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Abstract

We present an artificially simulated dataset (77ED) constructed so that there are many
minimal sets of variables with maximal predictivity (i.e., Markov boundaries) and
likewise many sets of variables that are statistically indistinguishable from the set of
direct causes and direct effects of the response variable. This dataset was used in the
Potluck Causality Challenge to determine all statistically indistinguishable sets of direct
causes and direct effects and all Markov boundaries of the response variable and also to
predict the response variable in the independent test data. We also present baseline results
of application of several algorithms to this dataset.

Keywords: local causal discovery, Markov boundary induction, variable selection,
classification

1. Introduction

The problem of variable/feature selection is of fundamental importance in machine learning and
applied statistics, especially when it comes to analysis, modeling, and discovery from high-
dimensional data (Guyon and Elisseeff, 2003; Kohavi and John, 1997). In addition to the promise
of cost-effectiveness, two major goals of variable selection are to improve the prediction
performance of the predictors and to provide a better understanding of the data-generative process
(Guyon and Elisseeff, 2003). An emerging class of algorithms proposes a principled solution to
the variable selection problem by identification of a Markov blanket of the response variable of
interest (Aliferis et al., 2009; Aliferis et al., 2003; Tsamardinos and Aliferis, 2003; Tsamardinos
et al., 2003). A Markov blanket is a set of variables conditioned on which all the remaining
variables excluding the response variable are statistically independent of the response variable. A
related concept is a Markov boundary (or non-redundant Markov blanket) that is a Markov
blanket such that no proper subset of it is a Markov blanket (Pearl, 1988). Under assumptions
about the learner and loss function, a Markov boundary is the solution to the variable selection
problem (Tsamardinos and Aliferis, 2003).
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An important theoretical result states that if the distribution satisfies the intersection
property’, then it is guaranteed to have a unique Markov boundary of the response variable
(Pearl, 1988). Furthermore, if the distribution satisfies common causal assumptions such as
faithfulness, Markov condition, and causal sufficiency, then the Markov boundary is also unique
and consists only of direct causes, direct effects, and direct causes of direct effects (also known as
“spouses”) of the response variable in the underlying causal graph (Tsamardinos and Aliferis,
2003). Even though there are several well-developed algorithms for learning a Markov boundary
either in faithful distributions or in distributions where the intersection property holds (Aliferis et
al., 2009; Pefia et al., 2007; Aliferis et al., 2003; Tsamardinos and Aliferis, 2003; Tsamardinos et
al., 2003), little research has been done in development of algorithms for learning multiple
Markov boundaries from the same dataset when the above assumptions do not hold.

We present an artificially simulated dataset (7/ED) that contains multiple Markov boundaries
(and thus violates the intersection and faithfulness properties) and likewise many sets of variables
that are statistically indistinguishable from the set of direct causes and direct effects of the
response variable. This dataset was used in the Potluck Causality Challenge to determine all
statistically undistinguishable sets of direct causes and direct effects and all Markov boundaries
of the response variable and also to predict the response variable in the independent test data. We
also present baseline results of application of several algorithms to this dataset.

