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Abstract 

We present an artificially simulated dataset (TIED) constructed so that there are many 
minimal sets of variables with maximal predictivity (i.e., Markov boundaries) and 
likewise many sets of variables that are statistically indistinguishable from the set of 
direct causes and direct effects of the response variable. This dataset was used in the 
Potluck Causality Challenge to determine all statistically indistinguishable sets of direct 
causes and direct effects and all Markov boundaries of the response variable and also to 
predict the response variable in the independent test data. We also present baseline results 
of application of several algorithms to this dataset. 
Keywords: local causal discovery, Markov boundary induction, variable selection, 
classification 

 
1. Introduction  
 
The problem of variable/feature selection is of fundamental importance in machine learning and 
applied statistics, especially when it comes to analysis, modeling, and discovery from high-
dimensional data (Guyon and Elisseeff, 2003; Kohavi and John, 1997). In addition to the promise 
of cost-effectiveness, two major goals of variable selection are to improve the prediction 
performance of the predictors and to provide a better understanding of the data-generative process 
(Guyon and Elisseeff, 2003). An emerging class of algorithms proposes a principled solution to 
the variable selection problem by identification of a Markov blanket of the response variable of 
interest (Aliferis et al., 2009; Aliferis et al., 2003; Tsamardinos and Aliferis, 2003; Tsamardinos 
et al., 2003). A Markov blanket is a set of variables conditioned on which all the remaining 
variables excluding the response variable are statistically independent of the response variable. A 
related concept is a Markov boundary (or non-redundant Markov blanket) that is a Markov 
blanket such that no proper subset of it is a Markov blanket (Pearl, 1988). Under assumptions 
about the learner and loss function, a Markov boundary is the solution to the variable selection 
problem (Tsamardinos and Aliferis, 2003). 
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An important theoretical result states that if the distribution satisfies the intersection 
property1, then it is guaranteed to have a unique Markov boundary of the response variable 
(Pearl, 1988). Furthermore, if the distribution satisfies common causal assumptions such as 
faithfulness, Markov condition, and causal sufficiency, then the Markov boundary is also unique 
and consists only of direct causes, direct effects, and direct causes of direct effects (also known as 
“spouses”) of the response variable in the underlying causal graph (Tsamardinos and Aliferis, 
2003). Even though there are several well-developed algorithms for learning a Markov boundary 
either in faithful distributions or in distributions where the intersection property holds (Aliferis et 
al., 2009; Peña et al., 2007; Aliferis et al., 2003; Tsamardinos and Aliferis, 2003; Tsamardinos et 
al., 2003), little research has been done in development of algorithms for learning multiple 
Markov boundaries from the same dataset when the above assumptions do not hold. 

We present an artificially simulated dataset (TIED) that contains multiple Markov boundaries 
(and thus violates the intersection and faithfulness properties) and likewise many sets of variables 
that are statistically indistinguishable from the set of direct causes and direct effects of the 
response variable. This dataset was used in the Potluck Causality Challenge to determine all 
statistically undistinguishable sets of direct causes and direct effects and all Markov boundaries 
of the response variable and also to predict the response variable in the independent test data. We 
also present baseline results of application of several algorithms to this dataset. 
 
2. Dataset 
 
Using the principles from (Lemeire, 2006), we constructed a discrete Bayesian network TIED 
with 1,000 variables (including a response variable T). Figure 1 shows a fragment of the network 
structure and specifies which variables contain the same information about T by the color of 
highlighting. The parameterization of the network fragment shown in Figure 1 is provided in 
Table 1. The network fragment contains a response variable T, all variables that participate in all 
Markov boundaries of the response variable T, and some other variables. The full network can be 
obtained by adding 10 children to each variable from the set {X5, X6, X7, X8, X9, X11, X12, X13, X18, 
X19, X20} (a total of 110 variables) with conditional probability distribution defined in Table 2  
and 860 variables that do not have a path to T in the network. If variables X and Y are shown with 
the same color in Figure 1, then (a) for every combination of values of X and T such that P(T = t | 
X = x) = p, there exists a value y of variable Y such that P(T = t | Y = y) = p, and (b) for every 
combination of values of Y and T such that P(T = t | Y = y) = p, there exists a value x of variable X 
such that P(T = t | X = x) = p. Such variables are interchangeable for prediction of T, and therefore 
if X belongs to a Markov boundary M1 of T, then M2 = (M1 \ {X}) ∪ {Y} is another Markov 
boundary of T. The work of (Lemeire, 2006) specifically describes why such variables violate the 
intersection property of the probability distribution. In summary, the network contains 72 Markov 
boundaries of T. Each of these Markov boundaries contains 5 variables: (i) X9, (ii) X4 or X8, (iii) 
X11 or X12 or X13, (iv) X18 or X19 or X20, and (v) X1 or X2 or X3 or X10. Similarly, there are 72 sets of 
variables that are statistically indistinguishable from the set of direct causes and direct effects of 
T. These sets of variables coincide with the Markov boundaries of T. 
                                                      
