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Abstract

In this paper, we propose an approach for reconstructing asynchronous Boolean networks from
observed data. We find the causal relationships in Boolean networks using an asynchronous
evolution approach. In our approach, we first find a minimum explanatory set for a node to
reduce complexity of candidate Boolean functions, and then we choose a Boolean function for
the node based on the maximum likelihood. This approach is stimulated by the task SIGNET
of the causal challenge #2 pot-luck (Jenkins, 2009). Besides the data set SIGNET, we also
applied our approach to two other datasets to evaluate our approach: one is generated by Pro-
fessor Isabelle Guyon and the other generated ourselves from the signal transduction network
of Abscisic acid in guard cell.

Keywords: Boolean network, Reverse engineering, Structural learning

1. Introduction

Boolean network is a useful model in many applications, such as gene regulation networks
(Thomas, 1973) and signal pathway (Davidich and Bornholdt, 2008). To simulate real biolog-
ical networks better, various types of Boolean networks are developed, such as probabilistic
Boolean networks (Shmulevich et al., 2002), and asynchronous Boolean networks (Kauffman
et al., 2003; Harvey and Bossomaier, 1997). Because of the deficiency of knowledge about
related chemical reaction speeds, physicists often use the asynchronous evolution approach to
study the general dynamic characteristic of these networks (Chaves et al., 2005). By using the
asynchronous approach, the relative timing of each reaction is chosen randomly for each up-
date round, which is defined as the longest time for a node to respond to a change of its parent
nodes. In studies of gene regulation networks, the environmental factors may change during
the experiment process, and thus the reaction velocity may be affected by some external va-
riables. Such problems can be treated by using an asynchronous Boolean network. Although
many approaches have been developed for learning Boolean networks from steady states data,
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which are equivalent to learning the synchronous networks (Ideker et al., 2000; Nam et al.,
20006), there are a few of approaches for reconstructing asynchronous Boolean network (Jenk-
ins, 2009; Saeed, 2009). In this paper, we propose an approach for reconstructing asynchronous
Boolean networks.

In Section 2, we describe the model of asynchronous networks, and we briefly describe the
format of the dataset generated from a guard cell signaling network given in Li et al. (2006). In
Section 3, we discuss identification of asynchronous Boolean networks. In Section 4, we first
give the definition of candidate explanatory sets and propose an algorithm for finding the min-
imum explanatory set. Then we propose a method for choosing a Boolean function of parent
nodes for each node from all possible functions based on the maximum likelihood method. Al-
gorithm complexity and simulation results are given in Section 5. Some possible improvement
of our approach and the disadvantage of our approach are discussed in Section 6. The result for
the challenge problem is given in Appendix B.

2. Model of Asynchronous Boolean Networks

A Boolean network is represented as a directed graph with N nodes where the orientation of
the edges shows the causal relationship among variables. Suppose that the state of each node
is determined by a Boolean regulatory function of the states of its parent nodes. For an asyn-
chronous Boolean network, the order to update all nodes in every update round is random. The
Boolean updating rules of an asynchronous network can be described as

-1 -1 -1 —1 r—1 r—1
I=I(R; >R IR >RT) —I(R, >R )

Szt :Bi(Sil 7812 P >S[nl_ ! ) (1)
fornodei=1,...,N, where S/ denotes the state of node i in round 7, B;(-) denotes the Boolean
function for node i, R} with the domain {1,---,N} denotes the update order of node i in round

t, n; is the number of parent nodes of node i, and Z(A) is defined as

1, A=True;
Z(A) = ’ ’ 2
) {0, A = False. &
We write the formula (1) simply as
Sgk:Bi(Sila‘Siza"';Sini)' (3)

The observed data generated from different initial values are sequentially arranged in a matrix
E with N columns and (T + 1)M rows, where T denotes the number of update rounds for every
initial value and M denotes the number of initial values. The first T 4 1 rows are the first initial
value and the data updated consequently in T rounds, the next T 4 1 rows are the data for the
second initial value, and finally the last T 4 1 rows are the data for the Mth initial value.