2. Dataset

Using the principles from (Lemeire, 2006), we constructed a discrete Bayesian network TIED
with 1,000 variables (including a response variable 7). Figure 1 shows a fragment of the network
structure and specifies which variables contain the same information about 7' by the color of
highlighting. The parameterization of the network fragment shown in Figure 1 is provided in
Table 1. The network fragment contains a response variable 7, all variables that participate in all
Markov boundaries of the response variable 7T, and some other variables. The full network can be
obtained by adding 10 children to each variable from the set {X;, X5, X7, X5, Xo, X117, X2, X135, X180
X9, X5} (a total of 110 variables) with conditional probability distribution defined in Table 2
and 860 variables that do not have a path to T in the network. If variables X and Y are shown with
the same color in Figure 1, then (a) for every combination of values of X and 7 such that P(7 = ¢ |
X = x) = p, there exists a value y of variable Y such that P(T =¢| Y = y) = p, and (b) for every
combination of values of Y and T such that P(T'=¢| Y = y) = p, there exists a value x of variable X
such that P(T'= ¢ | X = x) = p. Such variables are interchangeable for prediction of 7, and therefore
if X belongs to a Markov boundary M; of T, then M, = (M \ {X}) u {TY} is another Markov
boundary of T. The work of (Lemeire, 2006) specifically describes why such variables violate the
intersection property of the probability distribution. In summary, the network contains 72 Markov
boundaries of 7. Each of these Markov boundaries contains 5 variables: (i) Xy, (ii) X, or Xg, (iii)
X;10r Xp; 0r Xp3, (iv) Xj5 OF X;9 OF X5, and (V) X; or X; or X; or X;. Similarly, there are 72 sets of
variables that are statistically indistinguishable from the set of direct causes and direct effects of
T. These sets of variables coincide with the Markov boundaries of 7.

! We use notation X 1Y | Z to denote that subset of variables X is independent of Y given Z in the

underlying probability distribution. Let X, Y, Z, and W be any four disjoint subsets of variables. Then the
probability distribution satisfies the intersection property if X LY [(ZUW) and X L W |(ZuY)=

XL (YOUW)|Z.
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The dataset TIED was obtained by sampling 3,750 instances from the above Bayesian
network. 750 (20%) instances were used for discovery of multiple Markov boundaries (or sets of
variables that are statistically indistinguishable from the set of direct causes and direct effects) of
T, and the remaining 3,000 (80%) instances were used for validation of classification
performance of 7. We also computed the optimal Bayes classification performance of T which is
0.9663 weighted accuracy?.
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Figure 1: Graphical visualization of the fragment of a discrete Bayesian network
TIED. Variables that contain exactly the same information about T are
highlighted with the same color, e.g. variables X131, X1,, and X33 provide exactly
the same information about 7 and thus are interchangeable for prediction of 7.

2 Weighted accuracy is defined as the average proportion of correct classifications in each category/class of
the response variable.
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T. P(T:O|X10:0) =1.0

P(T:O|X10:1) =1.0
P(T:O|X10:2) =1.0
P(T=1]X;p=3) = 0.3
P(T=2|X,4=3) = 0.3
P(7=3|X1,=3) = 0.4

X

P(X;=0[Y,=0) = 0.6
P(X;=1]X,=0) = 0.2
P(X;=2|X,=0) = 0.2
p(X5=O|X4:1) =05
P(X:=1[X,=1) = 0.25
P(X:=2|X,=1) = 0.25
P(X5:0|X4:2) =0.8
P(X5:1IX4:2) =01
P(X5:2|X4:2) =01

X

~

0

P(X]():OIXg:O) =1.0
P(X]():O'.Xg:l) =1.0
P(X10:1|.X3:2) =0.3
P(X]0=2|X3=2) =0.7
P(X]0=3|X3=3) =1.0

X

~

- P(X,=0) = 0.25

P(X,=1) =0.25
P(X,=2) =0.25
P(X,=3) =0.25

X

P(X6:1|X4:0) =05
P(X6:2|X4:O) =05
P(X6:0|X4:1) =0.8
P(X,=1lX,=1) = 0.2
P(X,=0[X,=2) = 0.2
P(X,=11X,=2) = 0.3
p(X6=2|X4:2) =05

X

P(X11:0|T:0) =10
P(X”:OlT:l) =1.0
P(X11=O|T:2) =1.0
P(X11:1|T:3) =05
P(X11:2|T:3) =05

X

P(X2=O|X1:0) =0.8
P(X2:1|X1=O) =0.2
P(X2:0|X1=1) =0.1
POG=1[X,=1) = 0.9
PO=21X,=2) = 1.0
P(Y,=3]X,=3) = 1.0

X7

P(X7:OIX4=O) =0.9
p(X7=l|X4:0) =0.1
p(X7=O|X4:1) =0.7
P(X7:1IX4:1) =0.2
P(X7:2|X4:1) =01
P(X7:0|X4:2) =0.6
P(X7:1|X4:2) =0.3
P(X7:2|X4:2) =0.1