1 We use notation  to denote that subset of variables X is independent of Y given Z in the 
underlying probability distribution. Let X, Y, Z, and W be any four disjoint subsets of variables. Then the 
probability distribution satisfies the intersection property if 
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The dataset TIED was obtained by sampling 3,750 instances from the above Bayesian 
network. 750 (20%) instances were used for discovery of multiple Markov boundaries (or sets of 
variables that are statistically indistinguishable from the set of direct causes and direct effects) of 
T, and the remaining 3,000 (80%) instances were used for validation of classification 
performance of T. We also computed the optimal Bayes classification performance of T which is 
0.9663 weighted accuracy2. 

 
 

Figure 1: Graphical visualization of the fragment of a discrete Bayesian network 
TIED. Variables that contain exactly the same information about T are 
highlighted with the same color, e.g. variables X11, X12, and X13 provide exactly 
the same information about T and thus are interchangeable for prediction of T. 

 
 

                                                      
2 Weighted accuracy is defined as the average proportion of correct classifications in each category/class of 
the response variable. 
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T: P(T=0|X10=0) = 1.0 
     P(T=0|X10=1) = 1.0 
     P(T=0|X10=2) = 1.0 
     P(T=1|X10=3) = 0.3 
     P(T=2|X10=3) = 0.3 
     P(T=3|X10=3) = 0.4 

X5: P(X5=0|X4=0) = 0.6 
      P(X5=1|X4=0) = 0.2 
      P(X5=2|X4=0) = 0.2 
      P(X5=0|X4=1) = 0.5 
      P(X5=1|X4=1) = 0.25 
      P(X5=2|X4=1) = 0.25 
      P(X5=0|X4=2) = 0.8 
      P(X5=1|X4=2) = 0.1 
      P(X5=2|X4=2) = 0.1 

X10: P(X10=0|X3=0) = 1.0 
        P(X10=0|X3=1) = 1.0 
        P(X10=1|X3=2) = 0.3 
        P(X10=2|X3=2) = 0.7 
        P(X10=3|X3=3) = 1.0 

X1: P(X1=0) = 0.25 
      P(X1=1) = 0.25 
      P(X1=2) = 0.25 
      P(X1=3) = 0.25 
 

X6: P(X6=1|X4=0) = 0.5 
      P(X6=2|X4=0) = 0.5 
      P(X6=0|X4=1) = 0.8 
      P(X6=1|X4=1) = 0.2 
      P(X6=0|X4=2) = 0.2 
      P(X6=1|X4=2) = 0.3 
      P(X6=2|X4=2) = 0.5 

X11: P(X11=0|T=0) = 1.0 
        P(X11=0|T=1) = 1.0 
        P(X11=0|T=2) = 1.0 
        P(X11=1|T=3) = 0.5 
        P(X11=2|T=3) = 0.5 
 

X2: P(X2=0|X1=0) = 0.8 
      P(X2=1|X1=0) = 0.2 
      P(X2=0|X1=1) = 0.1 
      P(X2=1|X1=1) = 0.9 
      P(X2=2|X1=2) = 1.0 
      P(X2=3|X1=3) = 1.0 

X7: P(X7=0|X4=0) = 0.9 
      P(X7=1|X4=0) = 0.1 
      P(X7=0|X4=1) = 0.7 
      P(X7=1|X4=1) = 0.2 
      P(X7=2|X4=1) = 0.1 
      P(X7=0|X4=2) = 0.6 
      P(X7=1|X4=2) = 0.3 
      P(X7=2|X4=2) = 0.1 