3. Identifiability of Asynchronous Boolean Networks

For an asynchronous update rule, we can obtain more states of a network than a synchronous
update rule. Thus more observed states can be used to reconstruct an asynchronous network.
However, a disadvantage for an asynchronous network is that we cannot know from the data
at which time point the state of a node is affected by the states of its parents. As shown in the
following example, there is a network structure which cannot be identified from observed data
if the data are generated from an asynchronous network, but which can be identified if the data
are generated from a synchronous network.
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Example 1 Consider the following two Boolean networks
St =Sp, S =84, S¢ = (SaNSB)V (=Sa AN=Sp), S) = Sk, S = —Sp,

Si=8p, Sg =84, S¢ = (SpASg)V (=Sp AN=SEg), S =Sk, S = ~Sp.

The two networks cannot be distinguished if they are treated as asynchronous rules since Sf. is
independent of (S,S, !, S85,85") and (Sh, Sk !, S%, Sy, which is shown in Appendix A.
However, these two networks can easily be distinguished when they are treated as synchronous
rules. It is because, for the initial value (Sa,Sp,Sc,Sp,Sg) = (1,1,0,1,0), the first network
has the updated value (1,0,1,0,0) after one update round, while the second network has the
value (1,0,0,0,0).

We guess that if an asynchronous network has a steady state for each initial value, then the
network may be identifiable. The identification means that if we obtain enough initial states
and enough update processes, we can discover the structure and Boolean rules for the whole
network correctly.

4. Reconstruction of Asynchronous Boolean Networks

As shown in formula (1), the state of node i in round ¢ can be affected only by the state of its
parents in round ¢ or round 7 — 1. For each time point 7, we combine the states of N nodes in
both rounds 7 and 7 — 1 into one row, and we get a data matrix with 2N columns and 7' X M rows
for M initial values and T rounds. In this section, we propose an algorithm MESML for finding
Boolean functions in which for a particular node, first the Minimum Explanatory Set is found,
and then a Boolean function that has the Maximum Likelihood is chosen.

4.1 Find the minimum explanatory set

Ideker et al. (2000) proposed an algorithm for reconstructing a synchronous Boolean network.
The network contains N nodes: ay,--- ,ay, and each node a; has a Boolean function f;. Ob-
served data are given in a matrix E’, whose each row is for an individual and each column is for
a variable. For every node g;, assume that a Boolean function a; = fi(a;,,- - ,a;, ) always holds
for all rows. Their algorithm has the following three steps. For every node a;, I

(i). consider every pair of rows (¢,%,) in E’ such that the states of a; differs. For each pair,
find the set V;,;, of all other nodes whose states are different for these two rows, i.e.,

Vi, ={J: S;'] 7585'2};

(ii). find the minimum set of nodes V,,;, which intersects all V;; obtained at Step 1, i.e.,
Vinin WV k. 7# 0; Vyin is used to find a Boolean rule f;;

(iii). find a truth table from the data. For a deterministic Boolean network, f; can be obtained
from the observed data of variables in V,,;,. For a combination of levels of variables in
Vmin that does not appear in the data, we cannot get the truth value of node a; for this
combination.

For asynchronous networks, it seems that a difference set V;, ;, for node i at a pair (1,1,)
of time points could be defined similarly to the above case by comparing a variable at two
consecutive time points simultaneously. Thatis, V;, ,, = {j: S;»] # S;z or S;' e S;-rl }. In the
following example, we show that such a difference set is improper.
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Example 2 Consider the asynchronous Boolean network
Si=1, S =84, S¢ = —Sp.

For the single value (0,0,0) of (S},Sg,S¢.), we may get the following two different data (1,1,0)
or (1,1, 1) after one update round. By the above definition of a difference set, we get for variable
C that V;, ;, = 0 for these two data, and thus we cannot get V,,;;, which means that no variable
can explain variable C.