Xo:

P(X]2=O|X]]=O) =1.0
P(X]2:1|X]1:1) =05
P(X]2:2|X11:1) =05
P(X12:1|X11:2) =05
P(X12:2|X11:2) =05

X;:

P(X3=OIX2=O) =0.3
P(X3=1|X2=0) =0.7
P(X3:O|X2:1) =0.8
P(X3:1|X2:1) =0.2
P(X3:2|X2:2) =1.0
P(X,=3]X,=3) = 1.0

X

P(X,=1[X,=0) = 1.0
P(Xg:2|X4:1) =1.0
P(X,=0[X,=2) = 1.0

X13:

P(X13=OIX12=O) =10
P(X13=1|X12=1) =0.5
P(X15=2]X;,=1) = 0.5
P(X;5=1X;,=2) = 0.5
P(X15=2]X;,=2) = 0.5

Xy

P(X,=1|7=0) = 0.9
P(X,=2|T=0) = 0.1
P(X,=0|T=1) = 0.8
P(X,=1/T=1) = 0.1
P(X,=2|T=1) = 0.1
P(X,=0|7=2) = 0.1
P(X,=1/T=2) = 0.8
P(X,=2|T=2) = 0.1
P(X,=0|7=3) = 0.1
P(X,=1/7=3) = 0.1
P(X,=2|T=3) = 0.8

Xo:

P(X,=0|7=0) = 0.1
P(X,=1|7=0) = 0.8
P(X,=2|7=0) = 0.1
P(X,=1|7=1) = 0.1
P(X,=2|7=1) = 0.9
P(X,=0|7=2) = 0.1
P(X,=1|7=2) = 0.8
P(X,=2|7=2) = 0.1
P(X,=0|T=3) = 0.2
P(X,=1|T=3) = 0.7
P(X,=2|T=3) = 0.1

: P(X14=0|X]:0) =0.8

P(X]4:1|X]=O) =0.1
P(X1,=2|X,=0) = 0.1
P(X1,=01X,=1) =0.1
P(X1,~11X,=1)=0.8
P(X1,=2|X,=1) =0.1
P(X;,=01X,=2) = 0.8
P(X1,=1]X,=2) = 0.1
P(X1,=2|X,=2) = 0.1
P(X;,=01X;=3) = 0.1
P(X;,=1]X,=3) = 0.1
P(X]4:2|X]=3) =0.8

Table 1 (continued on the next page): Parameterization of the TIED network for
variables shown in Figure 1 {7, X;,, X5, X; X,

probabilities are shown in the table.
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Xs: P(X;5=01X,,=0) = 1.0
P(X;5=01X;,=1) = 1.0
P(X;5=11X,,=2) = 0.5
P(X15:2|X]4:2) =05

Xo0: P(X2=01X;4=0) = 1.0
P(X20:1|X19:1) =10
P(X20:2|X19:2) =1.0

Xos: P(X25:0) =05
P(X,5=1) = 0.5

X]g: P(XM:OLX]:O) =0.2
P(Xm:lIX]:O) =0.6
P(XM:ZIX]:O) =0.2
P(X1=01X,=1) =0.1
P(X1=11X,=1) = 0.3
P(X1s=2|X,=1) = 0.6
P(X,~0X,=2) = 0.5
P(X;~1X/=2) = 0.1
P(X;6=2|X;=2) = 0.4
P(X;6=0]X;=3) = 0.3
P(X16:1|X1:3) =05
P(XM:ZIX]:S) =0.2

Xg]: p(X2]=O|X5=0) =0.2
P(X21:1|X5=0) =0.6
P(X21:2|X5=0) =0.2
P(X;,=01X5=1) = 0.1
P(X21:1|X5:1) 0.3
P(X21:2|X5:1) 0.6
P(X2=0|X5=2) = 0.5
P(X2=1]X5=2) = 0.1
P(X>=2|X;=2) = 0.4