X12: P(X12=0|X11=0) = 1.0 
       P(X12=1|X11=1) = 0.5 
       P(X12=2|X11=1) = 0.5 
       P(X12=1|X11=2) = 0.5 
       P(X12=2|X11=2) = 0.5 

X3: P(X3=0|X2=0) = 0.3 
      P(X3=1|X2=0) = 0.7 
      P(X3=0|X2=1) = 0.8 
      P(X3=1|X2=1) = 0.2 
      P(X3=2|X2=2) = 1.0 
      P(X3=3|X2=3) = 1.0 

X8: P(X8=1|X4=0) = 1.0 
      P(X8=2|X4=1) = 1.0 
      P(X8=0|X4=2) = 1.0 

X13: P(X13=0|X12=0) = 1.0 
       P(X13=1|X12=1) = 0.5 
       P(X13=2|X12=1) = 0.5 
       P(X13=1|X12=2) = 0.5 
       P(X13=2|X12=2) = 0.5 

X4: P(X4=1|T=0) = 0.9 
      P(X4=2|T=0) = 0.1 
      P(X4=0|T=1) = 0.8 
      P(X4=1|T=1) = 0.1 
      P(X4=2|T=1) = 0.1 
      P(X4=0|T=2) = 0.1 
      P(X4=1|T=2) = 0.8 
      P(X4=2|T=2) = 0.1 
      P(X4=0|T=3) = 0.1 
      P(X4=1|T=3) = 0.1 
      P(X4=2|T=3) = 0.8 

X9: P(X9=0|T=0) = 0.1 
      P(X9=1|T=0) = 0.8 
      P(X9=2|T=0) = 0.1 
      P(X9=1|T=1) = 0.1 
      P(X9=2|T=1) = 0.9 
      P(X9=0|T=2) = 0.1 
      P(X9=1|T=2) = 0.8 
      P(X9=2|T=2) = 0.1 
      P(X9=0|T=3) = 0.2 
      P(X9=1|T=3) = 0.7 
      P(X9=2|T=3) = 0.1 

X14: P(X14=0|X1=0) = 0.8 
       P(X14=1|X1=0) = 0.1 
       P(X14=2|X1=0) = 0.1 
       P(X14=0|X1=1) = 0.1 
       P(X14=1|X1=1) = 0.8 
       P(X14=2|X1=1) = 0.1 
       P(X14=0|X1=2) = 0.8 
       P(X14=1|X1=2) = 0.1 
       P(X14=2|X1=2) = 0.1 
       P(X14=0|X1=3) = 0.1 
       P(X14=1|X1=3) = 0.1 
       P(X14=2|X1=3) = 0.8 

 

Table 1 (continued on the next page): Parameterization of the TIED network for 
variables shown in Figure 1 {T, X1, X2, X3, X4, …, X29}. Only nonzero 
probabilities are shown in the table. 
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X15: P(X15=0|X14=0) = 1.0 
       P(X15=0|X14=1) = 1.0 
       P(X15=1|X14=2) = 0.5 
       P(X15=2|X14=2) = 0.5 

X20: P(X20=0|X19=0) = 1.0 
       P(X20=1|X19=1) = 1.0 
       P(X20=2|X19=2) = 1.0 

X25: P(X25=0) = 0.5 
       P(X25=1) = 0.5 
 

X16: P(X16=0|X1=0) = 0.2 
       P(X16=1|X1=0) = 0.6 
       P(X16=2|X1=0) = 0.2 
       P(X16=0|X1=1) = 0.1 
       P(X16=1|X1=1) = 0.3 
       P(X16=2|X1=1) = 0.6 
       P(X16=0|X1=2) = 0.5 
       P(X16=1|X1=2) = 0.1 
       P(X16=2|X1=2) = 0.4 
       P(X16=0|X1=3) = 0.3 
       P(X16=1|X1=3) = 0.5 
       P(X16=2|X1=3) = 0.2 

X21: P(X21=0|X5=0) = 0.2 
       P(X21=1|X5=0) = 0.6 
       P(X21=2|X5=0) = 0.2 
       P(X21=0|X5=1) = 0.1 
       P(X21=1|X5=1) = 0.3 
       P(X21=2|X5=1) = 0.6 
       P(X21=0|X5=2) = 0.5 
       P(X21=1|X5=2) = 0.1 
       P(X21=2|X5=2) = 0.4 