To avoid the above mistake, we can revise the definition of the difference set for node i
as Vi, =1{J: S;l + S}z or 8;1_1 + S;?_l or S;l * S;l_l}. By the revised definition, we get
Vi, = {A,B} for Example 2. We say that V is an explanatory set for node i if VNV, ,, # 0
for all pairs (¢1,#,). In our approach, we find the minimum explanatory set V as a candidate set
of parent nodes of node i. This is called the minimum set covering and can be calculated by
the branch and bound technique (Nemhauser, 1988). By the revised difference set, it may be
shown that the parent set of node i can be found by using an explanatory set. If a node has n
parents, then the algorithm can stop before we search all sets with not more than n elements.
Unfortunately, for an explanatory set V, we cannot ensure the existence of a Boolean function
that can explain the whole data (see Example 3). Thus unlike the approach for synchronous
networks, to decide whether an explanatory set is appropriate, we need to check the existence
of a Boolean function which can explain the whole data. If there does not exist such a function,
we try the next minimum explanatory set V' that satisfies VNV, ;, # 0 for all #; and 1,. We
repeat this process until finding a Boolean function.

Example 3 This example illustrates that an explanatory set V may not ensure the existence
of a Boolean function for explaining all data from an asynchronous network. Consider the
following asynchronous network

Si =1, S = Sa, St = —Sy.
From it, we may get the following data of (S, S, S5 Sy, S5, SET) at three update rounds
(1,1,0;1,1,0) fort =1, (0,0,0;1,0,0) fort =1, (0,1,0;1,0,1) forz =13.

It is obvious that {B} is an explanatory set of C. From the data at #; and 1, we find that C is a
constant 0 for B =0 and 1, and thus we get the function C = 0. But for the data at #3, we have
Ci;+1 = 1. This means that there does not exist a Boolean function S = Bc(Sp).

4.2 Find a Boolean Function

To find a Boolean function, we propose the following process. Given the minimum explanatory
set V.= {ji,j2, -, Jn;} for node i obtained with the approach presented in the previous sub-
section, first we extract those rows that satisfy S’ ! Sj for all m, and we can directly get a
value of the Boolean function from these rows. We extract all different states and calculate a
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log likelihood for each of possible functions B;(Sj,, . S;,.)

18; = Bi(S),, - .85, ), datd)

—Z(RSRY) ~Z(R; '>R")

ZZIHP[Sisz(SM /1 y Ty j"i i )

t

—Z(RTISRIY HI(RT_BR?”)

— ln{ [I(S{ZB'(S. i i ,...’S‘ n; ))

zf: (R31‘7~-~-ZR";,1.' R S "”' 4)

t—1 t—1 pt—1
><P(Rj1 R ’Rjn,- R, )]}
f—a' ! r—d'; !

:Z]n{ Z [I(SEZBI'(SJ'I 1 ’”.’Sjnl. Jn; ))P(at]:l’.”’atj;il)]}’
)
where a’j;l =7 (R'j]:1 > Rifl ), which has value 0 or 1. The maximum log likelihood equal to

—co implies that there is not any function B; such that S; = B;(Sj,, -+ ,Sj, ). We find a function

B; which has the maximum log likelihood. Assume that (R}, -- -, R};) has a uniform distribution
over all permutations of {1,2,--- N} for all 7. Then we have
n; t nj t
t ry (Zm:l am)! X (ni - (Zn’l:l am))‘
P(al7' 7an,)_ (nl+1)’ . (5)

4.3 Algorithm MESML for finding Boolean functions

Let Q = {1,2,...,(T + 1)M} denote a set of row indexes for the data matrix E. Let Q; =
{L(T+1)+1,2(T+1),...,(M—1)(T +1) + 1} denote the set of row indexes for M initial
values, and let Qy; = Q\ Q; denote the set of row indexes for non-initial data.

For each node i € {1,...,N}, we find a Boolean function 55;(V) as follows:

Step 1 If all non-initial values of variable i are constant, that is, S§ = Sﬁ»l for all # and ¢ € Qyy,
then return a constant function 5;(V) = S..

Step 2 For each r # ', calculate the difference set V, s if St # Sﬁl.

Step 3 Find a minimum set V which intersects all V; » obtained at Step 2, that is, VNV, ,» # 0 for
alltand ¢’ € Qpy.

Step 4 Find a Boolean function 55;(V) which maximizes the log likelihood {[B;(V),data].

Step 5 If /[B;(V),data] = —eo, then we cannot obtain a Boolean function of the current set V for
the node i and go to Step 3 to try the next minimum set V.

Step 6 Otherwise, output the Boolean function 5;(V).