X26: P(X26:0|X25:0) =0.1
P(X26=l|X25=O) =09
P(X26=0|X25=1) =0.3
P(X26:1|X25:1) =0.7

X17: P(X17=O) =0.25
P(X]7:1) =0.25
P(X]7:2) =0.25
P(X17:3) =0.25

ng: P(X22:0|X6=0) =0.3
p(X22:1|X6=O) =0.2
p(X22:2|X6=O) =05
P(X22:0|X6:1) =0.8
P(X22:1|X6:1) =01
P(X22:2|X6:1) =01
P(X22=OIX6=2) =0.6
P(X22=1IX6=2) =0.2
P(X22=2IX6=2) =0.2

X27: P(X27:0|X25:0) =04
P(X27=l|X25=O) =0.6
P(X27=0|X25=1) =0.8
P(X>=1]X5=1) = 0.2

X[g: P(X18:1|T:0) =0.1
P(X18:2|T:O) =0.9
P(X18:0|T:1) =0.1
P(X18:2|T:1) =0.9
P(X]g:OITZZ) =0.8
P(X]g:].ITZZ) =0.1
P(X18:2|T:2) =0.1
P(X[g:OIT:?)) =01
P(X[g:].IT:?)) =0.8
P(X18=2|T=3) =0.1

Xo3: P(X23=OIX7:O) =05
P(X2;=1|X;=0) = 0.1
P(X2;=2|X;=0) = 0.4
P(X23:O|X7:1) =0.6
P(X23:1|X7=1) =0.3
P(X23:2|X7=1) =0.1
P(X23:O|X7=2) =0.7
P(X25=1X7=2) = 0.1
P(X25=2|X7=2) = 0.2

Xos: P(X28=O) =0.33
P(ng:].) =0.33
P(ngZZ) =0.33

X[g: P(X19:1|X18:0) =10
P(X;=2|X;5=1) = 1.0
P(X;s=01X;s=2) = 1.0

X4 P(XM:OIXg:O) =0.8
P(X2~=1|Xs=0) = 0.1
P(X2=2|Xs=0) = 0.1
P(X>,=0|Xs=1) = 0.6
P(X>~1|X=1) = 0.2
P(X>~2|X=1) = 0.2
P(X24:O|X8=2) =05
P(X24:1|X8=2) =0.3
P(X24:2|X8=2) =0.2

X59: P(X54=01X;5=0) = 1.0
P(X29=1IX15=1) =05
P(X29=2|X15=1) 05
P(X2=1]X;5=2) = 0.5
P(X>=2|X;5=2) = 0.5

Table 1 (continued from the previous page)
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P(Z[X) X=0 X=1 X=2
Z=0 0.3 04 0.3
Z=1 0.3 03 0.4
Z=2 0.4 0.3 0.3

Table 2: Conditional probability distribution of each of 110 variables (denoted by Z)

mentioned in Section 2 that have a single parent from the set {X;, X5, X7, X5, Xy,
Xi1, X120 X3, Xis, X190, X2} (denoted by X).

3. Experiments and Results

The experiments involved running several algorithms for discovery of multiple Markov
boundaries:

Four resampling-based techniques that apply a variable selection algorithm to bootstrap
samples from the original dataset: The following variable selection methods were used:
(i) SVM-based recursive feature elimination (SVM-RFE) (Guyon et al., 2002); (ii) SVM-
RFE with additional application of McNemar’s test (Everitt, 1977) to identify the most
parsimonious variable set with classification performance statistically indistinguishable
from the observed best one; (iii) backward wrapping with linear SVM classifier based on
univariate ranking of variables by Kruskal-Wallis non-parametric ANOVA (Hollander
and Wolfe, 1999); and (iv) backward wrapping with linear SVM classifier based on
Kruskal-Wallis ANOVA with additional statistical comparison step, as in (ii). The above
four methods are denoted as Resampling-SVM-RFEI, Resampling-SVM-RFE?2,
Resampling-Univariatel, Resampling-Univariate2, respectively. Since there is no natural
termination criterion of these methods, they were run on 5,000 bootstrap samples from
the original dataset.