X26: P(X26=0|X25=0) = 0.1 
       P(X26=1|X25=0) = 0.9 
       P(X26=0|X25=1) = 0.3 
       P(X26=1|X25=1) = 0.7 

X17: P(X17=0) = 0.25 
       P(X17=1) = 0.25 
       P(X17=2) = 0.25 
       P(X17=3) = 0.25 

 X22: P(X22=0|X6=0) = 0.3 
        P(X22=1|X6=0) = 0.2 
        P(X22=2|X6=0) = 0.5 
        P(X22=0|X6=1) = 0.8 
        P(X22=1|X6=1) = 0.1 
        P(X22=2|X6=1) = 0.1 
        P(X22=0|X6=2) = 0.6 
        P(X22=1|X6=2) = 0.2 
        P(X22=2|X6=2) = 0.2 

X27: P(X27=0|X25=0) = 0.4 
       P(X27=1|X25=0) = 0.6 
       P(X27=0|X25=1) = 0.8 
       P(X27=1|X25=1) = 0.2 

X18: P(X18=1|T=0) = 0.1 
       P(X18=2|T=0) = 0.9 
       P(X18=0|T=1) = 0.1 
       P(X18=2|T=1) = 0.9 
       P(X18=0|T=2) = 0.8 
       P(X18=1|T=2) = 0.1 
       P(X18=2|T=2) = 0.1 
       P(X18=0|T=3) = 0.1 
       P(X18=1|T=3) = 0.8 
       P(X18=2|T=3) = 0.1 

X23: P(X23=0|X7=0) = 0.5 
       P(X23=1|X7=0) = 0.1 
       P(X23=2|X7=0) = 0.4 
       P(X23=0|X7=1) = 0.6 
       P(X23=1|X7=1) = 0.3 
       P(X23=2|X7=1) = 0.1 
       P(X23=0|X7=2) = 0.7 
       P(X23=1|X7=2) = 0.1 
       P(X23=2|X7=2) = 0.2 

X28: P(X28=0) = 0.33 
       P(X28=1) = 0.33 
       P(X28=2) = 0.33 
 

X19: P(X19=1|X18=0) = 1.0 
       P(X19=2|X18=1) = 1.0 
       P(X19=0|X18=2) = 1.0 

X24: P(X24=0|X8=0) = 0.8 
       P(X24=1|X8=0) = 0.1 
       P(X24=2|X8=0) = 0.1 
       P(X24=0|X8=1) = 0.6 
       P(X24=1|X8=1) = 0.2 
       P(X24=2|X8=1) = 0.2 
       P(X24=0|X8=2) = 0.5 
       P(X24=1|X8=2) = 0.3 
       P(X24=2|X8=2) = 0.2 

X29: P(X29=0|X15=0) = 1.0 
       P(X29=1|X15=1) = 0.5 
       P(X29=2|X15=1) = 0.5 
       P(X29=1|X15=2) = 0.5 
       P(X29=2|X15=2) = 0.5 

 
Table 1 (continued from the previous page) 

 

253 
 



STATNIKOV ALIFERIS 

P(Z | X) X = 0 X = 1 X = 2 
Z = 0 0.3 0.4 0.3 
Z = 1 0.3 0.3 0.4 
Z = 2 0.4 0.3 0.3 

 

Table 2: Conditional probability distribution of each of 110 variables (denoted by Z) 
mentioned in Section 2 that have a single parent from the set {X5, X6, X7, X8, X9, 
X11, X12, X13, X18, X19, X20} (denoted by X). 

 
3. Experiments and Results 
 
The experiments involved running several algorithms for discovery of multiple Markov 
boundaries: 

• Four resampling-based techniques that apply a variable selection algorithm to bootstrap 
samples from the original dataset: The following variable selection methods were used: 
(i) SVM-based recursive feature elimination (SVM-RFE) (Guyon et al., 2002); (ii) SVM-
RFE with additional application of McNemar’s test (Everitt, 1977) to identify the most 
parsimonious variable set with classification performance statistically indistinguishable 
from the observed best one; (iii) backward wrapping with linear SVM classifier based on 
univariate ranking of variables by Kruskal-Wallis non-parametric ANOVA (Hollander 
and Wolfe, 1999); and (iv) backward wrapping with linear SVM classifier based on 
Kruskal-Wallis ANOVA with additional statistical comparison step, as in (ii). The above 
four methods are denoted as Resampling-SVM-RFE1, Resampling-SVM-RFE2, 
Resampling-Univariate1, Resampling-Univariate2, respectively. Since there is no natural 
termination criterion of these methods, they were run on 5,000 bootstrap samples from 
the original dataset. 