Example 4 This example illustrates the algorithm MESML. Consider the following Boolean
network with N = 3 nodes A, B and C:

Si=1, Sy =S54, St =S4

Suppose that we have M = 3 initial vectors of (Sa,Sp,Sc): (1,1,0), (0,0,0) and (0,1,0).
After one update round for each initial vector, we get the following data of (SA,SE,S’C;SAH,
S?l SZC+1):
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(). (1,1,051,1,0) for the first initial value labeled as r = 1,
(ii). (0,0,0;1,0,0) for the second initial value labeled as ¢ = 3, and
(iii). (0,1,0;1,0,1) for the third initial value labeled as r = 5,

where the first three numbers in each bracket are an initial vector, and the last three numbers
are the vector obtained after one update round. To clearly separate the initial values from the
updated data, the data matrix E is revised by combining two rows into one as follows

S Sy SL|Ssy SEOS2 1 1 01 10
Sy Sp SA|ST Sg St |=l000 0 0 |,
Sy Sy 828 S5 S¢ 01 0|1 01
where the left parts in the above matrixes are for the initial values and the right parts are for the
data obtained after one update round. First we use the algorithm MESML to find the Boolean
function for node A. At Step 1, since Qy; = {2,4,6} and S3 = S§ = S§ = 1, we output S = 1.
Next we try to find a Boolean function for node B. Since S5 # Sa, the condition at Step 1
does not hold. At step 2, there are two pairs of (¢,7'): (2,4) and (2,6) such that S§ # S};. We
calculate the difference set for the pair (2,4). Since Sy =83 =81 =1#£0=8; and S} =S% =
88 = Sé =0, by definition of difference set, we get V2 4 = {A}. Then we calculate the difference
set for the pair (2,6). Since Sy =83 =8=1#£0=8and S} =S2=82=0#1= 82,
we get Vo s = {A,C}. At Step 3 we find that for each set that has one element, only {A} is an
explanatory set. At Step 4, we find the truth table for A and B, and we can obtain the Boolean
function Sy = Su. At Step 6, we output the result.

Finally we want to find a Boolean function for node C. Since Sg # S0, the condition at Step
1 does not hold. At step 2, there are also two pairs of (¢,7'): (2,6) and (4,6) such that S # S’C/.
First we calculate the difference set for the pair (2,6). Since S3 =0# 1 =S} = 5% = S$ and
Sp=83=83=1#0=388, we get Vo6 = {A,B}. Then we calculate the difference set for
the pair (4,6). Since S{ =85 =1#£0=83=8; and S3 = Sj = Sy =0 # 1 = S3, we have
Vae = {A,B}. At Step 3, we find that for each set with a single element, both {A} and {B}
are explanatory sets. At Step 4, we search the Boolean rules for them separately. As shown in
Example 3, there does not exist a Boolean rule of {B} that can explain the data, which means
that [[Bc(Sp),data] = —e. So go back to Step 3 to try the next minimum set. Since there exists
a boolean rule of A and C, we get S; = Sy such that I[B¢(Sp),data] # —ee, and then go to
Step 6 for output.

5. Simulation and Algorithm Analysis
5.1 Simulation results

From the result obtained by our approach, we find that if the parents of a variable are found
correctly, then the Boolean regulatory rule is always obtained correctly. Thus our method based
on the maximum likelihood is an efficient way for selecting the Boolean regulatory rule. For
our results, the average error rate defined by the challenge organizers is 0.14 for the original
SIGNET dataset, 0.06 for our dataset and 0.05 for the dataset generated by Professor Guyon.
We also find that the error rate increases as the the number of parent nodes increases. The
dataset generated by Professor Guyon is used for further simulation, and the error rate, the
number of real parent nodes and CPU time for various cases are shown in Table 1. All of our
computations are performed on a computer with CPU 1.73 GHz and 1.00 GB RAM and the
algorithm is implemented with R language. The CPU times do not include the data preprocess
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and the preprocess takes about an hour. In our algorithm, we limit the maximum size of the set
of parent nodes up to 4 since the CPU time for more than 5 parent nodes may take more than
30 days. For the last line in Table 1, the number of real parents is 5, but we limit the number
of parents to be found up to 4. Thus the CPU time is almost the same as the case with 4 real
parents, but the average error rate is much larger than the case with 4 real parents.