Three instantiations of KIAMB algorithm (Pefia et al., 2007): KIAMB was applied with
G test, parameter K = 0.8, and three statistical thresholds & = 0.01, o = 0.005, and « =
0.001 (denoted as KIAMBI, KIAMB2, KIAMB3, respectively). The first threshold was
used by inventors of the method in the paper that introduced it (Pefia et al., 2007). Since
there is no natural termination criterion of these methods, they were run 5,000 times.
Iterative Removal method (Natsoulis et al., 2005): This method works as follows: First, it
extracts a Markov boundary from the original dataset and estimates its classification
performance. Second, it removes all variables from the original dataset that were found to
participate in the Markov boundaries, extracts a new tentative Markov boundary from the
modified dataset, and estimates its classification performance. Finally third, if the
classification performance of the tentative Markov boundary is statistically
indistinguishable from the Markov boundary obtained in the first step, then this is also a
true Markov boundary and the second and third steps of the algorithm are repeated. The
implementation of this method used an algorithm HITON-PC (Aliferis et al., 2009;
Aliferis et al., 2003) to learn a Markov boundary and McNemar’s test to compare linear
SVM classification performance of resulting variable sets (Everitt, 1977).

All methods were applied to the 750-instance training dataset to indentify Markov boundaries of
the response variable 7. Once the Markov boundaries were indentified, a linear SVM classifier
was trained with these variable sets in the training dataset and it was applied to the 3,000-instance
validation dataset. The classification performance was measured by the weighted accuracy metric
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(Guyon et al., 2006). In independent tests (not shown here) the choice of a linear SVM versus
non-linear one was validated as not compromising classification performance.

The results of experiments are presented in Table 3. The following are observed: (i) lterative
Removal identifies only one Markov boundary because all other Markov boundaries have a
common variable (Xy) and thus cannot be detected by this method. This is s structural deficiency
of that method. (ii) KIAMB fails to identify any true Markov boundaries due to its sample
inefficiency (its sample requirements are of exponential order to the number of variables in the
Markov boundary), and because of the same reason its output Markov boundaries have poor
predictivity; (iii) Resampling-based methods either miss many true Markov boundaries and/or
output many false positive variables in the identified Markov boundaries.

Total Number of MNT(mb%r of ;rue_ Average nur_n_b er Average
number of | variables in an areov (?un aTrl_es of falge p05|_t|ve classification| CPU
Method output | average output identified | variables in performance | time in
Markov Markoy  |identified| with false | identified true o " oo | minites
boundaries| boundary | exactly | positive Markov data
variables boundaries
[terative 3 5.67 0 1 2.00 0959 004
Removal
KIAMBI 5000 2.82 0 0 - 0.798 285.42
KIAMB? 5000 2.81 0 0 - 0.796 285.45
KIAMB3 5000 2.80 0 0 - 0.796 285.48
Resampling | 544, 11.10 72 12.29 0942  5999.64
Univariatel 0
Resampling +| g4, 5.58 0 - 0934  6000.41
Univariate2 0
Resampling +
REE] 5000 8.70 0 72 6.38 0.952 6235.28
[Resampling +
REE? 5000 4.24 0 29 5.76 0.947 6235.93

Table 3: Results of experiments with artificial dataset T/ED. All experiments were
executed on a cluster with Intel 2.4 GHz Xeon CPU’s.

4. Conclusion

This report introduced an artificially simulated dataset (77ED) with multiple Markov boundaries
and multiple sets of variables that are statistically indistinguishable from the set of direct causes
and direct effects of the response variable. We also presented baseline results of several
algorithms in this dataset. The results demonstrate that 7/ED is a challenging problem and many
methods fail to discover multiple Markov boundaries from this dataset. Therefore, there is a need
to create new algorithms to indentify multiple Markov boundaries.
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