• Three instantiations of KIAMB algorithm (Peña et al., 2007): KIAMB was applied with 
G2 test, parameter K = 0.8, and three statistical thresholds α = 0.01, α = 0.005, and α = 
0.001 (denoted as KIAMB1, KIAMB2, KIAMB3, respectively). The first threshold was 
used by inventors of the method in the paper that introduced it (Peña et al., 2007). Since 
there is no natural termination criterion of these methods, they were run 5,000 times. 

• Iterative Removal method (Natsoulis et al., 2005): This method works as follows: First, it 
extracts a Markov boundary from the original dataset and estimates its classification 
performance. Second, it removes all variables from the original dataset that were found to 
participate in the Markov boundaries, extracts a new tentative Markov boundary from the 
modified dataset, and estimates its classification performance. Finally third, if the 
classification performance of the tentative Markov boundary is statistically 
indistinguishable from the Markov boundary obtained in the first step, then this is also a 
true Markov boundary and the second and third steps of the algorithm are repeated. The 
implementation of this method used an algorithm HITON-PC (Aliferis et al., 2009; 
Aliferis et al., 2003) to learn a Markov boundary and McNemar’s test to compare linear 
SVM classification performance of resulting variable sets (Everitt, 1977). 

All methods were applied to the 750-instance training dataset to indentify Markov boundaries of 
the response variable T. Once the Markov boundaries were indentified, a linear SVM classifier 
was trained with these variable sets in the training dataset and it was applied to the 3,000-instance 
validation dataset. The classification performance was measured by the weighted accuracy metric 
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(Guyon et al., 2006). In independent tests (not shown here) the choice of a linear SVM versus 
non-linear one was validated as not compromising classification performance.  

The results of experiments are presented in Table 3. The following are observed: (i) Iterative 
Removal identifies only one Markov boundary because all other Markov boundaries have a 
common variable (X9) and thus cannot be detected by this method. This is s structural deficiency 
of that method. (ii) KIAMB fails to identify any true Markov boundaries due to its sample 
inefficiency (its sample requirements are of exponential order to the number of variables in the 
Markov boundary), and because of the same reason its output Markov boundaries have poor 
predictivity; (iii) Resampling-based methods either miss many true Markov boundaries and/or 
output many false positive variables in the identified Markov boundaries. 
 

Method 

Total 
number of 

output 
Markov 

boundaries 

Number of 
variables in an 
average output 

Markov 
boundary 

Number of true 
Markov boundaries 

Average number 
of false positive 

variables in 
identified true 

Markov 
boundaries 

Average 
classification 
performance 
in validation 

data 

CPU 
time in 
minutesidentified 

exactly 

identified 
with false 
positive 
variables 

Iterative 
Removal 3 5.67 0 1 2.00 0.959 0.04 

KIAMB1 5000 2.82 0 0 - 0.798 285.42

KIAMB2 5000 2.81 0 0 - 0.796 285.45

KIAMB3 5000 2.80 0 0 - 0.796 285.48
Resampling + 
Univariate1 5000 11.10 0 72 12.29 0.942 5999.64

Resampling + 
Univariate2 5000 5.58 0 0 - 0.934 6000.41

Resampling + 
RFE1 5000 8.70 0 72 6.38 0.952 6235.28

Resampling + 
RFE2 5000 4.24 0 29 5.76 0.947 6235.93

 

Table 3: Results of experiments with artificial dataset TIED. All experiments were 
executed on a cluster with Intel 2.4 GHz Xeon CPU’s. 

 
4. Conclusion 
 
This report introduced an artificially simulated dataset (TIED) with multiple Markov boundaries 
and multiple sets of variables that are statistically indistinguishable from the set of direct causes 
and direct effects of the response variable. We also presented baseline results of several 
algorithms in this dataset. The results demonstrate that TIED is a challenging problem and many 
methods fail to discover multiple Markov boundaries from this dataset. Therefore, there is a need 
to create new algorithms to indentify multiple Markov boundaries. 
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