Number of real parents  Average error rate  CPU Time

0 0.000 0.1 seconds
1 0.000 10 seconds
2 0.063 10 minutes
3 0.150 12 hours
4 0.110 2.5 days
5 0.281 2.5 days

Table 1: Error rate and CPU time for the different number of parents of a node.

5.2 Algorithm Analysis

To find the minimum set, we need to calculate V, for all 7 and ¢’ € Qy;. The complexity
is 2N(T x M)?. If a node has K parents, the total computational complexity for finding the
minimum explanatory set V is not more than ZkK: 1 Cl’i, times. Given a minimum set V with

K nodes, we need to calculate not more than 22¢ log likelihoods. But if we search on the
whole space of Boolean functions without using the minimum set, the complexity is about
Zszl (sz X Cllfl) So our algorithm can greatly reduce the complexity for a large network with
large N and K. However, when K and N are small but M and T are large, it takes much times
to find the minimum set, and so we directly try all possible sets V with sizes equal to 1 and 2
without finding the minimum set.

The advantages of our algorithm are that our approach takes full use of the information in
the data, especially the information on the dynamic evolution processes. Thus our algorithm
can have a higher accuracy for learning structures and Boolean functions, especially for those
sparse structures with circles and without steady states.

6. Discussion

In the algorithm MESML, we stop the process as long as we find a single minimum parent set
which has a Boolean function that maximizes the likelihood and can explain the whole data set.
If we do not consider the computational complexity, we should try all possible minimum parent
sets to find a Boolean function which maximizes the likelihood or some other scores over all
sets. To compare the models with different numbers of parent nodes, we can use AIC score or
other scores for model selection. Pearson’s x? test can be used to check whether the Boolean
regulatory function fits the observed data. The x? test is described as follow. The hypotheses
are

(—I(RI>RITD (R I>RIT
. r . i i Jn; 1
Ho: S| = B(S) s, T,
—I(RI-SRIT —I(R >R
.t i i Jn; i
Hl.S,-#B,-(SjI ""’Sjnl- ! ).

An asynchronous rule ! = B;(-) may take multiple values depending the orders of parent nodes
before or after the order of node i. Under the assumption that the orders have a uniform dis-
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tribution, we can obtain the distribution of S{ conditional on its parent nodes, which is given
in the likelihood (4) (i.e., the argument of In function). Thus we can test the hypothesis using
Pearson’s 2 statistic:

XZZZT[)L ZZ l])L zﬂl) :
A

1/7L

where A denotes a state of the conditional set (Stjl, . ,S;l S’j : L. ,S;;il), Ojy is an observed

frequency
Ol]l:ZI(Sf:‘h ]l’ ’ ’St]n Sf/ll’ ’Stj"_ll):)b%
t

E;j; 1s the expectation

Eijp = mP(S; = jI(S5,, -8}, 385"+ 85 1) = A:Ho),

which can be calculated by (4) and (5), and the total frequency is
nl*ZI ]1’ /,1 Sl}llf 7Stjn_ll):2’)

The statistics T}, for all states of the conditional set are mutually independent. The statistic
x? asymptotically has a x? distribution with F degrees of freedom, where F is the number of
different states of (S" ,-- S’J ;S L... S h.

To evaluate the test, we d1d a 51mulat10nlon the above test for checking whether a Boolean
rule can be accepted or rejected correctly. Using the dataset of the task SIGNET, we obtain the
results shown in Table 2. The significance level o for the test is 0.001. The test results illustrate

that Pearson’s y? test can be used to improve the accuracy for learning Boolean rules.

Rule | Accept | Reject
True 34 2
False 1 6

Table 2: Simulation results of % tests for Boolean rules.

The deficiency of our approach is that the accuracy may decrease if the network contains
too many hub nodes. We limit the number of parent nodes up to 4 and stop our algorithm after
searching all sets with not more than four nodes even if no explanatory set is found. This is a
tradeoff between time cost and the error rate.

