Causality.

always noisy and many complex technical or biological systems contain nonlinear elements.
Therefore inference on causal structure in data is required to be robust, a property that is inherent
to our proposed new method.

Appendix. Pot-luck challenge: FACT SHEET .
(for a donated dataset)

Repository URL: http://www.causality.inf.ethz.ch/repository.php?id=17

Dataset name: NOISE

Title: Causal Directions in Noisy Environment
Author: Guido Nolte
Address: Fraunhofer FIRST, Kekulestr. 7, 12489 Berlin, Germany
Email: guido.nolte@first.fraunhofer.de
Homepage: http://ida.first.fraunhofer.de/ nolte/

Key facts:
A: 1000 examples of real valued bivariate data with 6000 time points each. B: Real EEG data of 10 sub-
jects.
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Abstract:
This challenge has two parts, a simulation and real data.
Simulation: Data are simulated as superposition of bivariate unidirectional interaction plus additive mixed
and non-white noise. The simulations were done with AR-models with uniformly distributed input. The
challenge is to estimate the causal direction. For each out of 1000 examples you get +1 point for the
correct answer, -10 points for the wrong answer, and 0 points for no answer.
Real Data: These are high quality EEG data for 10 subjects for 19 channels. The data contain a prominent
peak at around 10 Hz predominantly in occipital (back) channels. No ground truth is known. A submis-
sion must be a single 19x19 matrix corresponding to a causality estimate between all pairs of channels
averaged across subjects. Any submission will be visualized and, with the agreement of the authors, put
on the net for an open discussion.

Keywords:
Time series, mixed noise, bivariate, EEG
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