In our approach, we use a conditional likelihood for a single node i instead of the full
likelihood for all nodes to reduce the computational complexity. Thus our approach may not
obtain the optimal result. Since we consider a Boolean regulatory rule for each node i separately,
the update order we obtained may not be suitable for other Boolean regulatory rules although it
maximizes the likelihood of the Boolean rule for node i. Below we give an example to illustrate
this.

Example 5 Suppose that the observed data of (82,82,8 1 Sy) are (1,1,0,0). First consider
A only, and the rule S} = —Sp can explain the data under the order (R/l4 = 1,R, =2). Next
consider B only, and the rule S5 = =S4 can also explain the data under another update order
(R}, =2,R} =1). So it seems that the rules S; = —Sg and Sj = —S4 could explain the data.
However, from the rules, we find that possible data are either (1,1,0,1) or (1,1,1,0), which do
not contain the observed data (1,1,0,0). Thus we must add one more step after our algorithm
to check whether all the Boolean rules we learned can explain the observed data.
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Appendix A. Proof of Example 1

Below we show the statement for Example 1: Sf is independent of (SA,S/I(I,SI’;,SEI).
Since all information on the network is contained by the conditional probabilities P(S,, S,
S’C|S§(1 ,S;;l ,S’gl), we first calculate these probabilities, and then we can calculate the con-
ditional probabilities P(SL.|S, ', S5 1,81, S5). Itis easy to get that P(S, = 1|8, ' =i, S5 ' =
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7,84 =k,Sz=1)=0.5forall i, j, kand [ =0 and 1. Thus we showed that S/. is independent of
(84,87",85,8571). By the symmetry of (A,B) and (D, E), we have that S is independent of
(Sp,Sp 1SS ).

Appendix B. Pot-luck challenge: FACT SHEET
Method:

e Preprocessing
First, we combine the state vectors at two consequent time points into one vector. Then
for each variable i, we find a difference set V;, ;, of variables for a pair of two combined
vectors.

e Possible Explanatory Set finding and Boolean Rule Finding
Since all initial values for the variable ABA are 1 in the original SIGNET dataset, each
node which has a single parent ABA will have a constant value, and then the node is
determined incorrectly as a root node. Thus we assume that the five root nodes are known
for the dataset. For our dataset and Isabelle’s dataset, we have different initial values of
root nodes, and thus we need not make this assumption. To reduce the computational
complexity, we limit the number of parents of each variable not more than 4. For each
variable i that is not a root, we first find a minimum explanatory set V that satisfies
VNV, #0forall f and ¢, and then we find the Boolean rule of the parent set V for the
variable i based on the maximum likelihood. If there is no such Boolean rules, then we
try the next minimum explanatory set and repeat this process until finding a Boolean rule.

e Post Process
If all minimum sets with not more than 4 nodes cannot explain the data, then we select a
set V and a Boolean rule that contradict with the data set at the least.

Results:
Dataset/Task Score
SIGNET/original dataset generated by Jenkins | 0.14
SIGNET/dataset generated by Isabelle 0.05
SIGNET/my dataset 0.06

Table 3: Average error rates for three data sets.

e Quantitative advantages (e.g., compact feature subset, simplicity, computational advan-
tages) The computational complexity is too high to utilize fully observed data from the
dynamic process of an asynchronous network. But it is easy to implement our algorithm
since our algorithm uses conditional likelihoods and it treats nodes one-by-one. See Sec-
tion 5.2 for the complexity analysis.

e Given a parent set of a node, its Boolean rule is found based on the maximum likeli-
hood. We use the conditional likelihood for a single node to reduce the computational
complexity. When the network is not too complexity (i.e., the number of parent nodes
for each node is less than 5), our method can run fast and it may be improved by using
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the full maximum likelihood of all nodes and using Pearson’s y? test or other model-
selection scores to check whether a Boolean rule fits observed data well. Besides, our
method takes full use of the information in the data, especially the information on the
dynamic evolution processes. Using the information, we can discover many structures
that cannot be found only from the information on steady states.

Now we briefly explain our implementation. First, we change the names of variables to be
numerical style and transform the original data to a matrix. Then for each node, we use R
program to process the preprocessed data to find its parent set and its truth table. Finally, we
find a Boolean rule from the truth table. Contact us via email to ask for the code.
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